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Yoichiro Nambu 

(Invited talk at the American Physical Society Meeting, Chicago, January 1968) 

1 .  M y  talk i s  concerned wifhfk review,! not necessarily of the latest theoretical 
c_ 

developments, but rather of an old idea which has contributed to  recent 

theoretical activities.rB; soft pion processes I mean processes in  which low 

energy pions are emitted or absorbed or scattered, I just as we use the word soft 

photon i n  a similar context. 

pion soft i f  i t s  energy i s  small compared to  a natural scale in  the reaction 

This scale i s  determined by the particular dynamics of pion interaction, and 

Speaking more quantitatively, we may call)o 

/-J 

one may roughly say that a pion i s  soft i f  its energy i s  small compared t o  the 

energies of the other individual particles that participate i n  the reaction. 

It i s  important t o  note at this point that pion i s  by far the lightest member 

of a l l  the hadrons, and much of the success of the soft pion formulas depends 

on this fact. T h i s  also means that the same procedure cannot be expected to  

work as well for the K meson. Whether this i s  an accident of nature, or i t  

has a more deep-seated significance, i s  where people may have different 

opinions. 

f ihe basic problem i s  t o  derive a k ind of low energy theorem which would 

become exact i f  the pion had zero energy. T h i s  i s  similar to  the well-known 

low energy theorems for soft photon problems, which state that the electro- 

_i 

magnetic properties of a system may be characterized by a few parameters 
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such as the charge and the magnetic moment, in the soft photon l imi t .  

The low energy theorems for photon follow from the peculiar nature of electro- 

magnetic interaction; namely, the photon i s  massless, and its source, the 

electromagnetic current, i s  conserved. One characterizes this by saying that 

the electromagnetic Lagrangian satisfies gauge invariance. 

In an analogous way, one can derive low energy theorems for pion by postulating 

a certain invariance, or a symmetry, of the dynamical laws that govern strong 

interactions, This symmetry i s  called chiral symmetry. It i s  not, however, an 

exact symmetry as was the case with the electromagnetic interaction, primarily 

because the actual pion i s  not massless. One can apply the theorem rigorously 

only after the unphysical extrapolation to  zero energy and zero momentum. 

11. Historically, what amounts to  the chiral symmetry involving the pions appears 

in Schwinger's work (in 1957). But the V-A theory of weak interactions actually 

gave a more direct stimulation for a search of the new symmetry, or i f  not a 

symmetry, at least a search for a new formulation of pion interaction. 

One recal I s  the argument of Feynman and Gell-Mann for the non-renormalization 

of the weak vector current, based on the assumption that i t  i s  proportional t o  

the isotopic spin current, which i s  conserved in  strong interactions. In contrast., 

the weak axial vector current for the nucleon, for example, i s  not divergenceless 
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because of the nucleon mass, and therefore, there is no reason to expect non- 

renormalization. In fact we know -G A V  /G = 1 e 18. 

Nevertheless, the simple structure of the leptonic current suggests that for the 

hadrons too, the basic weak current must be simple. F i s  idea later found i t s  

expl ici t  formulation i n  Gell-Mann's quark currents and their commutator 

algebra. 

The real clue, in my opinion, t o  the symmetry involving the axial vector 

currents came from the so-called Goldberger-Treiman relation 

nucleon mass 

weak axial const in B decay 

l-r - N coupling (strong) 

n - p v decay coupling 

m N  
where 

G A  

'TT N 

9 TT 

Since both G and g 

action constant, i t  i s  a statement about the nature of strong interactions. If was 

soon realized that the relation would follow i f  there was a partial conservation 

of the axial current, broken only by the non-zero pion mass. Phis i s  the PCAC 

hypothesis. 

are supposed to  be proportional to the basic weak inter- A TT 
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la is usually formulated as 

w h e r e  d '  

ri / 1 . 1 8  e 0 . 8 / m  
'TI e f n N  f = G / 2 g  

V 

+ 
a -  

CI 

charged pion f ie ld 

axial current that appears in the weak inter- 

action, expressed for example in terms of 

the quark fields. 

