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INFINITE MULTIPLETS |

I, INTRODUCTION

The main ingredients of the method of infinite multiplets

consist of:

1) the use of wave functions with an infinite number of
components for describing an infinite tower of dis-
crete states of an isolated system (such as an atom,

a nucleus, or a hadron),

2) the use of group theory, instead of dynamical consi-
derations, in determining the properties of the wave

functions.

The group theory is used in three ways. It determines
the relativistic transformation properties of the wave function
as an infinite-dimensional (not necessarily irreducible) repre-
sentation of the Lorentz group. It determines the internal
quantum numbers and degeneracy structure of the mass levels

as a consequence of an assumed symmetry grcup in the rest

- frame of the particle (i.e., a little group). It is also

used to define various observables., The smallest of the sym-
metry group is the rotation groupSO(3), which gives rise to

the (2j+1)- fold degeneracy of states with spin j. In general,
we can have a larger degree of degeneracy, including that due
to the so-called internal symmetry like SU(2), SU(3), etc.

Thus we are led to a hierarchy of groups
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Here S = S0(3), and G, is the degeneracy group (dynamical
symmetry group). S (the internal Lorentz group) and G are
their Lorentz closures obtained by boosting them. Usually
GO is compact and semi-simple,. GO may be just a direct pro-
duct GO = SO<® A, where A is an internal symmetry group, and
hence G = S® A. There are, however, other non-trivial
examples, like the hydrogen atom, the isotropic harmonic
oscillator, or the SU(5) model of hadrons, in which G is not
such a direct product. We take an (infinite dimensional)
representation of the non-compact group G and consider it,
in addition, as a function of the space-time coordinates;
thus making it an infinite component field Wn(x). The dis-
crete index n arises because we reduce Y with respect to the
compact subgroup Go' In general, we would like to choose
G and ¥ in such a way that the set {Vn} coincides with the
complete set of actual physical levels. However, sometimes
it may be more convenient to relax this condition. The
energy-momentum 4-vector and the total angular momentum (or
the physical Lorentz group L) can be defined on this field,
and {wn (x)} becomes also a representation of the Poincaré
group (inhomogeneous Lorentz group) P. However, we are not

trying to combine P and G into a larger group, so we dismiss
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herewith all the problems related to the theorems of McGlinn,
O'Rafaertaigh, etc.

(As was mentioned already, the group G and its Lie algebra
serve the purposes of defining the spin and other gquantum
numbers, ensuring relativistic covariance, and expressing
physical observables such as the mass and currents. In this
sense G is sometimes called a dynamical group2 or a non-

3

invariance group”, and its Lie algebra forms a spectrum gen-
erating algebra and a transition operator algebraa as well as
a symmetry algebra.)

The substitution of dynamics with group theory has been
one of the recent trends in elementary particle physics., Its
motivation comes from the fact that, having seen a general
qualitative success of the quark model picture of hadrons,
one wants a more quantitative, but simple and unified déscrip-
tion of hadron phenomena without assuming detailed dynamical
mechanisms and even the existence of the yet unknown quarks
as real physical particles. In this kind of approach, the
wave function y(*;,Xs) for a two-particle bound state, e.g.,
a meson as a quark-antiquark system, can be brought into a
more abstract form (departing from a space-time description

of the internal structure) by expanding it with respect to an

appropriate discrete basic {fn} :

¢ F1,%2) - ¢ (X, 1)
- Lo, ()£, (v)

X = (Xl + X2)/2’ r = Xl - X2

-3-
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The set {Cn\y (X)} = {wn(x)} then defines an infinite component
field. Thus the emergence of infinite component fields seems
entirely natural from this viewpoint.

There are other considerations that have led some people
to turn their attention to infinite component fields. For
example, the scattering amplitudes cannot be made well behaved
(i.e., to satisfy superconvergent relations and sum rules)
unless one introduces an infinite tower of states; whereas,
vertex functions acquire damping form factors if the field
transforms as a unitary (and therefore infinite-dimensional)
representation of the Lorentz group. I would like to remark,
however, that the unitarity requirement in quantum mechanics
for the probability density does not, in itself, lead to the
necessity of having a unitarity representation of G. As we
know well, it is the unitary representation of the Poincaré
group P that we need, not necessarily of L or G. (In order
to secure the unitarity with respect to P, however, it will
be necessary to invoke wave equations.)

