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DOE grant DE-FG02-84ER45144 

Summary of Previous Research (Condensed Matter Physics) 

This is a summary of our work supported since 1984 by DOE grant DE- 

FG0284ER45144. Our work has played a role both in condensed matter physics 

and in high energy physics. In this section we describe our work with emphasis 

on the connections to condensed matter physics. We have tried to set the work 

in an historical context, but we certainly do not intend this narrative to be a 

comprehensive history. 

Major progress has been made during the last few years in the understand- 

ing of two dimensional critical phenomena. The remarkable result of these de- 

velopments is a complete classification of all possible two dimensional critical 

phenomena in a certain domain. Our group at  Chicago funded in large part by 

the DOE has played a leading role in this work. 

The development of these ideas goes back to the late 1960's and the boot- 

strap proposals of Kadanod'l and Polyakov121. They proposed using general 

principles to classify critical phenomena rather than analyze specific models. 

P0lyakov[~1 made the important observation that there is a larger symmetry than 

ordinary global scale invariance at  a critical point. Locality of the coupling be- 

tween degrees of freedom implies that the system should respond simply to local 

scale transformations as well. Local scale transformations are called conformal 

transformations. The constraint of conformal invariance, coupled with the large 

number of conformal transformations possible in two dimensions (any analytic 

mapping of the plane onto itself is conformal) is a crucial part of this recent work. 

Another part of the story also has its origins in the late 1960's. Dual models 

and string theories were first studied at this time141. In particular, the operator 

realization of conformal invariance in two dimensions, the Virasoro algebra, was 

developed. 
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These developments lay fallow for about a decade. Perhaps the right place 

to pick up the story is with Polyakov's string theory letters151. These renewed 

interest in the connection between string theory and two dimensional conformal 

field theory. This work highlighted the role of the trace anomaly, c, of the string 

world surface. Friedanl'1 explored these ideas further, developing analytic opera- 

tor product expansion techniques and demonstrating that c is just the coefficient 

of the central extension of the Virasoro algebra and so is crucial in understanding 

the conformal properties of the system. 

Belavin, Polyakov and Zamolodchikovlq (BPZ) made a major advance in 

1983. First, they realized that these ideas would have implications for two di- 

mensional statistical mechanical systems. They also made the deep and beautiful 

observation that correlation functions for operators with certain special scaling 

dimensions h (depending on c) would obey linear differential equations, rendering 

them exactly soluble. This followed from certain properties of the represent* 

tions of the Virasoro algebra for these h and e valued8]. Furthermore they showed 

that the Ising model was such a special system, indicating that such systems were 

physically interesting. Dotsenkolgl soon showed that the three state Potts model 

was also such a system. Although fascinating, these results did not point the 

way to any classification of critical phenomena. 

The next key step was taken by our groupllol. The bulk of interesting two 
dimensional critical phenomena, genuine thermal systems with positive Boltz- 

mann weights and sufficient spatial isotropy can be described by effective Landau- 

Ginsburg hamiltonians that allow an especially straightforward operator inter- 

pretation. The representation of the conformal algebra in these systems must be 

unitary. 

This physical constraint is extremely powerful. In fact we proved that the 
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only possibly unitary representations of the Virasoro algebra are c 2 1, h > 0 or 

c = l - + j  m m+l  m = 2 , 3 ,  ... 

This has become known as the discrete series. All two dimensional critical phe- 

nomena obeying the requirements discussed above must, if c < 1, be in the 

discrete series. This result is the crucial ingredient in rendering the classification 

problem for c < 1 tractable. 

At about the same time, Andrews, Baxter and Forrester["] displayed an 

infinite set of exactly soluble lattice models that Husell21 showed realized each 

element of the discrete series. Goddard, Kent and proved that each of 

these representations was in fact unitary. 

Important pieces of the classification problem remained. How many oper- 

ators of each allowed scaling dimension occur in a given model in the discrete 

series? How do they couple, i.e., what are the operator product coefficients? 

The requirement that correlation functions be well behaved constrains this data. 

