Salivary antibody responses as an indicator of waterborne infections: pilot community study before and after installation of UV treatment

Co-investigators and main contributors

NHEERL Human Studies Division: Tim Wade (co-PI) and Ann Williams NCEA Cincinnati: Andrey Egorov (co-PI), Shannon Hunt (ORISE fellow), Mary Rothermich, Ing Chen (contractor) **NERL MCEARD:** Shay Fout, Alfred Dufour, Lu Li Region 1: Kevin Reilly and Maureen McClelland OGWDW, Standards & Risk Management Division: Susan Shaw Westat, Inc.: Sharon Jasim-Hanif, Meghan Wool, Mary Dingwall

Study objectives

- Test and validate novel infection surveillance technique that uses salivary antibody as a biomarker of infection
- Apply this technique to assess health benefits of EPA water quality regulations in a selected community
- Identify sites for future studies utilizing this methodology

Study Design

- Study sites:
 - Lawrence, MA (population 70,000):
 - Water from a microbiologically-challenged river
 - In March 2007, the city replaced an old plant (built in 1938) with a new plant (ClO₂, UV) meeting LT2 requirements
 - Lowell control community using the same river
- Participants: Local families with at least one 1 to 11 y.o. child
- Study cohorts: "before" (June 2006 Jan. 2007) and "after" (planned in June 2008 – Jan. 2009)
 - Planned 100 families for a full year but the start was delayed.
 Recruited ~400 families to compensate for shorter follow-up
 - Monthly exposure and illness questionnaires
 - Monthly saliva samples
- Supplemental water monitoring project (Crypto, Giardia, viruses, aerobic endospores, other bacterial indicators)

Data analysis

- Immunoconversion (a steep increase in antibody response to a specific pathogen) as an indicator of infection
- Compare the incidence of immunoconversions before and after new water treatment
 - Compare temporal changes in Lawrence with temporal changes in Lowell
 - Asymptomatic vs. symptomatic infections (immunoconversion following diarrhea/vomiting)
 - Effect of non-boiled tap water consumption
- Compare the results of risk assessment with epidemiological results

"Before new treatment" cohort

Demographics of the study population in Lawrence

- 85% Hispanic (mainly Dominican Republic and Puerto Rico)
- Income
 - 79% had a household income below \$25k
 - 94% had a household income below \$50k
- Education
 - 36% of adults did not complete high school
 - 32% had only a GED or high school diploma

Summary of saliva sampling by month

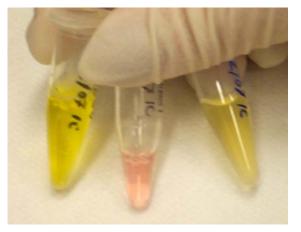
Month	Samples from Lawrence	Samples from Lowell	Total number of samples 44	
June	8	36		
July	39	33	72	
August	206	47	253	
September	698	80	778	
October	1088	235	1323	
November	948	204	1152	
December	1282	256	1538	
The entire "before" period	4269	891	5160	

Total number of families: 391

Total number of individuals: 1398

24 hour liquid consumption (average numbers of 8 oz glasses)

City	Soda	Milk	Bottled water	Boiled water	Filtered non- boiled tap water	Non- filtered non- boiled tap water	All non- boiled tap water	All drinks
Lawrence	2.3	1.9	1.7	1.0	1.1	0.7	1.8	8.8
Lowell	1.8	1.6	1.3	0.6	0.9	1.3	2.2	7.5


- Relatively low consumption of untreated tap water in Lawrence
- Extensive use of home water filters in Lawrence but not in Lowell:
 - Lawrence 46 % of participants
 - Lowell 22 % of participants

Objective 1

Test and validate novel infection surveillance technique that uses salivary antibody as a biomarker of infection

