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e Terrestrial carbon (C) pools an play important rol"e'”'in\ |
uptake, deposition, sequestration, and (re-)emission
of atmospheric mercury (HQ)

e Biomass and soil C pools are highly sensitive to
climate/land use changes

Project goal:
To assess how global change is likely to affect Hg

uptake, sequestration, and emissions associated
with vegetation and soil C pools during the next 100
years
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Role of carbon pools: Plant Hg uptake

e Biomass contains significant amount of Hg (leaves ~24 g kg1)

e Above-ground biomass Hg mainly originates from atmosphere

= Litterfall and plant senescence represent important pathways for
atmospheric Hg deposition
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Role of carbon pools: Plant Hg uptake

Annual Global NPP
(Pg Clyr) 60
Annual Biomass 120
Production (=NPP+2; 50% Forests'shrublands | 50% Grasslands/others
Pg/yr) ] 6
55% of 60: 33 45% of 60: 27

Annual Above-ground
Bivmass Production 30% Leaves | 70% Wood | 100% leaves | 0% Wood
(Pg/yr) 9.9 231 27 —
Tissue He Concentration

24 6 24 —
(pph)
Annual Atmospheric Hg
Uptake (Mg Hg/yr) 237.6 138.6 648.0 -
Sum ( 1024.2 )
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Hg Pool: — 2,500 to 5,000 Mg

al. 2003)
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Role of carbon pools: Plant Hg uptake
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“Plant Hg Pump” strong
enough to affect
atmospheric Hg levels?

Obrist (Biogeochem in press)

Data from Ebinghaus et al. (Atmos
Environ 2002) and Baker et al. (Atmos
Environ 2003)
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Role of carbon pools: Plant Hg uptake

Modeled Potential Dry Deposition Hg Flux

Measured Hg deposition flux Growing season (Jun-Nov):

Growing season (Jun-Nov):

( Precipitation: 4.9 + 0.2 pg m2 :

Hg% 8.3+ 2.7ug m?

Hg*: ~4~6 ug m?

Hg(p): ~0.07+0.03 g m?

Total: ~12 — 14 pg m*?

Measured Hg deposition fluxes

Measured Litterfall Hg deposition (Oct):
Growing season (Jun-Nov):

114 £+ 2.8 Hg m *

& %iﬁ

Total throughfall: 6.7 £ 0.2 pug m™

Net throughfall: 1.9 £0.1 pg m*?

Rea et al (Atmos Environ 2001)

Hg deposition —3-4 x higher in
tems than in the open field
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Role of carbon pools: Hg sequestration
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» 30,000 Mg Hg sequestered in US forest soils?

— 115-210 Mg/yr anthropogenic/industrial US Hg emissions
(EPA 1999, UNEP 2002)

e How stable are these Hg pools?
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Hg strongly bound to OM Strong binding of reduced S groups

Thiol functional group Mercaptan(Latin mercurius captans, meaning 'laying hold of mercury,‘)

In addition to plant Hg inputs, store for other wet/dry depositions of Hg!!!�


Goal 1

— Systematically quantify Hg concentrations associated with

vegetation, litter, and soil C pools T

Approach

— Use of IFS (Integrated Forest Study) site network with available
data on C pools, fluxes, and turnover rates in all major ecosystem
compartments

— Determination of Hg contents in respective C pools

Expected Results

— Systematic [nventorg of Hg pools associated with C stocks across
forest sites in the U

— Estimation of atmospheric Hg inputs and sequestration through
litterfall and plant senescence

— Determination of resilience and sequestration potential of Hg in
various ecosystem compartments
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Goals and proposed work

IFS Forest sites

3
S
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— 17 forested sites (9 sites

proposed in our study)
— Detailed budgets for OC in 11

major ecosystem compartments

available

Organic Matter

Component
OVERSTORY
= FOLIAGE 6,180
=> BRANCH 22,900
—p BOLE 242,200
- STUMP
—p ROOTS 44,500
TOTAL 315,780
UNDERSTORY 3,050
FOREST FLOOR
= 0O HORIZONS 23,500
—  WOOD“ 13,200
TOTAL 36,700
SOIL, EXTRACTABLE
A (0-7 cm) —
A (7-15 cm) —
B (15-30 cm) —
BC (30-45 cm)
TOTAL —
SOIL, TOTAL"”
— A (0-7 cm) 61,800
—p A (7-15 cm) 40,400
— B (15-30 cm) 55,800
= BC (30-45 cm) 60,400
TOTAL 218,400

* Includes only wood <6 cm diameter.
® Soil organic matter, soil carbon X 2.