Starting from more abstract principles, one can also
arrive at the infinite component fields. Thus Takabayashi's

5

long series of work~” has been motivated by the non-local

(bilocal, and later, quadrilocal) theory of Yukawa6. The

7 was motivated by the non-exis-

pioneering work of Majorana
tence (at that time) of anti-particles; a fact which is not

valid any longer.
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Because of the different viewpoints from which different
people have started, there seems to be no consensus about the
position of the infinite component fields relative to the
conventional mathematical tools in elementary particle physics.
One may use them, for example, as part of the S-matrix theory
in defining an infinite multiplet of ssymptotic fields, or
simply as a basis for the expansion of an amplitude. Or one
may regard them as a new possibility within the framework of
axiomatic field theory. One may also consider them as belong-
ing to Lagrangian field theory. In the last circumstance, a
field will be subject to a wave equation which will determine
the mass spectrum of a system, as well as its interaction with
external fields, etc., The question is whether one can make a

formulation which is free of internal inconsistencies, and

besides, is useful and relevant to the actual physics of hadrons.

However, the more we demand out of it, the more problems we

must also face. This will be seen in the following.

II. CHOICE OF THE DYNAMICAL GROUP G AND ITS REPRESENTATION

The first contact between mathematics and physics is made
when one decides on the choice of the group G and its repre-
sentation. For this purpose, the following considerations are
in order:

1) The degeneracy structure (exact or approximate) of

levels, which will depend on the symmetry group GO.
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2) The nature of low lying excitations; i.e., whether
there exist rotational excitations, radical excita-

tions, etc,

3) The behavior of form factors and transition ampli-

tudes between levels.

For example, if radial excitations in a two-body system
are frozen, we have for GO the smallest possible one GO = S0(3)
ignoring intrinsic spin and other internal degrees of the con-
stituents, and G = SO0(3,1). We should then consider an irre-
ducible representation of S0(3,1) ~ SL(2,C), or a finite sum
of TR's in order to accommodate parity and other additional
operators., Since an IR contains, when reduced with respect to
the rotation group, different spin values j (either integer or
half-integer) only once for each j, we get a single Regge
trajectory (combining both signatures).

When radial excitations are included and the degeneracy
group Go is larger than SO(3), we run into two conspicuous

physical examples that have been extensively studied.

1) G, = SOo(4), G = So(4,1) or SO(4,2) ~ sU(2,2),
(hydrogen atom).
2) G, =SU(3), G=8U(3,1) or U(3,1),

(harmonic oscillator).

The number of times an IR of the subgroup G0 occurs in an IR

of G depends on the representation, so we have to choose a

v

particular kind (usually a degenerate representation) that

_6-
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corresponds to the actual multiplet structure of levels, When
reduced with respect to the rotation group, it gives rise to an
infinite recurrence of Regge trajectories, but each trajectory
is not simply related to the reduction with respect to the

internal Lorentz group S C G.

III. MODELS BASED ON SL(2,c)

Since 80(3,1) ~ SL(2,c) is the minimum group in our approach,
we will take this as a basic example to discuss some character-
istic problems. A finite-dimensional IR D(jl,jg) or SL(2,c)

is given in terms of a symmetric tensor product

~ullee tng om= 25, n= 2i,5 st = 1,2,
ll. m
built out of basic spinors
1 t
\'JS~D(§'a O)» i "'D(O,g)s
with the property
s [ [3 . *
D(Jl’Jg) &‘D(Jgle) .
It decomposes into the spin substates as
D(I-jl"-j2|) & D (lJl'JQI) +l) & --- 0 D('jl + J.El)'

The general IR of SL(2,c) can be obtained from this by analytic
continuation, fixing k = Jl - 32, and letting jl + 32 + 1 =2c
take an arbitrary complex value. Thus we write an IR as D(k,c),
which will decompose in general as L o D (|k| + n). It also

n=o0
turns out that D(k,c) = D(-k,-c).