One can obviously include the neutral counterpart as we1 I , and treat al  I the 

pions on an equal footing. The quantum numbers for the pion are defined by 

(2), which certainly seems consistent with i t s  known properties. 

An easier way, however, to see the role of PCAC in the Goldberger-Treiman 

relation is t o  write down expl ic i t ly  the matrix element for a in the f~ decay: 
P 

9 = Pp - Pn 

A 
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where the second term represents the virtual process 

n- ,p+n,  n -  l e p t o n s .  

By taking the divergence q 

for m 

a , and making the two terms to cancel each other 
U U  

= 0, we get ( 1 ) .  rr 

So one might say that the nature tries to  make the axial current as well conserved 

as possible by invoking the pion. In the l imit m 4 o we would have a new con- 

servation law and a quantum number associated with i t ,  This quantum number 

should be defined by 

n 

which we cal l  isotopic chiral i ty. We realize, however, that it i s  a rather strange 

quantum number because i t  has odd parity. 

parity i s  not an eigenstate of x unless the eigenvalue is zero. Otherwise it 

implies there must be a parity degeneracy of states. Actually, (3) shows that 

<x' >,,, depends on the velocity of the nucleon, given by 

Thus a particle at rest with a definite 
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where h i s  the hel ic i ty.  O n l y  i n  the l imi t  v + c can a nucleon be an eigenstate 

of x since then the nucleon mass may be ignored and the velocity operator 

becomes diagonal. 

What then, i s  the meaning of chiral i ty conservation? One may interpret i t  by 

saying that although the nucleon i s  not an eigenstate of x, the nucleon plus the 

surrounding medium conserves x i n  such a way that when the nucleon i s  

accelerated, the change in  <x> i s  compensated by the emission of massless 
N 

pion excitation. 

Since chiral i ty i s  tllus such an elusive observable, i t  has to be more precisely 

defined. This, however, i s  not unique, as might be expected, A typical way 

t o  characterize a symmetry i s  t o  characterize i t  i n  terms of its group structure. 

There exist two different possibilities, which can be illustrated with particular 

models . 

1) Massless pion with pseudovector coupling with the nucleon: (PS-PV 

theory). 



- 7- 

I 1  I 
The invariance i s  w i t h  respect t o  a displacement ,d +,d + c , which, 

combined with isospin transformation, gives the inhomogeneous SU(2) 

I I 
group, The divergence a a 

P P  

leads to the PCAC relation (2) i f  a mass term i s  added. 

amounts to  a wave equation for ,d , and 

2) Quark model. We define the isospin transformation for the left- 

I 

CI L '  
handed and right-handed quarks separately, with the currents v 

V respectively. 
I 

P R  

We have thus a group SU(2) €3 SU(2)R (which of course can readily be 

extended to  SU(3) 

are then 

L 

L R @ SU(3) ). The vector and axial vector currents 

I i I I 
- v  

IJ.L P R  
a = v  

I i 
v IJ = v  p L + ' p R '  p 

These currents can also be defined in  terms of phenomenological fields. 

For example, the pion part of x may be defined as 

1 i  - - [[- IT + 2 f  ,di n. ,d  - f n i , d . , d ] d 3 x  
- . A M  -,-- x n  f 
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I i 
where IT (x) i s  the canonical conjugate t o 4  {x). Another way i s  t o  use 

a neutral scalar f ie ld u in  conjunction with rii to  form a &dimensional 

representation of SU(2) x SU(2jR. The difference between the above L 

two groups shows up in  the commutation relations between x i  Is: 

c x ' ,  x i 1  = 0 Case ( 1 )  

i j k  k 
= 2E 1 ,  Case (2), 

k 
where I i s  the isospin operator. In other words, one can tel l  the dif- 

ference in processes involving two soft pions, The Adler- Weissberger 

relation for ri- N scattering was indeed such a test, and confirmed the 

group SU(2)L @ SU(2)R. 

scattering total section at a l l  energies, but i t  i s  also equivalent to a 

statement about zero energy scattering amplitude, ! t  i s  essentially a 

l ow  energy theorem. Thus, the quark model seems to be the correct 

way to  define chirality. 