Salivary antibody – advantages and challenges

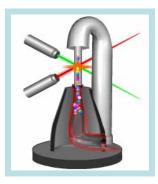
- Advantages:
 - Sampling well tolerated by children
 - Multiple samples are possible
- Challenges:

- Substantial variability in antibody concentrations
- Precipitation of antibody-protein complexes
- Non-specific reactivity
- Lower concentrations of antibodies than in serum

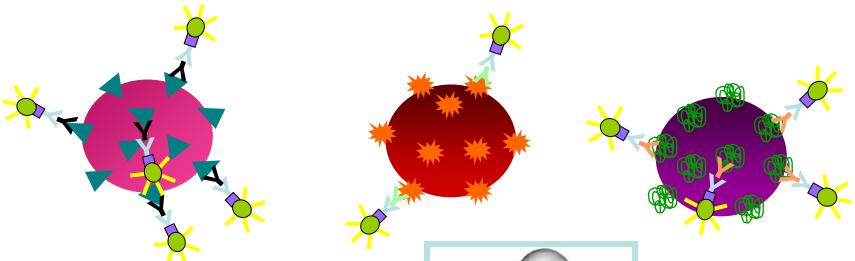
Saliva sampling

- Oracol[™] oral fluid samplers
- Centrifugation to separate saliva from the sponge and debris from saliva
- Storage at -80° C until analysis
- Analysis at EPA using Luminex[™] multiplex microbead immunoassay

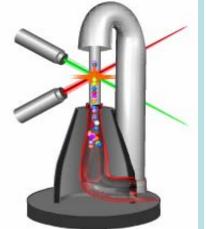
Luminex xMAP microsphere suspension microplate immunoassay


 1. Microscopic bead is coupled with one specific protein

 Saliva is incubated with beads; salivary antibodies react with protein


3. Samples are incubated with biotinylated antihuman detection antibody

4. SAPE is added to wells to bind biotinylated detection antibodies

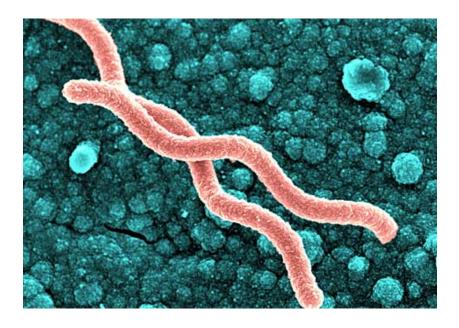


5. Microplates are analyzed using Luminex instrument

Multiplex assay

- Color-coded sets of beads coupled to different proteins
- Dual laser flow cytometer determines the type of bead and measures signal intensity

Selected potentially waterborne pathogens

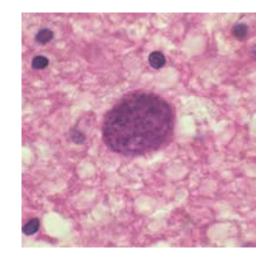

- Cryptosporidium
- Noroviruses
- Rotaviruses
- Helicobacter pylori
- Toxoplasma gondii

Assay development

- Samples used:
 - Serum and saliva samples from EPA volunteers
 - Selected saliva samples from participants of main study
- Selection and acquisition of proteins
- Expression and purification of recombinant proteins
- Optimization of protein-bead coupling
 - Coupling confirmation tests using antigen-specific antibodies
- Selection of saliva dilution ratio and dilution buffer
- Internal controls (GST- and BSA-coupled beads)
- Total antibody and total protein concentrations
- Effects of sample volume, storage, freezing, etc.
- Validation of salivary tests for chronic infections

Helicobacter pylori

- Active chronic infection of the stomach
- Causes gastritis, ulcers, cancer
- >30% of US adults infected
- CCL2 pathogen
- Proteins:
 - Flagellin
 - VAC protein
 - CAG protein
 - Small subunit urease
 - Soluble antigen extract (strain)