-7 -
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The space reflection (parity) may be defined on D(jl,j2)

as jq = J,, which means D(k,c) - D(-k,c) = D(k,-c).

Let us write the six infinitesimal generators as

iL,

i = eijk A iK., = A

Jjk? i io®
L operates within each subspace D(j);‘glhas matrix elements
between neighboring D(j)'s. Different representations differ

in the matrix elements of K.

An IR D(k,c) is unitary; i.e., K is Hermitian, if and

only if
a) ¢ = imaginary (principal series)
or
b) k = o, o<c<l (supplementary series)

Since k is the lowest spin value that occurs in an IR, it is
fixed by physical considerations. Thus ¢ is the only variable
parameter,

1) Form factors

Define a local scalar product ;: ¥, (%) ?n (x) where
{?n} transforms as D(k,c) under S, In a unitary representa-
tion, ¥ = v ¥, 1In general, we have to use an adjoint field
{Wn} ~ D(k,-c). Now let us consider a plane wave state which
is at rest and has definite spin values j and jz. A moving
state can be obtained from this by applying the Lorentz trans-
formation L to both spin and orbital parts (boosting). 1In

this way we can define scalar vertex function for a transition

between two Fourier components (momenta) pLL and p'u having

-8-
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spin and helicity (j,h) and j',h'), respectively. Essentially

it is given by the matrix element
.7 ’ . .
<J”,h" | exp [i+ K, ] | j,h> (1)

between two spin substates of Wn and ?n’ where tanh 19==v is
the relative velocity between the two states. We have the

simple relation

2
v = cosnd = p.p”/mn’ = 4 4 (MM Lot (2)

For the finite-dimensional representation, the t-dependence
(form factor) of (1) is essentially like a polynomial, but we
obtain non-trivial results in the infinite-dimensional case.

For example, with j= j'=o,
<0| exp [1F K, ] |0> = sinh(c#)/c sinhd¥. (3)

We make the following remarks:

a) The maximum degree of growth of (1) for large
Y ~ -t/2m° is like < v Jp Ho o yc'l in the sense that there
exists at least one matrix element for any fixed j and j~
which behaves like ~ yc'l. (This follows from elementary con-
siderations about the behavior of a finite-dimeﬁsional
D(jl’Je)’ which can be analytically continued.) Thus for
unitary representations the matrix element -0 as y= o, but it
does so only like ~ y'l asymptotically. It should be men-
tioned that this applies to the overall matrix element, and
not to the invariant form factors defined after separating out

kinematic factors. Similar arguments can be made for vector

(current) and other vertices when these can be defined,

-9-
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'y = -1, corresponding to the normal threshold t_ = (m + m’

b) The matrix elements (1) have the right threshold
behaviorg. This can be understood from the fact that the
Lorentz generator K has a selection rule ]j-j'l £ 1, so that

the matrix element must behave like ~19u§3 I AP L

c) Analyticity and crossing. The matrix elements
(1) for infinite representations have a branch point at
),
and at v = », This is due to the fact that the imaginary
Lorentz transformation vy = coshdr = -1, which is a compact
rotation, acts on an infinite basis. For the same reason,
the vertices do not have crossing symmetrylo: the transition
element between positive (p_>o0) and negative (pO’<o) Fourier
components as calculated from Eq. (1) is notrfhe same as the
usual analytic continuation of the positive-positive matrix
element. In fact, the former should be regular at the
threshold (v = -1), and singular at v = 1, The two form

factors can be related only by analytic continuation round «,

These points can be explicitly seen from Eq. (3).

2) Wave equations

Most wave equations that have been considered are

limited to quadratic or linear (Majorana7 11

-Gelfand-Yaglom
type) differential equations, if only for reasons of mathe-
matical simplicity and nothing else. These equations will

be of the form

-10-




(pupLL + a wuw“ -B)vy=0 (3a)

or

I

(r,p" - x) ¥y=0 (3b)

Where wu is the Pauli-Lubanski vector, ¥ is in general reducible

under SL(2,c), and a,B,x may be functions of the Casimir
operators, In fact, we cannot take a single arbitrary IR for

¥ in general. To define parity, we need a pair (k,c) and

(k,-c). 1In order to define acurrent, we need also their adjoints.