This relation sum rule involving r~ - N 

1 1 1 .  THE SOFT-PION FORMULA 

The standard procedure for deriving the specific formula for soft-pion emission i s  

the Lehmann-Symanzik-Zimmerman technique and the PCAC relation (2). A 

simple and more physical way t o  see i t s  meaning i s  t o  write out the conservation 

law 
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or 

A 

I I 
and use, for example, (6) for x . 
by a perturbing term H ', such as the electromagnetic and weak interactions, a 

modified form is ,  

If x i s  not strictly conserved, but violated 

Taking ( 1  1) between two states a and b, and inserting intermediate states, we 

I 1 
realize that x - - a 

ll f c l  

energy pion emitted. In this way, we get a relation between the amplitude 

M ~ + ~  A + B + n '  

,d I causes transitions to  states with an extra zero- 

and the emission amplitude M which i s  given by 

+ s [XI, "I 

I I * I  I 
I inserted the energy-momentum conservation projection P. X i s  X - X ll. 

I 

The last term represents direct pion emission due t o  the disturbance H . 
x i s  the generator of the chiral group, this commutator can be specified i f  we 

Since 

I 
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A 

I 

know the transformation property of H under the chiral group. This i s  the reason 

why the formula i s  so useful i n  weak and electromagnetic processes where the 

quark model tells you how H 
I 

transforms. And i t  i s  also the reason why the 

formula was not so useful before the quarks. 

For processes involving more than one soft pion, the formula i s  more complicated. 

Not only do the commutators of two axial currents (which i s  equal t o  a vector 

current) come in, but also other quantities which are not specified by the group 

alone. This reflects the fact that a soft pion i s  not really soft compared t o  other 

soft pions i n  the process. 

The following i s  a representative l i s t  of processes to  which the formula has been 

applied. Brackets mean there are s t i l l  problems which have not been resolved 

yet. 

E.M. W. S + MS 

IT y N - ,  Nn v N  - N e n  

e N - e N n  (B-,  NIT) 

K -  n e w  

21-r 

31-r (rl-3l-r) 

41-r 

K -  3 n  

( l - r l l ~ l - r l - r )  
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IV. NON-LINEAR CHIRAL LAGRANGIAN MODELS A N D  GAUGE FIELDS 

In order to  understand the peculiar role of the chiral group in  pion dynamics, i t  

is instructive to  make use of a phenomenological Lagrangian. There are various 

models of chiral symmetry, and an important question here i s  how the pion f ield 

i s  t o  transform under the chiral group. The most appropriate one seems to be to  

assign a non-linear transformation property to  the pion field. T h i s  i s  due t o  the 

fact that: 

1) there does not seem to  exist a well-defined neutral scalar meson o 

which would go with the pions to  form a 4-dimensional representation 

of the chiral group; and 

2) the nucleon mass i n  any case precludes the conventional correspondence 

between a multiplet of single particle states and a representation of a 

group. 

A convenient way for this purpose i s  to  follow a procedure due t o  Glrsey. 

Consider the nucleon (proton and neutron) f ie ld  I$ , a = 1,2, and associate 

the chiral group SU(2)L 8 SU(2)R with the isospin transformations of i t s  left- 

handed and right-handed components. (L and R distinguish the two different 

irreducible representations of the Lorentz group.) In the spirit of the quark 

model, one should actually consider massive quark fields, but the basic argument 

a 
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is the same. The mass term in the Lagrangian, 

i s  not invariant, but behaves l ike 

of the chiral'group. We introduce a 2 x 2  matrix f ie ld MI (d. ( x ) )  

function of the pion f ie ld b.(x), and postulate that the indices u and f~ transform 

l i ke  D (-) and D 

which i s  a 
I UB 

I 

1 * 1  (- ) respectively. We can then form an invariant 
L 2  R 2  

Under su(2)L @ SU(2)Rf the transformation w i l l  be 

+ + + +  MI -+ UL  MI U R ,  MI + UR MI UL 

Since a product of 2 x 2 matrices i s  another 2 x 2 matrix, (15) defines a new 

MI = MI (,d ), and besides, since the U's are unitary, we may impose the same 

unitary condition on MI: 