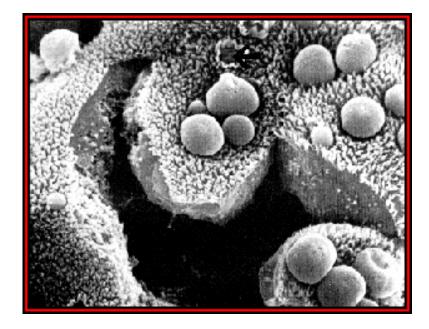


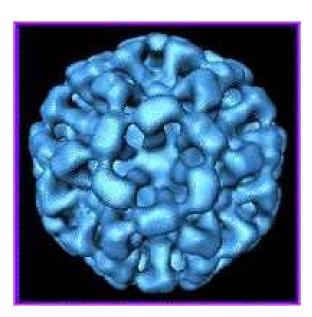
Toxoplasma gondii

- Protozoan parasite of felines, forms environmental cysts
- Forms latent tissue cysts in muscles and brain of intermediate hosts including humans
- ~25% of US adults are infected
- Can infect human fetus and cause severe neurological damage
- Reported waterborne outbreaks

Proteins:

- Soluble proteins from tachyzoites
- P30 protein
 - Recombinant
 - Purified from HeLa human cells
 - Purified from mice
- GRA7 protein
- MIC3 protein



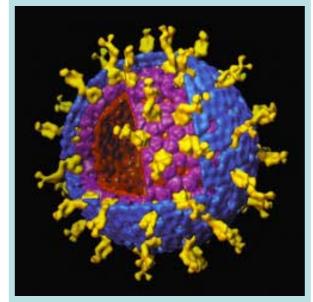

T. gondii cyst in brain tissue

http://www.dpd.cdc.gov

Cryptosporidium

- Oocysts resistant to chlorine
- Reported incidence 1 per 100,000 PY
- Major waterborne outbreaks
- LT2 is based on RA for <u>endemic</u> cryptosporidiosis
- Antigen extract from *C. parvum* oocysts
- Recombinant 27 kDa *C. parvum* protein
 - Transformed *E. coli* was provided by Jeffrey Priest (CDC)
 - Expressed and purified glutathione S-transferase (GST)-tagged protein
 - Use GST-coupled beads as internal control