This is essentially the conformal bootstrap. The differential equation techniques 

of BPZ augmented by the powerful Feigin-F~chsl'~] integral representation devel- 

oped by Dotsenko and Fateev[151 provide a way of implementing this constraint 
and calculating the operator product coefficients. However, it turned out to be 

somewhat difficult to  provide an exhaustive solution. 

The crucial constraint was developed in an important piece of work by 

Cardyl161. He invoked the principle of modular invariance, already used to good 

effect in string theoryl'q. This expresses the sensible constraint that a partition 

function should be well defined on arbitrary two dimensional surfaces, not just 

the plane. Cardy required that the partition function make sense on the torus. 

This simple constraint has powerful consequences. Cardy showed that were 

only a (small) finite number of allowed sets of multiplicities of scaling dimensions 
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for the first few elements of the discrete series. 

Gepner and Witten["] also explored the constraint of modular invariance in 

an S U ( 2 )  symmetric set of conformal field theories. Gepner1lgl noticed a crucial 

link between the modular properties of the S U ( 2 )  and discrete series models 

enabling him to make progress in the general classification of modular invari- 

ants for both systems. Capelli, Itzykson and Zuberl2'1 made important further 

progress, allowing them to conjecture a complete solution to the modular invari- 

ance constraint. This answer was remarkable - allowed conformal field theories 

are indexed by the Dynkin diagrams of simply laced Lie algebras. All these mod- 

els have been given lattice realizations by Pasquier1211 using Dynkin diagrams as 

a guide to the energetics of generalizations of Andrews-Baxter-Forrester models. 

Gepner and Qiu[22] made important progress in underst anding modular 

properties by studying certain 2, symmetric systems. Recently Capelli, Itzykson 

and Z ~ b e r 1 ~ ~ 1  have given a proof of their conjecture. 

The classification of all c < 1 conformal field theories is a paradigm for a 

good answer to a classification problem - a few fundamental assumptions lead 

to a complete list of all possible critical phenomena in a certain domain. This is 

one of the few times in physics when a really comprehensive solution to such a 

problem has been given. 

Generalizations of this situation can be obtained by imposing extra sym- 

metries in addition to conformal invariance. Nonabelian continuous symmetries 

give rise to current algebras. We1109241 focussed on supersymmetry, a symme- 

try relating bosons to fermions. This symmetry was originally discovered in the 

context of string theory. We analyzed the unitary representations of the super- 

symmetric extensions of the Virasoro algebras, the Neveu-Schwarz and Ramond 

algebras, and found a very similar pattern, a discrete series followed by a contin- 

uum. Remarkably, the first two elements in the super discrete series overlapped 

the ordinary Virasoro discrete series. The tricritical king model and also the 

ordinary gaussian model at a certain radius are supersymmetric. Physical real- 
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izations of these systems - e.g., helium adsorbed on krypton plated 

- are the first known examples of supersymmetric field theories in nature. 

later showed that the fermionic soliton field of the critical king model 

(c = 1/2) is the Nambu-Goldstino of spontaneously broken supersymmetry in the 

tricritical Ising model (c = 7/10). We noted that one of the relevant trajectories 

leaving the c = 7/10 tri-critical king model fixed point preserves supersymmety, 

but that the supersymmetry could be spontaneously broken away from the fixed 

point, because unitarity allows no supersymmetric states of the Ramond algebra. 

The resulting massless fermion mode, the nambu-goldstino, becomes the massless 

free fermion of the king model. This is a striking example of how supersymmetry 

puts rigid constraints on the global topology of the renormalization group flow. 

We also completed the study of the supersymmetric c = 1 gaussian model 

by showing that it corresponded to the c = 1 critical Ashkin-Teller model at  

a special value of the coupling[26B2q. This example of supersymmetric critical 

phenomena is experimentally more accessible than the tri-critical Ising model 

because there is a supersymmetry index which prevents the supersymmetry from 

being spontaneously broken away from the critical point. 

The constraint of modular invariance in the super case has consequences 

very similar to its effect in the ordinary case. Our student Kustor 12*1 showed it 
was a powerful constraint. Capellii291 formulated a comprehensive classification 

conjecture for superconformal field theory. 