I I 
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+ 
~1 ~ 1 +  = M MI = const = R 

+ 
Under parity, L * R, ,di -, -bi, MI 

simple example of such MI i s  

MI , so that Mlcd)' = MI ( -#) .  A 

MI ( # )  = exp [ z i f d . ~ ]  = exp [2 i f , # ' ]  
r m -  

By expanding MI i n  # i n  (14), we see that the first two terms give the nucleon 

mass and TT - N interaction terms wi th  the conventional coup1 ing constant 

GrrN = 2 f m N .  

According to  (13, # I s  wi l l  behave l i ke  the parameters of f ini te rotation (the 

Eulerian angles) in  the isotopic space, so their transformation i s  a quite complicated 

non-linear one. On ly  under the ordinary isotopic transformation U 

undergo the familiar linear transformation. 

= U , does i t  L R 

The kinetic energy of the pion in  the Lagrangian can also be made chiral invariant 

by taking 

1 
- 2 T a MI+  a, MI 

16 f r ,  

which again contain non-linear ferms i n  ,d representing pion-pion interaction. 
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The conserved currents that follow from (18) ere, in a matrix notatlor! 

Again, by expansion, we see that 

Finally, we can add a symmetry breaking pion mass term. But the choice i s  not 
c) 
L 

T ( M + M + ) ,  i7 ' r  
unique; we have to  specify how i t  transforms. An example i s  

which also contain non-l inear interaction terms. 

The same procedure may be extended to  SU(3)L @ SU(3)R of three quarks by 

considering a 3 x  3 matrix MI (# ) of nine (8  + 1 )  pseudoscalar fields # e 

n n 

The basic prescription i s  t o  use the above Lagrangian and the currents, making a 

perturbation expansion in  f#, and collecting consistently terms of the same and 

lowest order contributing to  a given multipion process, but ignoring a l l  higher 
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A 

order effects. Because of the non-linear relations between w, ai and #, for 

example, we get automatical l y  many-pion emission amp1 itudes when these currents 

are substituted in the basic weak interaction. 

obtained from the PCAC and current algebra may be reproduced. 

In this way a l l  of the results 

Now what i s  the meaning of a l l  this? We w i l l  make a few remarks i n  this regard. 

I 
1) The physical pion state and the pion f ield ,d (x) must be sharply distinguished. 

The latter i s  an auxi l iary operator which, for each fixed x, undergoes a 

non-linear transformation under SU(2) @ SU(2) In the language of 

group theory, ,d. i s  a 3-dimensional representation of the subgroup SU(2), 

which i s  used as a carrier space t o  induce a I inear representation MI w, ) 
of the entire group. The precise functional form of MI (a' . )  does not 

matter, as long as i t  has an expression U + 2 i f #  + 

basic dynamical parameter, and # defines the physical pion state 

order processes are uniquely determined from this. But the perturbation 

expansion i s  a non-invariant procedure since the "free" and "interaction" 

Lagrangian are not separately chiral invariant. 