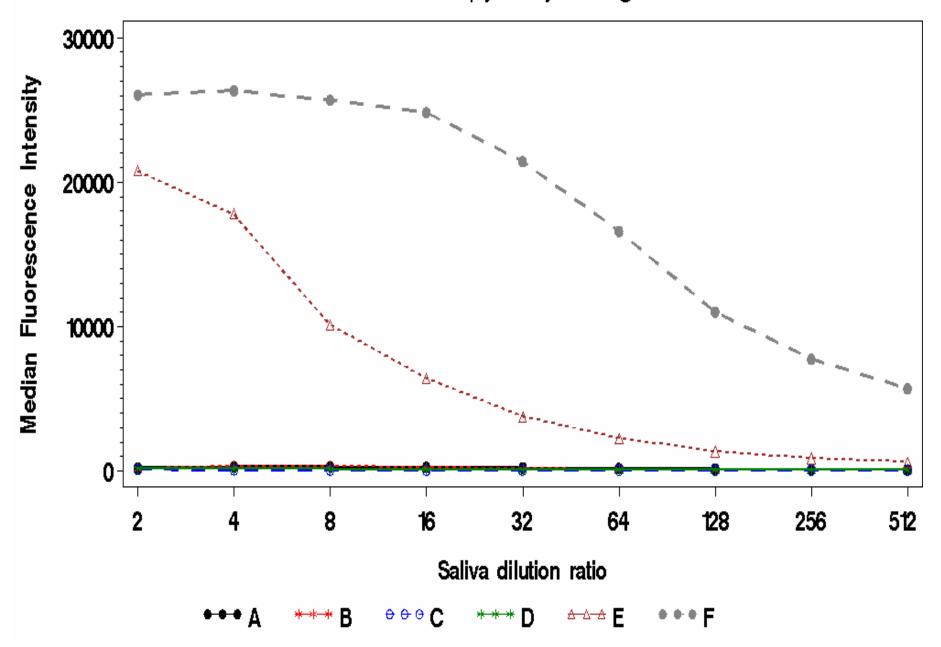
Noroviruses

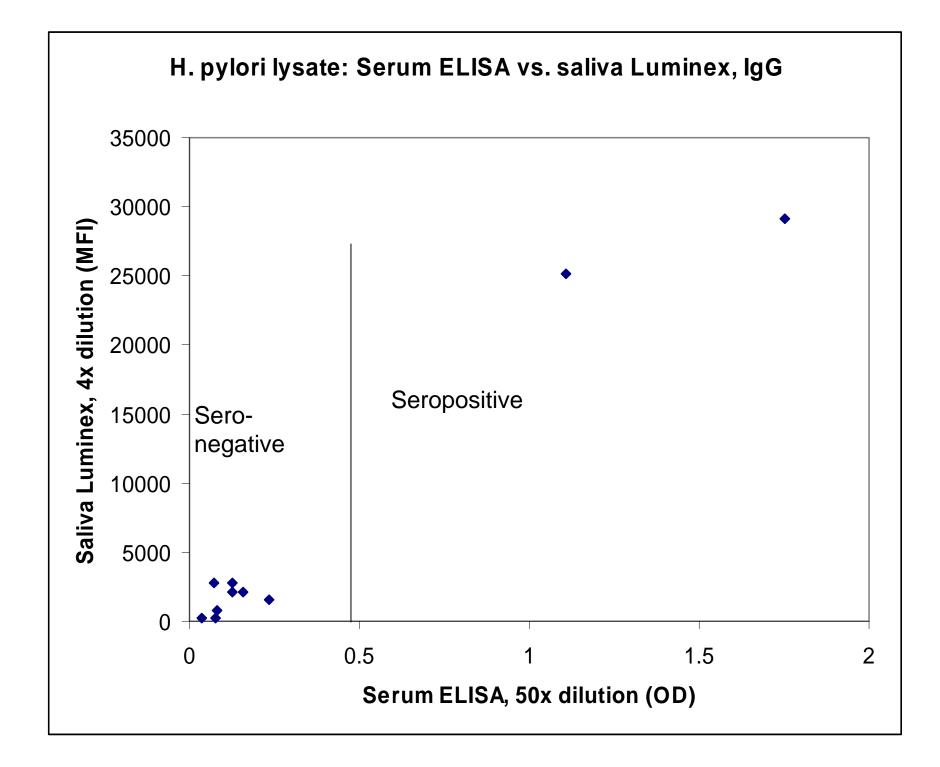

- The major cause of gastroenteritis in adults
- Severely underreported
- Highly infectious, resistant to chlorine
- Identified as cause of drinking water outbreaks
- Typical symptoms include vomiting and diarrhea