Finally, in the case of linear equations, we need a pair of

IR's (k,c) and k7,c”) = (k + 1l,c) or (k,c + 1) in order to

realize current operators Tull’16. Thus we end up with up
to eight IR's. The Majorana equation ( (k,c) = (O,%) or
(%,O) ) 1s the only case where a single IR suffices.

These equations, as they may iook simple and elegant,
suffer from well-known deficiencies from the physical point
of view:

a) The mass spectrum m(J) - O as the spin J = w11,
(Exceptions to this are the cases, with Eq. (3a), i) a = O,

2 2

m® = const., and ii) B = 0, J(J + 1) = a, m“ arbitrary.)

b) There is also a continuous family of lightlike
solutions, and even worse, of unphysical spacelike solutions
as well7’12’13. (There have been some proposalslb"15 to

interpret the spacelike solutions in physical terms. )

-11-
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c) 1In the case of Majorana representation, the
massive and massless states come in with only one sign of
energy (or frequency). Thus a particle is not accompanied

by an anti-particle., 1If, however, a pair of IR's are used

in Eq. (3b), we can have both signs. So this is not a general

feature of infinite-dimensional representations.

The above remarks do not necessarily apply to mere
complicated (non-Gelfand-Yaglom type) equations; e.g.,
when » in Eq. (3b) is a function of p2. We can get a rising
spectrum m x J by taking k « p2. But the other difficulties
still persist.

Another way is to take an infinite (or finite) set of
IR's D(k,c), k = 0,1,2,-- (Boson) or 1/2, 3/2,-- (Fermion)
with fixed ¢, and postulate

2

[p™ - f(k)] v = ©

(3c)

(W - g(k)] v = 0
in such a way that only certain spin values are selected for
each k. In this case the space {W} is much larger than is
necessary to accommodate physical levels, but it has the
advantage of being free of all unphysical solutions. For
example, we obtain a rising linear spectrum m2 =a j+ b by
choosing

f(k) = ak +b, g(k)=-f(k) k (k + 1),
Eq. (3c) can be derived from a Lagrangian by introducing an

auxiliary field.

-17-
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“form factors discussed above, we will also obtain non-trivial

(3): the g factor is = O for Eq. (3a), and < O for Eg. (3c)

3) Minimal electromagnetic interaction

We discuss here briefly the problem of electromagnetic
interaction, especially the magnetic moment. It is indeed an
interesting feature of our approach that non-trivial electro-
magnetic properties can result even with the assumption of
minimal electromagnetic interaction, This assumption is
reasonable at least if we are effectively dealing with a
composite system in which only one of the constituents, con-
sidered elementary, is charged.

The current 1s uniquely defined as

: N = T . _ o
J ()\)—‘QI(X)VLL‘V(I(), VLL— 5L/6 p,

i (x) =0
3, I, (x)

if the free Lagrangian density is ¥ L v. In addition to the

static magnetic moment (and higher moments) by taking the
matrix element of ju' The result is, however, again rather

unphysical in the case of the already unphysical equations

if only a pair of IR's are usedlo. For non-Gelfand-Yaglom

type equations, the situation can be different.

IV. MODELS BASED ON SO(4,2) ~ Su(2,2)

As has been discovered by various authorsl7'19, the group
so(4,2) ~ su(2,2), rather than SO(4,1), provides a nice

framework in which to formulate the problem of the hydrogen

-13-
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atom, It 1s also interesting that SU(2,2) is thegroup generated by

Dirac matrices, and therefore, it serves as a prototype of
the theories like SU(6,6). But this connection is probably
accidental,

SO(4,2) contains SO(4) & SO(2) as its compact subgroup,
so that there are three discrete quantum numbers to label a
state, Since the actual hydrogen atom has only two, corres-
ponding to SO(M) degeneracy, we need select a special degen-
erate representation in which the third quantum number is not
independent of the other two., In fact, we find a unique
representation that serves our purpose,