Besides the work on classification of critical phenomena we should mention 

a number of other important applications of conformal invariance to two di- 

mensional critical phenomena. Cardyl3O1 has used it to explain finite size scaling 

results. He, Blote and and Affle~k1~~1 explained the universal finite 

size scaling correction proportional to  C. Affleck1331 did beautiful work explaining 

the behavior of quantum spin chains using Kac-Moody algebras. Cardy also fit 

the Yang-Lee and surface critical p h e n ~ m e n a l ~ ~ l  into the picture. He and 

and Zamolod~hikov~~'~ did an ingenious perturbation theory in c - 1, 
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enabling them to study the flow between fixed points in the discrete series. 

The main problem now is to find the general classification of conformal field 

theories for c 2 1. This is important intrinsically and for the application to string 

theory. 

To answer this question, and others, we f0rmulated[~*1 an abstract mathe- 

matical description of conformal field theory. We were motivated by the rigidity 

of modular invariance that Cardyl161 demonstrated. This immediately led us to 

the idea that a partition function well defined on moduli space for arbitrary genus 

Riemann surfaces might be an appropriate starting point for a general abstract 

description of conformal field theory. This view was bolstered by the observation 

that correlation functions reconstructed by allowing handles to degenerate would 

be crossing symmetric as a consequence of modular invariance. 

A modular geometry yields a conformal field theory. Conversely, given a 

conformal field theory, generalized conformal blocks can be constructed to rep- 

resent the theory as a modular geometry. So classifying conformal field theories 

is essentially equivalent to classifying modular geometries. As the section Pro- 

posed Research describes below, we are actively pursuing the long-term goal of 

classifying all modular geometries. 
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DOE grant DE-FG02-84ER45144 

Summary of Previous Research (High Energy Physics) 

This is a summary of our work supported since 1984 by DOE grant DE- 
FG02-84ER45144. Our work has played a role both in condensed matter physics 

and in high energy physics. In this section we describe our work with empha- 

sis on the connections to high energy physics. We have tried to set the work 

in an historical context, but we certainly do not intend this narrative to be a 

comprehensive history. 

1. 1979-80 

1.1 Nonperturbative renormalization group in two dimensions 

Shenker and Tobochnikl'j studied the O(3) nonlinear sigma model in two di- 

mensions. They used Monte Carlo renormalization group techniques to demon- 

strate the full range of scaling behaviour, from asymptotic freedom at short 

distance to strong coupling at long distance. This work provided support for the 

analogous picture for QCD in four dimensions. 

1.2 Einstein's equation from two dimensional scale invariance 

In his Friedan studied the perturbative renormalization of the gen- 

eralized nonlinear model in two dimensions. The basic new idea was to see the 

renormalization group as a flow on the infinite dimensional space of metrics on 

the target manifold of the nonlinear model. He showed that the renormalization 

group fixed point equation, the equation for two dimensional scale invariance, 
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is Einstein's equation R,, = 0, with perturbatively calculable corrections away 

from the long distance limit. 

It was soon realized, by Friedan and Shenker among others, that Friedan's 
derivation of Einstein's equation from the principle of two dimensional scale in- 

variance was the basis for understanding the equation of motion of string the- 

ory as the equation of two dimensional conformal invariance, and the possible 

compactifications of spacetime in string theory as the Ricci-flat (Calabi-Yau) 

manifolds. 

Friedan proved the perturbative renormalizability of the general nonlinear 

model and explained general covariance as a special case of independence of 

renormalization scheme, which later was seen to be the true symmetry of the 

string theory. He calculated the beta function to two loops and studying the 

possible weak coupling fixed points, in particular the examples given by Calabi- 

Yau spaces. He explained how one loop fixed points would have to be corrected 

at higher order to  maintain the scale invariance. The two loop calculation was 

used by Alvarez-GaumC and Freedman131 as the basis for their demonstration of 

cancellation of the two loop term in the supersymmetric nonlinear model, which 

eventually led to a proof that the Calabi-Yau spaces give conformal nonlinear 

models to all orders, and thus compactifications of string theory. As in Friedan's 

thesis, the Calabi-Yau metric is corrected order by order in perturbation theory 
to maintain the scale invariance. 