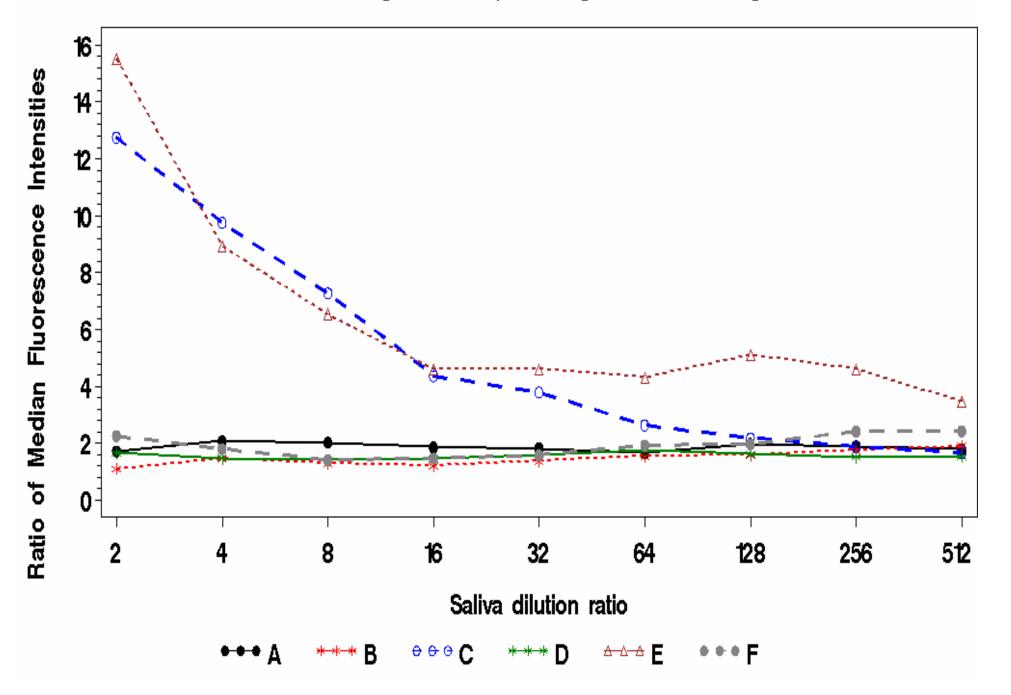
Proteins (provided by the Cincinnati Children's Hospital):

- Genogroup II strain VA387 recombinant capsid protein
- Genogroup I Norwalk virus recombinant capsid protein

