Understanding Thermal/Optical Analysis

Judith C. Chow (judy.chow@dri.edu) John G. Watson L.-W. Antony Chen Desert Research Institute, Reno, NV

Presented at:

The Atmospheric Science Progress Review Meeting Research Triangle Park, NC June 21, 2007

Objectives

- Reconcile different thermal/optical methods by determining factors that influence OC/EC split
- Specify differences in optical properties between particles in the air, particles on a filter, and particles undergoing changes owing to thermal analysis
- Quantify differences in thermal carbon fractions determined by commonly used thermal/optical methods
 - Optimize thermal/optical methods to meet multiple needs of health, visibility, global, and source apportionment

Large Temperature and Analysis Time Variations in OC for Thermal/Optical Methods

*OGI OC performed at 600 °C only

**HKUST-3 Time 150 s only

Watson et al. (2005)

Large Temperature and Analysis Time Variations in EC for Thermal/Optical Methods

Watson et al. (2005)

IMPROVE vs. IMPROVE_A* Thermal Protocols

Original OGC/DRI Thermal Optical Analyzer (1986)

DRI Model 2001 Thermal/Optical Analyzer

	IMPROVE_A* (DRI Model 2001)	IMPROVE (DRI/OGC)		
OC1	140 °C	120 °C		
OC2	280 °C	250 °C		
OC3	480 °C	450 °C		
OC4	580 °C	550 °C		
OP (POC)	TOR/TOT	TOR		
EC1	580 °C	550 °C		
EC2	740 °C	700 °C		
EC3	840 °C	800 °C		

*After temperature and O_2 calibration. Implemented for samples acquired after January 1, 2005

No difference in OC/EC split between **IMPROVE** by DRI/OGC and **IMPROVE_A by Model 2001**

EC TOR (Sample Date 3/1/2004 - 9/30/2006)

Effect on Carbon Fractions by Temperature and O₂ Level

- Low temperature OC1 (140 °C) and OC2 (280 °C) are sensitive to temperature independent of the oxidant level
- As O₂ > 100 ppmv in He atmosphere, changes in OC3 (480 °C), OP, and EC1 (580 °C) are found

Laboratory Generated Carbon Sources

4 kW load

150

NaCl

NaCl

Dilution ratios (DR) of 18, 40, 80 and

sample time (T) of

Diesel Generator

Acetylene Flame

Electric Arc Generator (PALAS) DR of 8; T = 20 or 40 min; Source, Source + NaCl

Carbon Black and **Graphite Powder**

Wood Stove

DR of 17 T of 20, 40, 70 min Source, Source + NaCL

White Oak DR of 18, 40, 105 T of 20 or 25 min

Source, Source +

Source Characterization Systems for Reference Samples

Source Testing Instrumentation

Most laboratory generated sources can reproduce TC (Relative Standard Deviation*, RSD < 15% typically, except for Wood Smoke)

*standard deviation divided by the arithmetic mean, expressed in percentage

IMPROVE, STN and French Protocols

	IMPROVE_A_TOR/TOT			STN_TOT			French 2-step		
	Gas	Temp (°C)	Time (sec)	Gas	Temp (°C)	Time (sec)	Gas	Temp (°C)	Time (sec)
OC1	Не	140	150 to 580	Не	310	60			
0C2	Не	280	150 to 580	Не	480	60			
0С3	Не	480	150 to 580	Не	615	60	02	340	7200
0C4	Не	580	150 to 580	Не	900	90			
	Не	n/a	n/a	Не	cool oven	instantin (
EC1	O ₂ /He	580	150 to 580	O ₂ /He	600	45			
EC2	O ₂ /He	780	150 to 580	O ₂ /He	675	45			
EC3	O ₂ /He	840	150 to 580	O ₂ /He	750	45	02	1100	~600
EC4	O ₂ /He	n/a	n/a	O ₂ /He	825	45			
EC5	O ₂ /He	n/a	n/a	O ₂ /He	920	120			
Detection	Methanator / FID			Methanator / FID			Coulometric titration of CO ₂ for EC phase. TC from another punch. OC by difference.		
Pyrolysis Correction	Reflectance & Transmittance			Transmittance			None		

Source-to-source variations in EC are apparent (EC is similar between protocols, except for wood smoke)

Doraiswamy (2007)

Carbon fractions vary by source

IMPROVE_A protocol

Presence of NaCl shifts EC to lower temperature fractions*

* Higher NaCl -> greater shift from EC2 to EC1

NaCl has the largest effect among halogen salts on EC fractions

- For NaCl, shift of EC2 to EC1.
- For NaBr, no shift at 0.3 nmol but shift at 0.75 nmol
- For Nal, no shift for both 0.3 and 0.75 nmol

Catalytic reactivity: NaCl > NaBr > Nal

Addition of NaCl shifts EC to lower temperature fractions

Mass Percentage (%)

Carbon fractions in biomass burning varied by fuel and combustion conditions

Higher NH₄Cl results in lower EC2

- Higher NH₄CI shifts more EC2 to EC1
- Effects at micro-mole/micro-gram level
- No effect on OC speciation

Presence of (NH₄)₂SO₄ minimizes pyrolysis

- Melting point = 280°C
- Suppression of pyrolyzed carbon formed
- No EC shift was observed

Original Filter

Spiked with 3.0 µmol of ammonium sulfate

Na₂SO₄ does not suppress pyrolysis

- Melting point = 884 °C.
- Shift of EC 2 to EC1 but no suppression of charring.