In this model, the field d(c) takes values in an arbitraxy manifold M, and 

the action is S(4) = /d'(g,(r$)c30qY'c30qY where gpv is a Riemannian metric on 

the manifold M. Unlike previously studied field theories, this model admits an 

infinite number of naively marginal couplings, encoded in the metric gpu which 

can vary at each point of M. Under a change of two dimensional scale, A -+ e'b, 

the metric coupling gw becomes an effective metric coupling g f v ,  given by the 

renormalization group (rg) equation dgL,/dt = P,,(g'). The weak coupling limit 

is the limit of large volume, ;.e. small curvature, on M, gPv -, 00. The beta 
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function was calculated perturbatively in terms of the curvature tensor of the 

metric coupling: dg,,/dt = R,, + f ~ , p ~ ~ 9  + - . -. 
The rg fixed point equation, the equation for two dimensional scale invari- 

ance was thus shown to be Einstein's equation R,, = 0 with perturbatively 

calculable corrections away from the long distance limit. A discussion was given 

of the obstructions to the persistence of a k e d  point when the linearized beta 

function has zero modes. It was shown that such an obstruction would always 

arise at two loops, unless the curvature tensor vanished identically. Any fixed 

point metric with arbitrarily large volume would thus have to be flat, implying 

that generic bosonic conformal nonlinear models could only be made from tori. 

2 .  1980-81  

2.1 The naturalness of gauge symmetry at long distance 

Shenker,I41 building on work with Fradkin,151 showed that systems without 

microscopic gauge invariance could become effectively gauge invariant at short 

distance. This was also done by Foerster, Nielsen and Ninomiyal']. It was one of 

the basic results in the program of deriving realistic long distance physics from 

generic short distance physics. This program foundered on the impossibility of 
incorporating chiral fermions (see section 2.2 below). 

2.2 Impossibility of weakly coupled cutoff chiral fermions 

Nielsen and Ninorniyalq proved, using algebraic topology, that free fermions 

on a cubic lattice could not have a chiral low energy spectrum. Friedan181 
gave a more complete proof using only differential calculus, which was easily 
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generalizedlQl from the cubic lattice to an arbitrary cutoff system, i .e.  with a 

finite number of degrees of freedom per unit volume. 

This was construed, at least by Friedun, as a nego theorem for fundamental 

physics based on gauge theory. It eventually became a motivation for interest in 

a fundamental string theory. The basic formula in Friedan's proof can be given 

a rigorous mathematical interpretation in terms of higher dimensional spectral 

flow11o1. 

2.3 The loop expansion in st r ing theory 

In 1981 PolyakovI"] revived the covariant approach to string theory1l21. Two 

dimensional conformal invariance had always played an essential role in the c+ 

variant approachl131. Polyakov expressed this in modern field theory language, 

stressing covariance and locality on the world-surface. He quantized the Brink- 

di Ve~chia-Howe-Zumino~'~1 two dimensional action for the string world-surface, 

taking account of the Fadeev-Popov determinant for the gauge group of world- 

surface reparametrizations. His purpose was to construct string theories in di- 

mensions lower than the known critical dimensions by showing that new degrees 

of freedom, the Liouville field, arose. This has not yet born fruit, but Polyakov's 

approach has turned out to be very useful for studying strings in the critical 
spacetime dimension, which his calculation can be interpreted as providing a pcr 

tential explaination of consistency of the theory as cancellation of the local trace 

anomaly on the world-surface without additional degrees of freedom spoiling uni- 

tarity. 

In the spring and summer of 1981, Friedan extended Polyakov's local a p  

proach to take account of the global structure of the string world-surface, writing 

the string perturbation series as a sum over all surfaces with arbitary numbers of 

handle~,l'~1 with a measure given by the product of Fadeev-Popov determinant 

and matter partition function. This was described in a lecturel161 at the Niels 
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Bohr Institute Workshop on String Theory in October, 1981 and was worked out 

in detail by 0. Alvare~[’~I. This has been the foundation for modern treatments 

of the covariant string perturbation series and one of the roots of recent work on 

string theory as modular geometry. 

