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Pollution source apportionment and Bayesian methods

xt︸︷︷︸
p×1

= Λ︸︷︷︸
p×k

ft︸︷︷︸
k×1

+ et︸︷︷︸
p×1

For example, the abundance of EC particulates at time t:

x1t = [% EC in auto exhaust]×
[concentration of auto exhaust in atmosphere (µg/m3)]

+ [% EC in zinc smelter emissions]×
[concentration of zinc smelter emissions (µg/m3)]

+... + e1t

• Λ unknown ⇒ model is called multivariate receptor model
and is fit using factor analytic methods

• Λ known ⇒ model is called chemical mass balance model
and is fit using regression methods
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Abstract

Advances in computational statistics provide a general framework for the high-

dimensional models typically needed for ecological inference and prediction. Hierarchical

Bayes (HB) represents a modelling structure with capacity to exploit diverse sources of

information, to accommodate influences that are unknown (or unknowable), and to

draw inference on large numbers of latent variables and parameters that describe

complex relationships. Here I summarize the structure of HB and provide examples for

common spatiotemporal problems. The flexible framework means that parameters,

variables and latent variables can represent broader classes of model elements than are

treated in traditional models. Inference and prediction depend on two types of

stochasticity, including (1) uncertainty, which describes our knowledge of fixed quantities,

it applies to all �unobservables� (latent variables and parameters), and it declines

asymptotically with sample size, and (2) variability, which applies to fluctuations that are

not explained by deterministic processes and does not decline asymptotically with sample

size. Examples demonstrate how different sources of stochasticity impact inference and

prediction and how allowance for stochastic influences can guide research.

Keywords

Data modelling, Gibbs sampler, hierarchical Bayes, inference, MCMC, models,

prediction.

Ecology Letters (2005) 8: 2–14

I N TRODUCT ION

Ecologists are increasingly challenged to anticipate ecosys-

tem change and emerging vulnerabilities (Costanza et al.

1997; Daily 1997; Carpenter 2002; Peterson et al. 2003;

Pielke & Conant 2003). Efforts to predict ecosystem states

highlight long-standing obstacles that apply not only to

forecasts, but also to the seemingly pedestrian practice of

inference. There is growing awareness of how difficult it can

be to connect predictive intervals obtained from models

back to the data that went into their construction.

Models of nature, including experimental ones, rou-

tinely entail dilemmas: simplify the research problem in

the interest of generality, or admit the complexity to

attain some realism. The tradeoffs are well known. On

the one hand, simple experiments may not �scale� to

nature – the settings where we would like to apply them

lie outside the experimental conditions. They engage

situation-specific and scale-dependent effects (Levin 1992;

Carpenter 1996; Skelly 2002). Likewise, simple models

may not accommodate the range of influences that can

operate in different settings and at different scales. On

the other hand, complicated experiments are rarely

feasible (Caswell 1988). Complicated models have tradi-

tionally been specific, containing many deterministic

relationships and associated parameters. Specifying many

�effects� in models leads to overfitting, in the sense that

we can fit this data set, yet promise little predictive

capacity for the next. Arguably few ecological predictions

with generality claim strong empirical support.

Stochasticity is central to the complexity dilemma,

because it encompasses the elements that are uncertain

and those that fluctuate due to factors that cannot be fully

known or quantified. Decisions concerning what will be

treated deterministically in models, what is assumed

stochastic, and what can be ignored are the basis for model

Ecology Letters, (2005) 8: 2–14 doi: 10.1111/j.1461-0248.2004.00702.x

�2005 Blackwell Publishing Ltd/CNRS
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Basic probability:
Pr{A,B,C} = Pr{A|B,C} × Pr{B|C} × Pr{C}

For complex problems (Berliner, 1996):
p{data,process,parameters} =

p{data|process,params} × p{process|params} × p{params}

“data model” “process model”
“parameter

model”

1. “Data”: ambient PM concentrations, meteorological data

2. “Process”: transport/dispersion, meteorology, seasonality,
atmospheric chemistry, etc.

3. “Parameters”: daily source contribution values, source pro-
file values

Interest in p{parameters|data,process}
5



• Auxiliary information for enhancing source apportionment

– Toxic release inventories −→
– Wind direction & other meteorological data

– Dispersion models (e.g., EPA’s AERMOD)
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II. Dirichlet based Bayesian multivariate receptor modeling

(Lingwall, Christensen, and Reese, submitted)

• Data from St. Louis EPA Supersite includes two years of

daily measurements of metals, carbon, and ions. Also...

– Particle size data

– Weekly organics measurements (extremely important for

wood/agricultural burning, auto/diesel split, etc.)