We label the six fictitious dimensions 0,1,2,--5, with
metric +----+, The physical space is identified with 1,2,3.
The secret of success in reformulating the non-relativistic
hydfogen atom lies in the fact that, using the physical space
as the carrier space, the 15 generators MaB of SC(4,2) may be
identified as | |

Myg + Mgq = T = (r%) 1/2

MMS - M50 = TrA

Myy - My =Xy (#)
Mo, + My, = xg A+ 2x 3%, + 23,

M51 = irai

My, = 1 (3t +1)

-J4-
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These operators are Hermitian, and hence give a unitary

representation, if the metric is defined by

1
(‘b:‘b) = \f U (El) T (] (:{“) d,3X (5)
Now multiply the Schr8dinger equation

1

a z
(H+B)L!J—O) H=§A-? (O)
by r, and use Eq. (4). We get immediately
1 1
[65 +B) Mg + (5 - B) Mgy - a] ¢ =0 (7)

Once this is achieved, we can also go to a discrete basis

y(r) - ¥ using the quantum numbers of the compact subgroup.

Eq. (7) can be solved by making a hyperbolic rotation in
the (OU) plane:

y = exp [i68My,] +*, tanh © = (-;- -B)/(% +B), if B>0.(8)

The transformed equation

flc+e? - -1 -a}y’ -0

immediately gives the familiar spectrum

2
/2B M50 = a, or B = a" /2 MSO
where the discrete "principal quantum number" M50 = n takes
the values 1,2,3,--~ in this representation.  Similarly, the

ionized states B < O follow by rotating into the direction 4:
B = - ae/g MSM’ where the non-compact generator MSM now takes
continuous values.

It was shown by Fronsda119 that the wave function ¥, can

be made into a field v (x) with a Galilei invariant

~n

-15-
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Hamiltonian. The electromagnetic interaction may be introduced
according to the rule P - P - e A (x). The equation is still
linear in the SO(4,2) generators. This corresponds to a

description of the hydrogen atom in which

Mp >>Me,2(“ = “Ee’“l': = -I-‘p_}:e'

The peculiar feature of this problem is the rotation (8), first

17

noted by Barut Since € is different for different levels,

the eigenfunctions v_ are not orthogonal; they are orthogonal

B
only with respect to a metric operator M50 - M5M' This nicely
solves the old dilemma that physical transition operators
cannot be represented by generators since the latter induce
transitions only between neighboring orthogonal states in a
representation.

So much for the non-relativistic hydrogen atom. By assign-
ing the subspace (0123) to the Minkowski space, one can formally
write down linear relativistic wave equations with SO(4) de-

generacy. But again we tend to run into the difficulties

encountered in the SL(2,c) case., Nevertheless, some model

equations without spacelike solutions have been found18’19.
As an example, we mention
o, 1 ® M
r + = S - a v =0
(o, p7+g Sp P Y P
(9)
r =M S =M
U S 54

v is a direct product of Dirac and SO(4,2) representations.

This equation has a discrete hydrogen-like mass spectrum

-156-




2]

)

m=+u /1 - a2/n2 , @ continuous spectrum |m|>

of massless solutions, but is free of spacelike

V. MODELS BASED ON SU(3,1)

This group is the minimum Lorentz extension
degeneracy group of the 3-dimensional isotropic
oscillator. Perhaps the harmonic oscillator is
idealization of the orbital motion in the quark

hadrons as well as the nuclear shell model., At

w, and a family

solutions.

of SU(3), the
harmonic
an appealing
model of

the same time,

it has an advantage in the simplicity of mathematical pro-

perties.