3 .  1981-82  

3.1 String theory and conformal field theory 

In the winter of 1981-82, Friedan tried to understand the Liouville model 

and its role in string theory. This approach proved fruitless, but in the process 

he developed the modem language of conformal field theory, the analytic stress- 

energy tensor T ( z )  and the analytic operator product expansion. The worklr51 

was presented at  the Les Houches Summer School in August, 1982 and at the 

Nordita-Landau Institute Seminar in Copenhagen in September, 1982. 

This approach arose out of Friedan’s frustration with the use of canonical 

commutation relations to study quantum conformal invariance in two dimen- 

sional field theory. He developed a diagrammatic perturbation expansion for 

the Liouville model (two dimensional gravity) in which the renormalization was 
performed covariantly, with respect to the two dimensional geometry given by 

the quantum Liouville field itself. The problem was to verify the conformal in- 

variance of the theory and calculate the central charge of the Virasoro algebra. 

Canonical commutation relations of the fields gave up manifest covariance and 

were awkward to use in the interacting theory (though in fact they were used 

successfully in the Liouville model’by Curtright and Thornlr81). Shenker sug- 

gested using operator product expansions instead. This idea was very successful. 

Friedan used it to finish the covariant all-orders construction of the quantum 

Liouville model and confirmed the results of Curtright and Thorn. 
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Friedan used Ward identitites to demonstrate the connection between the 

trace anomaly and the central charge of the Virasoro algebra. He gave the con- 

tour integral argument relating the singular part of the analytic operator ex- 

pansion with the commutation relations of the operator modes. In particular, 

the operator product of two stress-energy tensors was shown equivalent to the 

commutation relations of the Virasoro operators. This allowed the more general 

and covariant operator product arguments to replace oscillator algebra. 

He showed that the non-spacetime degrees of freedom of the string (e.g. 

Liouville) has to be a conformal field theory with exactly the quantum trace 

anomaly which combines with the spacetime dimension to give the critical value 

(e.g. 26). This result, which seems not to have been obvious to most workers 

in the field at  the time, implied that the perturbative quantum Liouville model 

could not be used in spacetime dimensions above one. 

He made the key point that the partition function on an arbitrary surface 

could be calculated from the expectation value of the stress-energy tensor T ( z )  
on the surface, which is the derivative of the logarithm of the partition function 

with respect to the moduli (parameters) of the surface, and that the expectation 

value of T ( z )  could be calculated from the short distance behavior of a twc+ 

point function of quantum fields. This is the basic technique for constructing the 

partition function on arbitrary surfaces from local properties of the conformal 
field theory. It later became a crucial idea in the modular geometry program, 

and it remains the only known way to calculate Yukawa couplings in orbifold 

string compact ificat ioni. 
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4 .  1982-83  

4.1 Anomalies, index formulas and supersymmetric first quantization 

Friedan and Windey,llgl based on a suggestion of E. Witten, calculated the 

index of the Dirac operator in arbitrary gravitational and gauge fields, and the 

nonabelian gauge anomaly, by supersymmetric quantum mechanics. This was 

also done independently by Alvarez-Gaum61201 and by Witten[211. 

Friedan and Windey described the functional integral over the super world 

lines of a first quantized fermion, giving the super heat kernel of the Dirac op- 

erator, and showed that the Greens function of the Dirac operator was obtained 

by integrating over the super proper time. 

This technology served as prototype for superconformal field theory and for 

the description of loop amplitudes of fermionic string by integrating over the 

super moduli of super Riemann surfaces (see sections 5.2, 6.5 and 8.3 below). 

Friedan and Shenker later applied the ideas of this work to formulate the 

anomaly calculaton for superstrings (see section 6.1 below). 

Alvarez-GaumC and Witten1221 used the technique to calculate the gravita- 

tional anomaly in field theory. 

4.2 Unitarity in two dimensional (super) conformal field theory 

In the fall of 1983, Friedan, Qiu and Sher~kerl~~] proved a theorem classifying 

all possible unitary representations of the Virasoro algebra and thus giving the 

first concrete result towards a classification of all possible two dimensional critical 

phenomena. 

