United States Environmental Protection Agency

Performance Indicators Lessons Learned From Environmental Monitoring

Jay Messer U.S. EPA - National Center for Environmental Assessment

Office of Research and Development National Center for Environmental Assessment

February 12, 2008

So what is an environmental engineer doing here?

RESEARCH & DEVELOPMENT

Broad Accountability EPA's Report on the Environment

- Focuses on long-term, big picture trends in air, water, land, health, and eco.
- Indicators are not tied to specific programs or shortterm management objectives

RESEARCH & DEVELOPMENT

Focused Accountability EPA's Strategic Plan & Performance Reports

- EPA Strategic Plan
 - Sets EPA's goals and 5-year performance objectives.
- EPA Annual Performance Reports
 - Reports on achievement of performance objectives.

RESEARCH & DEVELOPMENT

Government Performance and Results Act (GPRA)

- Establish performance goals to define the level of performance to be achieved by a program activity
- Express goals in an objective, quantifiable, and measurable form
- Establish performance indicators to measure the relevant outputs, service levels, and outcomes of each activity
- Provide a basis for comparing actual program results with the established performance goals
- Describe the means used to verify and validate the measured values

RESEARCH & DEVELOPMENT

The Risk Model....

RESEARCH & DEVELOPMENT

.. is not the same as the Logic Model

Program Design Proceeds from Right to Left

Program Evaluation Proceeds from Left to Right

RESEARCH & DEVELOPMENT

Will any old performance indicator do?

© Scott Adams, Inc./Dist. by UFS, Inc.

RESEARCH & DEVELOPMENT

What makes a good performance indicator?

- Important
- Specific to action
- Sensitive
- Representative
- Acceptable measurement uncertainty
- Timely results
- Appropriate scale
- Careful around elephants

RESEARCH & DEVELOPMENT

An important example Stratospheric Ozone

Shorter term outcome anticipates longer term outcome

^aTotal ozone refers to the total ozone concentration in a column of air between the Earth's surface and the top of the atmosphere.

^bTrend data are representative of latitudes ranging from 35 degrees North to 60 degrees North.

Data source: 1965-2003 data from WMO et al., 2003, and 2004-2005 data from unpublished results provided by WMO

Exhibit 2-44. Global effective equivalent chlorine concentrations, 1995-2005^a

^aEffective equivalent chlorine (EECI) is typically used to represent atmospheric concentrations of ozone-depleting substances. The EECI reflects contributions from multiple ozone-depleting substances, weighted by their potential to catalyze the destruction of stratospheric ozone.

Data source: NOAA/ESRL/GMD, 2006

RESEARCH & DEVELOPMENT

Another important example Acid rain

- How many lakes and streams in the U.S. were acidic because of acid deposition?
 - National Surface Water Survey (probability sample in geologically sensitive areas)
- How many would be expected to recover or get worse under different SOX and NOX emission scenarios?
 - Direct-Delayed response model
- How many actually did recover or get worse after controls were put into place?
 - TIME/LTM program

RESEARCH & DEVELOPMENT

Exhibit 2-28. SO₂ emissions in the U.S. by EPA Region, 1990 and 1996-2002^a

Exhibit 2-33. Total sulfur deposition in the eastern United States, 1990-2005^a

^aCoverage: 34 monitoring sites in the eastern United States. *Data source: MACTEC Engineering and Consulting, Inc., 2006*

Shorter term outcomes anticipate longer-term outcomes

Exhibit 2-36. Lake and stream acidity in selected acid-sensitive regions in the U.S., 1987-2005

RESEARCH & DEVELOPMENT

Another important example – Surface Waters

- How many acres/miles of surface waters are in good condition, and what are the trends over time?
 - National Coastal Condition Assessment
 - Wadeable Streams Assessment
 - More to come (large rivers, lakes, wetland condition)
- Probability sampling to insure representative results
- Emphasis not just on chemistry but also biological community structure

RESEARCH & DEVELOPMENT

Probability sampling

Dissolved Oxygen in Gulf Coast Estuaries 1991-1994

Despite diurnal oxygen fluctuations, annual frequency distributions are similar

Representative sample Wadeable stream indicators

Exhibit 3-12. Index of Biological Integrity (IBI) for benthic macroinvertebrates in wadeable streams of the contiguous U.S., by ecoregion, 2000-2004^a

RESEARCH & DEVELOPMENT

Comparisons with stream non-representative 305(b) reports

Example of lack of comparability in state water quality data

-

Sensitivity SAV in Chesapeake Bay

Exhibit 3-30. Extent of submerged aquatic vegetation (SAV) in the Chesapeake Bay, 1978-2006^a

By 2008, SAV will increase to 120,000 acres

^aThere were no Bay-wide surveys from 1979 to 1983, or in 1988.