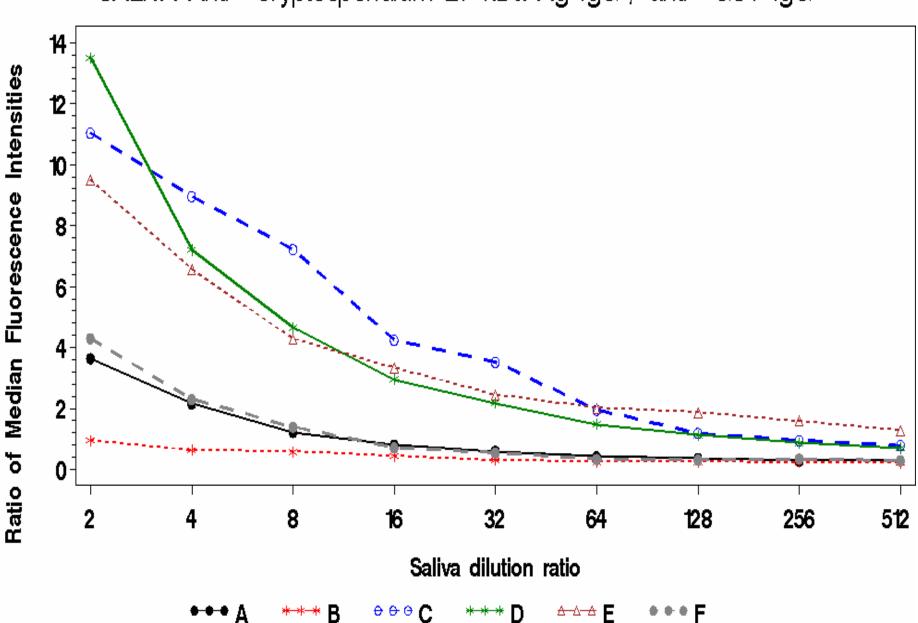
Rotaviruses

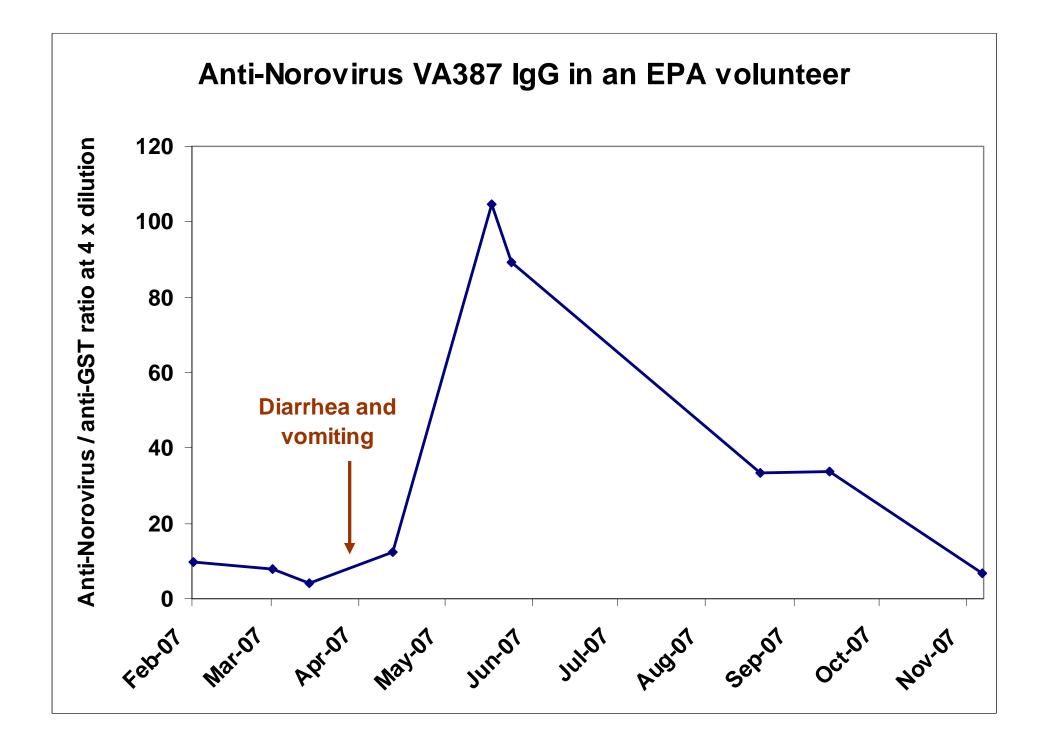

- Major cause of gastroenteritis in children
- Severely underreported
- Detected in surface and ground water
- Purified rotavirus particles procured from the Cincinnati Children's Hospital:
 - DS1 strain:
 - Triple layered particles
 - Double-layered particles
 - WA strain:
 - Triple layered particles
 - Double-layered particles

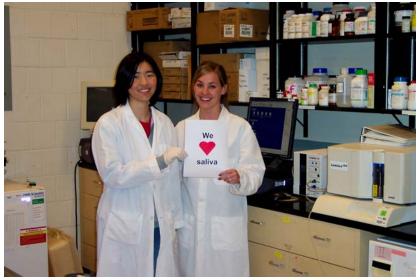



From Maricel Seeger, Buenos Aires / EFE

Selected results of assay development and validation


SALIVA anti-H. pylori lysate IgG




SALIVA Anti-T. gondii P30 protein IgG / anti-BSA IgG

Study status and future directions

- Objective 1
 - Completed development of assays for all target pathogens
 - Developed multiple internal controls
- Objective 2 is underway
 - Detected immunoconversions to norovirus
- More antigens can be added to multiplex assay at relatively low cost
 - Giardia lamblia (acquiring recombinant giardins from CDC)
 - Recreational water pathogens
 - Biofilm-associated pathogens

Acknowledgments

- NCEA, NERL and OW TSC colleagues who donated their saliva and blood samples
- CDC for providing transformed *E. coli* culture expressing recombinant *C. parvum* protein
- Cincinnati Children's Hospital for providing purified norovirus proteins
- EPA colleagues who provided support and consultations