Johnson & Lindberg (Ecological Studies, 91, 1992)
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Accordance with IFS C sampling protocol, sample 11 ecosystem compartments, 9 ecosystem sites, two sampling times (198 sampling points) x 5 replicates (990 samples)

550,000 kg ha-1 = 50 kg m-2

�


Role of carbon pools: Hg emissions

e Hg emissions measured at the USFS Fires Science Lab
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Role of carbon pools: Hg emissions

e Indication of Hg emissions during carbon mineralization

e Soil Hg degassing strongly correlated to CO, soil emission (i.e.,
carbon mineralization)

e Manipulations of microbial activity lead to parallel changes in
Hg degassing rates
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Fritsche et al. (in press)




e Goal 2
— Assess the fate of Hg during C mineralization

e Approach
— Field studies and controlled laboratory studies
— Quantify relationship btw. CO, efflux and Hg degassing
— Use of automated field and lab flux chambers

e EXxpected Results

— Understanding of fate processes of Hg during C
mineralization

— Quantification of de-gassing, mobilization, and long(er)-
term sequestration of Hg during C losses



e Goal 3:

— Evaluate dependence of C-related Hg pools and fluxes to W N
climate parameters g

e Approach
— Linear and non-linear regression analyses

— Use of a variety of environmental parameters (e.g., air and
soil temp., precip., solar radiation)

e Expected Results

— Development of hierarchy of factors controlling Hg
accumulation/turnover in C pools

— Input parameters for global climate change model
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Goals and proposed work

LITTERFALL (kg ha™" yr™")
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e Goal4
— Integration of Hg data into TECO global change C model ) g

e Approach
— Development of a Hg module for TECO model

— Use of field, lab, and literature data to parameterize TECO module
for Hg

e EXxpected results
— Scaling up Hg fluxes and sequestration to the coterminous US

— Prediction of Hg pools/fluxes associated with C dynamics for IPCC
global change scenarios

— Development of mitigation measures to protect/stabilize
atmospheric Hg sequestration in terrestrial C stocks
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TECO C model simulates C and N dynamics of various plant/soil pools for various IPCC climate change scenarios�


Goals and proposed work

e TECO carbon model
— Simulates C and N dynamics in 10 plant
and soil pools

— Model outputs: C inputs (NPP, litterfall
and senescence) C residence time, C
sequestration capacity

— Five global change factors: rising
atmospheric CO,, climate warming,
changes in precipitation, N deposition,
changes in species composition

— Spatial modeling to coterminous US

e New Hg module (to be developed)
— |dentical structure to C flux module

— Hg fluxes/pools will be stochiometrically Luo et al (in press)
coupled with C flows/pools

— Input parameters gained from the field,
lab, and literature
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Models applied to various spatial and temporal scales Temporal: present, future (100 years) 9 forest ecosystems, scaled up to coterminous US�


e Expected results

— Systematic database on Hg pools associated with current
ecosystem C pools

— Characterization of how climate factors control Hg fluxes
(inputs, sequestration, and losses)

— Fate determination of Hg during C mineralization

— Predictions on how future pools and fluxes of Hg will affect
atmospheric Hg burden (based on IPCC scenarios)

e Benefits and Outputs

— Advanced knowledge of natural sinks, sources, and
sequestration potential for atmospheric mercury

— Understanding how global change may affect atmospheric
mercury burden

— Evaluation of cost-effective mitigation measures for
atmospheric Hg integrated into land management practices

\‘\
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Introduction

e Terrestrial systems are < Main input of Hg to
the main source of Hg in terrestrial ecosystems occurs

(most) aquatic systems via atmospheric deposition
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