In order to construct a representation, we introduce the

4-dimensional oscillator variables 2, a:, (b =

0-3) with

[a:, a ] = GLLU (metric +---). (Annihilation operators are
ul-
+ r . . +
thus a,, a,, ax and a, .) Then the 15 combinations &, e,
form generators of U(3,1). The Lorentz rotation group 0(3,1)
is generated by the antisymmetric tensor a i) a+ a = 1L
Lo v U SRV}
. ot + .

r = corres-

whereas the symmetric tenso 1(au a +a; au) ir,,

ponds to deformation and dilatation. The SU(3)

is generated by a,, az (i = 1,2,3) alone.

subgroup (GO)

In order to describe the harmonic oscillator, then, we

have to suppfess the fourth degree of freedom.
20-22

This can be

done by going to SU(3,1) . We impose the condition

-17-
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which relates ao+ ao to N = E:ai+ ai. It can be shown that

the substitution a_ - /N-n, ao+ - /TW-» in the U(3,1) genera-
tors leaves their commutation relations unchanged except that

now Fuu =-2A, We get following IR's

i) N < O, unitary.
ii) A = integer > 0, N ¢ A, finite non-unitary.
iii) A = 1integer » O, N > A, discrete unitary,

The behavior of form factors according to these representa-

“1-2 for iii). They have

an anomalous singularity at vy = O or t = M2 + M/2

tions is ~ y" for i) and ii), and ~ vy
, the physi-
cal meaning of which is unclear. (It may be a little surpris-
ing that we do not obtain the gaussian form factor of the
harmonic oscillator, but the latter follows as a non-relativis-
tic 1imit in which |A| - =21, At any rate, by a suitable choice
of A we can get any asymptotic power behavior.)

The wave equations based on SU(3,1) are necessarily quad-

ratic, since Puu is the only available tensor. Thus a typical

form will be

r V - ap p* + =0 10
( uo PuP PP B1 v (10)
with the mass spectrum

m>=p/ (a+r-N), N=0,1,2, - - (11)

This is physical only if B > O, a + A - N > O. There are no

other solutions corresponding to a real four-vector Pu. If we

-18-
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take a fourth order equation, we can also obtain an infinity
of levels with a hydrogen-like accumulation point.
Another form similar to Eq. (3c) is based on U(3,1), and

eliminates the unphysical solutions by means of a supplemen-
22,23

tary condition We take
[po* + x° (at a* -¢c) ] v = o,
3 159 (12)
Hi 38 v+
a = 0 r a a = 0
(ppa™) v [or (p,a™) (p2™") v ]
The mass spectrum is strictly linear
ME = x° (N +C), (13)

whereas the supplementary condition suppresses the fourth

degree of freedom: a; ¥ = O for time-like solutions, and
eliminates spacelike solutions completely: az y =0~y =0,
In this scheme, A =-au+ at = ai+ a; - l = N-1, so that each

level belongs to a different IR D(A) (discrete series)of

SU(3,1). Eq. (12) may be derived from a Lagrangian.

VI, PROBLEMS OF QUANTIZED FIELDS

The peculiar unconventional properties of infinite component
fields with regard to the general conditions of quantum field

theory have been widely noted2a'29.

We will confine ourselves
here to very brief remarks., Certainly more work is necessary
than has been done so far to clarify these problems,

First we note that the results will, in general, depend on

whether: a) we regard y(x) simply as a field, or b) as also
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o)

satisfying a wave equation expiicitly or implicitly to define
single particle states, In the case a), we may assume all
the conventional axioms of field theory (spectrum condition
on the stétes, local commutativity of fields, etc.) except
that the fields transform as an infinite dimensional repre-
sentation of SL(2,C).

A major difference between finite and infinite represen-
tations is that the latter cannot be regarded as a (non-
singular) representation of the complex Lorentz group
~ SL(2,C) ® SL(2,C) because it is infinite-dimensional with
respect to the compact imaginary Lorentz transformation. So
all the theorems like TCP and spin-statistics, based on such
a transformation, are in general expected to break down.,

(The lack of crossing symmetry in vertex functions was under-
stood in this way earlier.)

This does not mean, however, that these theorems always
have to break down, The representations D(A) of SU(3,1) do
have the crossing symmetry (up to a sign) if |A| is an integer,
Perhaps this is another attractive feature of SU(3,1l).