Spiked with 3.0 µmol of sodium

Original Filter

Optical Modeling of Filter Reflectance and Transmittance

(Apparent) Absorption Efficiency Varies between EC and OP

 $[Carbon]_{after_O_2} = [EC] + [OP] = \frac{\tau_{ATN,EC}}{E_{a,EC}} + \frac{\tau_{ATN,OP}}{E_{a,OP}}$

Chow et al. (2004)

Monte Carlo Model Estimation of Reflectance (R) and Transmittance (T)

Concurrent R and T Measurements Allow Estimation of Absorption Optical Depth

• $\tau_{L1,a}$: absorption in the first layer

• $\tau_{L2,a}$: absorption in the second layer

• Blue line: reflectance measure

 Red line: transmittance measure

- Absorption in the second layer has no impact on the reflectance
- Absorption in the first layer does not affect transmittance as much as absorption in the second layer

Retrieve OP and EC Absorption based on R and T Measurements

Mass absorption efficiency varied by source (1047 nm)

Size distribution varies by source

The blue lines indicate BC σ_{abs} at 1047 nm in m²/g and the red lines indicate the single scattering albedo, ω . The refractive index and density for EC/BC are assumed to be 1.96 – 0.66i and 1.7 g/cm³, respectively (Chen et al., 2006). OM is modeled with a refractive index of 1.42 – 0.001i and density of 1.2 g/cm³.

Spectral Dependence of Light Absorption (Angstrom Power Law; $\lambda^{-\alpha}$)

Estimate of the Angstrom absorption exponent, α , using <u>7-AE</u> (seven wavelength aethalometer) measurements for different source and ambient samples. Error bars shown are one standard deviation from the mean.

Conclusions

- The IMPROVE_A protocol was developed to represent actual sample temperature and to maintain consistency in OC/EC measurements for IMPROVE and other networks.
- Temperature calibration and $O_2 < 100 \text{ ppb}$ auditing is necessary for thermal/optical methods.
- Small (20 to 40 °C) temperature differences do not affect the OC/EC split in TOR, but they do affect the TOT split and the carbon fractions.
- OC/EC split is insensitive to analytical conditions as long as reflectance correction is used.

Conclusions (continued)

- The presence of salts in samples increases EC oxidation rate at lower temperatures, thereby shifting thermal carbon fractions to lower temperature plateaus.
- Charring is minimized in the presence of (NH₄)₂SO₄, but not Na₂SO₄.
- Due to the formation of char and EC decomposition at high temperatures w/o O₂, optical correction is necessary in thermal methods to separate OC from EC.
- EC and OP have different absorption efficiencies. Optical correction should minimize the effects of the OP char.

Conclusions (continued)

- Pyrolyzed carbon (OP) is more abundant in ambient and wood smoke samples than in diesel and acetylene flame soot. This results in less consistent OC/EC splits for vegetative burning than for other EC sources.
- Low-temperature OC and high-temperature EC are relatively abundant in diesel soot but low in wood smoke PM.
- Under laboratory-controlled conditions, source samples can be reproduced within $\pm 10-15\%$ for diesel, acetylene flame, and electric arc soot, and within $\pm 40-50\%$ for wood combustion.
- Biomass fuel and combustion conditions (e.g., temperature) result in EC/TC abundances of 3 to 80%.

Conclusions (continued)

- Absorption efficiencies at 1047 nm from photoacoustic instruments yield 3 – 5 m²/g for EC from the IMPROVE, but are different for different sources.
- The absorption exponent is smaller for diesel and acetylene soot (~0.8) and larger for electric arc (PALAS) and wood smoke PM (>1).
- Optical properties cannot be fully explained by Mie theory (especially for wood smoke and electric arc PM) due to uncertain refractive indeces and irregular particle shapes.
- Filter characteristics condition (thickness, refractive indices, particle penetration depth) need to be better specified to model OC/EC splits.