^bFor years with incomplete photographic coverage, SAV acreage in the non-surveyed areas was estimated based on prior years' surveys.

Data source: Chesapeake Bay Program, 2007

RESEARCH & DEVELOPMENT

Specific to management action? Relationships between infant mortality rate and stream degradation

Percent of County's Stream Miles that are Degraded

RESEARCH & DEVELOPMENT

Let's also take a look at some more examples of regional variability

RESEARCH & DEVELOPMENT

Regional differences in impact Loss of native fish species

RESEARCH & DEVELOPMENT

Regional differences and accountability targets Coastal condition indicators

No indicator data available.
Does not include the hypoxic zone in offshore Gulf of Mexico waters.

By 2008, increase all indices by 2%

RESEARCH & DEVELOPMENT

Measurement uncertainty Power to detect a trend or achieve a target in two lake indicators

The power to detect a 2% peryear trend in Secchi transparency and zooplankton species richness with a sample size of 50 lakes per year. Data were generated from the 1991-1994 EMAP lakes study in New England.

RESEARCH & DEVELOPMENT

Regional differences in stressors Estuarine Benthic Invertebrate IBI

Stressors Associated with Degraded Condition

RESEARCH & DEVELOPMENT

Regional differences in a pollutantspecific response indicator

Ozone injury to forest plants **Exhibit 2-15.** Ozone injury to forest plants in the U.S. by EPA Region, 2002^{a,b}

Degree of injury:

None Low Moderate High Severe

Percent of monitoring sites in each category:				
Region 1 (54 sites)	68.5	16.7 <mark>11.1 -</mark> 3.7		
Region 2 (42 sites)	61.9	21.4 <mark>7.1</mark> 7.1 2.4		
Region 3 (111 sites)	55.9	18.0 14.4 7.2 4.5		
Region 4 (227 sites)	75.3	10.1 7.0 -3.5 -4.0		
Region 5 (180 sites)	75.6	18.3 <mark>6.1</mark>		
Region 6 (59 sites)	94.9	-5.1		
Region 7 (63 sites)	85.7	9.5 1 .6		
Region 8 (72 sites)	100.0			
Region 9 (80 sites)	76.3	12.5 8.8 1.3		
Region 10 (57 sites)	100.0			

 ^aCoverage: 945 monitoring sites, located in 41 states.
 ^bTotals may not add to 100% due to

rounding. Data source: USDA Forest Service,

2006

RESEARCH & DEVELOPMENT

Do indicators scale by hierarchy?

RESEARCH & DEVELOPMENT

Hierarchy and Scale

Importance of indicator scale

- National trends may mask important regional, state, and local variation
- Are we concerned about
 - a family?
 - a community?
 - a state or region?
 - A nation?
 - the globe?

Each concern may require an indicator or performance measure with a time and space scale that is "just right."

RESEARCH & DEVELOPMENT

Scale of outcomes Global sea surface temperature

Exhibit 6-19. Annual global sea surface temperature anomaly, 1880-2006^a

Coverage: Anomaly with respect to the 1971-2000 climate normal, which is plotted as zero.

Data source: NOAA, 2007b

RESEARCH & DEVELOPMENT

Scale of accountability targets Regional safety of public water supplies

Exhibit 3-36. U.S. population served by Community Water Systems with no reported violations of EPA health-based standards, by EPA Region, fiscal years 1993-2007^{a,b}

Data source: U.S. EPA, 2007

RESEARCH & DEVELOPMENT

Scale of restoration targets

Local - Brasstown Creek, NC Stream restoration

Year	EPT	BI	State bioclassification
1994	18		Fair
1999	44	4.6	Good
2004	53	4.8	Excellent

RESEARCH & DEVELOPMENT

Scale – national

urhanization

^aSee box in text for definitions of land use categories.

Data source: Lubowski, et al., 2006; Smith et al., 2004; USDA NASS, 2004; USDA NRCS, 2007

RESEARCH & DEVELOPMENT

Scale – local urbanization

Importance of elephants (large facilities)

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Importance of large facilities Trends in TRI Releases to Land (1988 core chemicals)

RESEARCH & DEVELOPMENT

Take Home Messages

- When constructing performance indicators -
 - Consider their importance, sensitivity, measurement uncertainty, timeliness, and representativeness
 - Consider the potential importance of scale and hierarchy
 - Watch out for the elephants!

RESEARCH & DEVELOPMENT

Or else

RESEARCH & DEVELOPMENT