In the case b), a great deal depends on the assumed wave
equation. Since we have a Lagrangian, it is possible to define
the energy-momentum tensor, conserved current vector, etc.,
and formally introduce the canonical gquantization. For a
physical theory, the energy density should be bositive. Thus,
if the wave equation is simple Klein-Gordon type (as in the

so-called index-invariant theories), we would need Bose
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statistics, whether the field describes integer or half-integer
particles. This requirement also turns out to lead to causal
commutation relations. On the other hand, in a Gelfand-Yaglom
type equation, Fermi statistics are to be taken for any spin.
There may remain some doubt about the validity of canonical
quantization and local commutativity. For if the field v(x)
is supposed to describe a composite system, local commutativity
with respect to the '"center of mass'' coordinates x will not
hold., This is probably related to the problem of unphysical
spacelike solutions since physical solutions alone would not
form a complete set of states, and therefore, would not lead to
the local commutation relation reguired in the canonical quanti-
zation scheme,
Although the infinite component fields seem to cause
unnecessary relation of general theorems, we emphasize that
not everything goes overboard. The conventional TCP and spin-
statistics can be preserved if a right group and a right repre-
sentation are chosen, Besides, they offer a new possibility
of deliberately violating, for example, the TCP theorem, micro-

causality and crossing relation,

VII. SCATTERING PROCESSES

As a next step in the physical application of infinite
component wave equations, we take up the scattering with an
external field in Born approximation. We are interested in

the intrinsic structure effect such as we have seen in the

-21-




vertex function. For simplicity, we take a’scalar external
field §(x) coupled to the local current c( (x),¥(x)), so that

the wave equation reads LOW = g¢y¥. We assume perturbation

expansion and obtain for the transition p + k - p’ + k’ a

formal expression
1

(v(»’n7%), & [-—Gm R (p,n))= MM, (14)

corresponding to the usual second order Feynman diagrams,
Actually the propagator ~ 1/LO will involve a summation over
all the intermediate states, and this is where interesting
properties are expected to emerge,

We emphasize, however, that Feynman perturbation theory
and dispersion theory are not necessarily equivalent for
infinite component fields, since the usual analyticity assump-
tions do not hold., Thus we have to compute Eq. (14) directly.

For this purpose, it is convenient to use the trick

1
LO+1e

= - if dr exp [iL_T] - (15)
o

(assuming that this gives the right boundary condition). In
case LO is linear in the generators of a group G, with the
coefficients being functions of the momentum, the integrand
represents an element of G, so that its action on V¥ can be
determined within the framework of group theory. Similarly,
the initial and final states can be obtained by boosting
appropriate rest states. In this way, Eq. (14) is reduced

to
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wi

-g° I dr(y(g,n") exp [-i'%,Kp,J exp [iL_(p+k)7]
O
(16)
X exp [id%Kp] ¥y (o,n)) + °°°

/

where Kp, Kp are the boost generators,

We will treat this in the SU(3,1) theory with a unitary

representation A < O since mathematical manipulation is parti-

30,31

cularly easy For simplicity, we consider the ground

J = O state and equal masses p2 = p'2 = k2 = k’2 = 1, and work

in the C.,M. system, The wave equation is generally taken as

2), r. =2 (N-2A),

Ly(p) = - 10" £ (0°) + & (0%), Tyq

The result is, for the direct channel (s-channel) amplitude Ml’

-2irsf A OAF
My = “iEQIOdT [COSheﬂ% - cos 6« ° (sinhzzﬂ trig(s)ent(s)]
o -eiTsf(s) . oA it[g(s)+2nf(s)]
= -ig OdT[E -e (§ + m -1)] e
(17)
o2 a(s)-1 -1 A
=HZL 25E(5) §cndz 8 [z -2 C+g-11,
g(s)
a(s) 2st(s) T A

In the last equation, the contour integral is taken along a unit
circle round zero repeatedly, as is indicated by the summation

sign. This can be summed up to give

2
-8 a(s)-1 5 1t A
1~ 2sf(s) 1- exp[2v1a( § dz 8 [ -® >tn -1)]

M

which exhibits the Regge-1like resonance factor: there 1s a
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resonance whenever a(s) = N = 0,1,2,--- in accordance with the
wave equation,

The integrand in Eq. (18) is not singular in g for physical
values of s and t, but as s - «» the singulgrity 8 approaches
the point 8 = 1 along the contour, so that an asymptotic
expansion may be madé. If we assume a straight trajectory
a(s) = s/u, we find

g2 M 2t/u

My ~ Zsr(s) S cot[ma(s)/n] e , (s = =) (19)

showing a resonance factor and an optical potential type angu-

_1ar distribution.