• Model for ambient PM data, X

xt = Λft + et
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• Likelihood and Priors:

– Source profiles (columns of Λ) ∼ Generalized Dirichlet
(Rogers and Young, 1973)

∗ Individual elements of an a priori source profile (λ̃k)
are associated with different degrees of certainty, but
variances of elements of Dirichlet vector cannot be in-
dividually tuned

λk ∼ Dirichlet(ηkλ̃k)

∗ Generalized Dirichlet is sum of Gamma random variables
with differing scale parameters, so individual variances
can be at least partially tuned to desired degree of un-
certainty (e.g., with genetic algorithm)

∗ Priors for profile parameters informed by:

· Available profiles

· Past studies
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• Likelihood and Priors:

– Source contributions (elements of ft) ∼ Lognormal

∗ Priors for contribution parameters informed by:

· Toxic release inventories

· Wind data

· Particle size distributions

· Daily, weekly, yearly cycles (e.g., seasonal patterns in

secondary formation and traffic flow)
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EPA’s AERMOD dispersion model: fate of pollutants emitted

from point source locations
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Simulation Studies

• Generate pseudo-data based on source apportionment anal-
ysis of Washington DC PM2.5 data

• Use approximate profiles as a priori information in Bayesian
model (via prior distributions) and PMF (via “source profile
targeting”)

• No a priori information for contribution matrix in this simu-
lation

• Calculate Total Median Absolute Error (TMAE) for estimat-
ing source contributions and source profiles:
– PMFΛ̃ (uses a priori information on Λ)
– PMF (does not use a priori information on Λ)
– BayesianΛ̃ (uses a priori information on Λ)
– Bayesian (does not use a priori information on Λ)
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TMAE for estimating source contributions and source profiles

Parameters CVY CVΛ PMFΛ̃ BayesianΛ̃ PMF Bayesian
F 0.3 0.2 4.22 4.02 6.84 4.77
Λ 0.3 0.2 0.0048 0.0016 0.0136 0.0031
F 0.3 0.4 5.17 4.36 6.84 4.77
Λ 0.3 0.4 0.0065 0.0019 0.0136 0.0031
F 0.3 0.6 5.01 4.42 6.84 4.77
Λ 0.3 0.6 0.0069 0.0023 0.0136 0.0031
F 0.6 0.2 7.24 7.05 10.21 7.87
Λ 0.6 0.2 0.0019 0.0022 0.0283 0.0056
F 0.6 0.4 9.13 7.67 10.21 7.87
Λ 0.6 0.4 0.0265 0.0035 0.0283 0.0056
F 0.6 0.6 9.80 8.05 10.21 7.87
Λ 0.6 0.6 0.0296 0.0051 0.0283 0.0056

Average
Relative

TMAE{F} 114% 100% 144% 107%

Average
Relative

TMAE{Λ} 459% 100% 757% 157%
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III. Dirichlet Process (DP) model for temporally-evolving
source profiles

(Heaton, Reese, and Christensen, in preparation)

Dirichlet Process (DP) Model

yt|Λt, ft,Σ ∼ LN [Λtft,Σ]

λkt ∼ DIR
[
gkλk(t−1)

]
Assumptions

1. Source emission compositions vary through time.

2. Errors are log-normally distributed.

3. Concentrations are time dependent.

Goal: Compare DP Model to PMF by simulating data sets under
varying degrees of variability in yt and Λt.
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Comparison under time-varying profiles (True,Bayesian,PMF)

Profile Plots Contribution Plots
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Comparison under time-varying profiles (Bayesian,PMF)

MAE for Λ̂t MAE for f̂t
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Comparison under time-constant profiles (True,Bayesian,PMF)

Profile Plots MAE Comparison
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Summary of DP Model Performance

Source
Profiles

Source
Contributions

Profile
Smooth-

ness Uncertainty DP Model PMF DP Model PMF
low low (CV=0.2) X X
low high (CV=0.8) X X X
high low X X
high high X X X
flat low X X
flat high X X

In the majority of circumstances, the DP model out performs

PMF.
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IV. Bayesian approach for the identification of pollution

source directions

(Williams, Christensen, and Reese, in preparation)

Exploratory Graphical Methods
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• Need method amenable to statistical inference

• Must account for the circular nature of the data

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6

−
3

−
2

−
1

0

Iron Concentrations

wind direction

lo
g 

of
 ir

on
 c

on
ce

nt
ra

tio
n

20



Model

y ∼ LN(β0 + β1Z(θ, µ, κ) + β3s, σ)

Z(θ, µ, κ) =
eκcos(θ−µ) − e−κ

eκ − e−κ
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Two Source Model

y ∼ LN(β0 + β1Z(θ, µ1, κ1) + β2Z(θ, µ2, κ2) + β3s, σ)

Z(θ, µ, κ) =
eκcos(θ−µ) − e−κ

eκ − e−κ

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Z function

Direction

Z
 v

al
ue

Kappa = 1
Kappa = 3
Kappa = 10

Mu = 2

23



MCMC Result
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V. Conclusions and additional research directions

• Bayesian approach has several advantages:

– Efficient use of auxiliary information (in construction of
priors)
∗ Partial source profile information
∗ Seasonal, meteorological, phenomenonological effects

on sources

– Potential for incorporating partial information synthesizing
data measured with differing temporal resolution (e.g.,
OC & EC available hourly while organics only measured
weekly or monthly)

– Potential for time varying source profiles along with time
varying source contributions

– In simulation, compares well with other source apportion-
ment methods
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• Current and future research directions

– PSA using a priori information and PMF (Lingwall and

Christensen, 2007)

– Clustering species using size distribution data (Christensen,

Dillner, Schauer, and Reese, 2007)

– Species influence in PSA using PMF (Christensen and

Schauer, in preparation)

– Embedding deterministic dispersion model (AERMOD)

into a Bayesian hierarchical model for identifying sources

(current work)

– Integrating meteorological information in PSA (current

work)

– Application to St. Louis Supersite data (current work)
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