2003 - 2004

- Chen, L.-W. A., Chow, J.C., Watson, J.G., Moosmüller, H., Arnott, W.P. (2004). Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis. *J. Aerosol Sci.* 35, 765-780, doi: 10.1016/j.jaerosci.2003.12.005.
- Chow, J.C., Watson, J.G., Chen, L.W., Arnott, W.P., Moosmüller, H., Fung, K.K. (2004). Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. *Environ. Sci. Technol.* 38 (16), 4414-4422.
- Ho, K.F., S.C. Lee, C.K. Chan, J.C. Yu, J.C. Chow, and X.H. Yao (2003). Characterization of chemical species in PM_{2.5} and PM₁₀ aerosols in Hong Kong. *Atmos. Environ.*, 37(1), 31-39.
- Ho, K.F., J.J. Cao, S.C. Lee, Y.S. Lee, J.C. Chow, J.G. Watson, and K. Fung (2004). Variability of levels, water soluble and isotopic composition of organic and elemental carbon in Hong Kong urban atmosphere. *Environ. Sci. Technol.*, submitted.
- Sin, D.W.M., W.H. Fung, Y.Y. Choi, C.H. Lam, P.K.K. Louie, J.G. Watson, and J.C. Chow (2004). Seasonal and spatial variation of solvent extractable organic compounds in fine suspended particulate matter in Hong Kong. JAWMA, 55(3):291-301.

- Arnott, W.P., B. Zielinska, C.F. Rogers, J. Sagebiel, K. Park, J.C. Chow, H. Moosmüller, J.G. Watson, K. Kelly, D. Wagner, A. Sarofim, J. Lighty, and G. Palmer (2005). Evaluation of 1047-nm Photoacoustic Instruments and Photoelectric Aerosol Sensors in Source-Sampling of Black Carbon Aerosol and Particle-Bound PAHs from Gasoline and Diesel Powered Vehicles. *Environ. Sci. Technol.*, **39**(14):5398-5406.
- Chow, J.C., J.G. Watson, P.K.K. Louie, L-W.A. Chen, and D. Sin (2005). Comparison of PM2.5 Carbon Measurement Methods in Hong Kong, China. *Environ. Poll.*, **137**(2):334-344.
- Chow, J.C., J.G. Watson, L.W.A. Chen, G. Paredes-Miranda, M.C.O. Chang, D. Trimble, K. Fung, H. Zhang, and J.Z. Yu (2005). Refining Temperature Measures in Thermal/Optical Carbon Analysis. *Atmos. Chem. And Physics Discuss.*, 5:4477-4505.
- EI-Zanan, H.S., D.H. Lowenthal, B. Zielinska, J.C. Chow, and N. Kumar (2005). Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples. *Chemosphere*, **60**(4):485-496.
- Watson, J.G., J.C. Chow, and L.W.A. Chen (2005). Summary of Organic and Elemental Carbon/Black Carbon Analysis Methods and Intercomparisons. AAQR, 5(1):65-102.

2006

- Chen, L.-W.A.; Moosmüller, H.; Arnott, W.P.; Chow, J.C.; Watson, J.G.; Susott, R.A.; Babbitt, R.E.; Wold, C.; Lincoln, E.; and Hao, W.M. (2006). Particle emissions from laboratory combustion of wildland fuels: In situ optical and mass measurements. *Geophys. Res. Lett.*, 33(L04804):1-4.
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; and Magliano, K. (2006). Particulate Carbon Measurements in California's San Joaquin Valley. *Chemosphere*, 62(3):337-348.
- Chow, J.C.; Watson, J.G.; Park, K.; Lowenthal, D.H.; Robinson, N.F.; and Magliano, K. (2006). Comparison of Particle Light Scattering and Fine Particulate Matter Mass in Central California. *JAWMA*, 56(4)398-410.
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Zielinska, B.; Rinehart, L.R.; and Magliano, K. (2006). Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite. *Atmos. Chem. Phys.*, http://www.atmos-chem-phys.net/7/1741/2007/acp-7-1741-2007.pdf.
- Chow, J.C., J.G. Watson, D.H. Lowenthal, L.-W.A. Chen, and K. Magliano (2006). Particulate Carbon Measurements in California's San Joaquin Valley. *Chemosphere*, in press.
- Park, K.; Chow, J.C.; Watson, J.G.; Trimble, D.L.; Doraiswamy, P.; Arnott, W.P.; Stroud, K.R.; Bowers, K.; Bode, R.; Petzold, A.; and Hansen, A.D.A. (2006). Comparison of continuous and filter-based carbon measurements at the Fresno Supersite. *J. Air Waste Manage. Assoc.*, 56(4):474-491.
- Park, K., J.C. Chow, J.G. Watson, W.P. Arnott, D. Trimble, K. Stroud, K. Bowers, R. Bode, A. Petzold, and A.D.A. Hansen (2006). Comparison of Continuous and Filter-Based Carbon Measurements at the Fresno Supersite. *JAWMA*, in revision.

- Chen, L.-W.A.; Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; and Chang, M.C. (2007). Particle emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. *Environ. Sci. Technol.*, in press.
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.L.; and Kohl, S.D. (2007). The *IMPROVE_A* temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term data base. *J. Air Waste Manage. Assoc.*, 57: accepted.