The crossed amplitude M, may be computed in a similar way,

2
but we can easily see the lack of crossing symmetry: it is not
the analytic continuation s = x < O of Ml(s,t). Moreover, we
run into the danger of resonance factors arising from the
discrete spacelike solutions unless the wave equation is so
chosen that a(s) < 0 for s < O,

| The lack of crossing symmetry also fails to make the Regge

behavior come out right. The contribution from M, in backward

2
scattering (x ~ O) looks rather uninteresting as it behaves
like ~ sx.‘ One may perhaps argue that Regge behavior should
not be expected for the present case since it has to do with an
external source belonging to a finite multiplet. However, the

situation does not seem to change by coupling three infinite

component fields through a local vertex,
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VIII. APPLICATION TO HADRON PHYSICS

Let us now briefly discuss the application of our ideas to
real hadron physics. It is obvious that the model has to be
more complicated than the ones so far considered. But at any
rate, the most interesting and promising approach seems to be
the one based on the quark model, assuming the mesons and baryons
to belong to definite configurations qq and qqgq without adding
higher configurations. Then the hadronic fields become a
product of finite quark spinors and an infinite representation
for the orbital motion of the quarks. If only the rotational
excitations are considered, the classificati on of states may be
carried out according to the group G, = SU(j) x SU(2) x S0(3),
or SU(6) x 0(3) in the well-known manner, and the corresponding
G will be SU(3) x SL(2,c) x S0(3,1), or SL(6,c) x SO(3,1).
Infinite representations are taken only for the SO(3,1) part.
If we include all the internal orbital modes of the quarks,
thus making quarks full-fledged quasi-particles, Go and G could
be made larger. For example, for the mesons ~ qq, one could
use SO(4,2) or SU(3,1). However, the harmonic oscillator type
representation D(A) of SU(3,1) is not appropriate in this case
since it is not self-conjugate. 1In order to define self-
conjugate systems, we have to take D(A) + D(A)*, thus doubling
the space. (Using SL(4,R) instead of SU(3,1l) will serve the
same purpose,) The number of states becomes essentially the

same as in the case of S0(4,2).
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For the treatment of strong interaction of the hadrons, it
is necessary to introduce the coupling of infinite component
fields with each other, which we have not discussed yet. If
only a (quasi-) local interaction like Coml W; (x) vy (%) %, (x)
is considered, the problem reduces to that of the Clebsch-
Gordon coefficient for infinite representations, It is known,
for example, that there is a unique coupling scheme for SL(2,c)
IR's. 1In the case of SU(3,1), a simple coupling scheme holds
among D(A), D(Al) and D(A + A7)*,

I believe, however, that there is no reason to insist on
quasi-local coupling. The best way to avoid unphysical pro-
perties may be to stick to a realistic quark model. That is to
say, we start from a quark-antiquark wave function ¢(rl,r2)
for the meson, go to the abstract basis Y (x) and assume an
equation like (12). For interaction, we can take a form like
¢(rlr2) ¢(r2r3) ¢(r3r1). This will introduce non-local
coupling when expressed in terms of the vn(x).

Finally, a word about the current algebra. It has been
suggested that infinite dimensional representationsof a group
may provide non-trivial solutions to the algebra of currents,
All indications are, however, that this is not so, and in fact
it may be impossible in general.

Let us assume a current of the form ju(x) = ?(X)Puw(x),
where T’ belongs to the Lie algebra of a group;:we know the

commutator [Fu,ru]. But this is not the same thing as the

commutator [JM(X)’ ju(x')]. For the latter depends on the
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commutator of the v(x)'s, which must be defined as
=, 7 1
[ (x)s (PN, = & (xmx) gy

Thus the current commutator amounts to taking

-1 -1

T -TT
-uro TU TU-O Fu

which in general does not have a simple tensor transformation
property required by the current algebra. We can verify this
by using IR's of SL(2,C) for example. For the Majorana repre-

sentation, the commutator vanishes.,
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