L R '  

I 

I 

I 

0 0 0 . f i s  the 

Higher 

2) As the non-linear transformation of d. i s  a local one, one actually has a 

group of local chiral transformation or chiral gauge transformation, 

although the kinetic energy terms in  the Lagrangian are not invariant 

I 
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under such gauge transformation. I t  would seem natural, then, t o  introduce 

gauge fields of the Yang-Mills type to make the whole thing gauge 

invariant. This extended principle of chiral invariance, ini t iated by 

Weinberg, and carried out by many people, has led to  some more 

interesting results. The basic idea i s  to introduce two fields, V/ and 
P L  

again i n  the 2 x 2 matrix notation, related to  the vector and axial VP R '  

vector fields V and A by 
CI P 

L + yl R = WP 

They transform under local SU(2)L (8 SU(2)R as 

Then the combinations 
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D M1 = a MI - i g  V MI + i g  MI VPR 
P P P L  

transform under local chiral transformation in the same way as under constant 

chiral transformation. So a typical Lagrangian i s  of the form 

Tr  ID MI' D MI 1 
L =  -16f2 P P 

2 m ... ... 

0 Tr ( V  V i )  - -  T r ( V  V )  - -  
2 P P L  2 P P R  

2 
O n l y  the vector meson mass terms - m break gauge invariance. Without them, 

actually Mf , MI. 

0 

t 
...an be completely transformed away by a (parity non-conserving) 

&Juge transforniati,on , 
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The pion kinetic energy term contains a combination a # - g A  
P If P '  

which results i n  a mixing of a 6 and A . By separating out the pion 

normal mode, we obtain renormalization of m A 

I-I P 

and f, given by 

f r  = f / r ,  

m A = m v / a  = m o / t  

2 2 1 2 2 2  * = I - g  /4m 2 f r 2  = / ( i + g  / 4 m o  f ) 
0 

The celebratediweinberg relation m [ A ,  3 = m [ p J and the 

2 
Kawarabayash-Suzuki-Fayyazuddin-Riazuddin relation g /2 m f r = 1 

V 

are t ied together, and correspond to  * = ' / f i e  

does not seem to follow from the chiral group alone. 

This value, however, 

3) The prescription in  the chiral Lagrangian method that we expand in the 

pion field and keep only the lowest terms contributing to a given process 

suggests the phenomenological character of the method. In terms of 

Feynman diagrams this means that we pick up only "tree diagrams" which 

do not contain any internal loops. Thus rescattering, or unitarity correc- 

tion, i s  ignored, among other things, as may be appropriate for low energy 

phenomena. Actually, we can characterize the procedure as a classical, 

or WKB, approximation to the S-matrix. To be more explicit, we write 

the S-matrix i n  the interaction representation in the form 
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where @ i s  a functional of free f ield operators representing al l  connected 

diagrams. As i s  well known, a T-product can be converted into a normal 

product by repeated contractions using Feynman propagators, expressed i n  

the concise symbolical form 

T exp [i [ g L  int d 4 x ]  
h C  

4 
2 :  U exp [&SgLint d x 3 :  

(wi th obvious generalizations when L contains more than one field, obeying 

either statistics.) From this follows, by differentiating S wi th  respect t o  g, 

I 8  4 1  s --(,“F 
N 

(x) = U $ q X )  u-’ = $qx) +TIC D ( x - x )  



where 6 / 6 , d  applies to  fields standing to  i t s  right i n  the functional L . 
To drop this term, which i s  proportional t o t ,  amounts to  making the WKB 

approximation i n  a SchrAinger equation, and we arrive at a "classical" 

Hami I ton- Jacobi equation 

a @ t o t  + J L  [ a t o t  J d 4 X = O ,  a s  int 6 Q(x) 

@ = @ - J S  L d d4x, (Lo = i A - ' 1  
tot 0 

- 
Q(x) - L o b ( x )  

This equation may be formally integrated i n  a straight-forward manner, 

and yields a classical solution to  the f ield equation derived from L tot - 
If the solution i s  expressed as a perturbation expansion, i t  can be shown 

that only the tree diagrams are generated. 

A consequence of this analysis i s  that a symmetry of a Lagrangian i s  not 

lost i n  the approximation i f  i t  is good at the level of c-number fields. 

The formalism also enables one to handle many-particle processes i n  a 

systematic manner. 