In the late 1960’s Kadanoff and Polyakov had proposed that all possible 

universality classes of critical phenomena could be classified by classifying scale 

invariant quantum field theories, using the algebraic structure of the operator 
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product expansion. In the early 1970’s Polyakov showed that scale invariant 

local systems would have the additional symmetry of local scale invariance, con- 

formal invariance. He formulated a bootstrap program of classifying all confor- 

mally invariant quantum field theories. At the same time, in string theory, the 

world surfaces of strings were being described by two dimensional conformal field 

theories. 

In the winter of 1982-83, Belavin, Polyakov and Zamolod~hikovl~~~ began 

to revive the conformal bootstrap program in two dimensions, making use of 

the results of string theory, in particular the Virasoro algebra, and the analytic 

stress-energy tensor and the analytic operator product introduced by Friedan (see 

section 3.1 above). They pointed out that conformal field theories made from 

a certain special class of representations of the Virasoro algebra, the degenerate 

representations given by vanishmgs of the determinant f ~ r m u l a , [ ~ ~ l  which occur 

for all c < 1, were exactly solvable, their correlation functions obeying ordinary 

differential equations. They showed that the king model was made from such 

representations and suggested that there were other statistical mechanics models 

in this class. They gave no reason for such representations to occur in conformal 

field theories describing physical systems. The degenerate representations simply 

provided a certain solvable class of conformal field theories. 

Friedan learned of these ideas during a visit to the Landau Institute in April 
and May, 1983. On returning from the Soviet Union he began to look for a phys- 

ical reason for degenerate representations of the Virasoro algebra to occur, and 

discovered that unitarity imposes significant constraints on the possible repre- 

sentations of the Virasoro algebra with c < 1. Friedan,Qiu and Shenker pursued 

this investigation to the point of proving the theorem that, if c < 1 then unitarity 

requires c to be one of the discrete series of rational numbers 1 - 6/m(m + l), 
m = 2,3,. . ., and further that, for each allowed value of c, only a finite number 

of representations were possible, all degenerate and all giving rational critical 

indices. 
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Every universality class of critical system with a local order parameter is 

described by a Landau-Ginsberg model and thus by a unitary conformal field 

theory. The theorem of Friedan’Qiu and Shenker thus was the first step in classi- 

fying all two dimensional critical systems with c < 1, by listing all possible values 

of the trace anomaly and all possible values of the critical indices, i. e. all possible 

representations of the Virasoro algebra. In order to complete the classification it 

remained to determine the possible multiplicities of the representations and the 

possible operator product coefficients. All of the c < 1 representations allowed 

by unitarity were degenerate, so could be solved by the techniques of Belavin, 

Polyakov and Zamolodchikov. 

Friedun’Qiu and Shenker carried out the same classification of possible 

unitary representations for the Neveu-Schwarz algebra, one of the two super- 

symmetric extensions of the Virasoro algebra. They found an analogous discrete 

series with c < 3/2, and pointed out that the first two values of c in the super 

discrete series corresponded to known critical systems, the tri-critical Ling model 

and the gaussian model. This was the first discovery of supersymmetric critical 

phenomena and, in fact, the first examples of supersymmetric extended systems 

observable in nature (at present). 

FQSf231 pointed out that these representations of the supersymmetry algebra 

could be used in string theory. The idea is that, as implied by Friedan’s 1982 
(see section 3.1 above), any conformal field theory with the correct value 

of c can be a string ground state. Tensor products of models in the discrete series 

could be used to  obtain the requisite values of c. For example, nine copies of the 

c = 1 superconformal model could be combined with four ordinary flat spacetime 

dimensions. 

Independently, Belavin, Polyakov and Zamolod~hikovl~~1 continued their work 

on the degenerate representations. They found that if c was in the dense set 

1 - 6/m(m + l), m any rational number above 2, there was a finite set of de- 

generate representations on which the operator product expansion could close. 

23 



Again, this is only a special class of models which are exactly solvable. The 

theorem of Friedan,Qiu and Shenker implies that all local critical systems with 
c < 1 fall within this class of solvable models. Also independently, Andrews, 

Baxter and Forrester[261 described a class of exactly solvable two dimensional 

lattice models. HuseIZ71 found substantial evidence in the work of Andrews et.  

d. that their models at their critical points realize all values of c in the unitary 

discrete series. 

Besides the application to critical phenomena, the main significance of the 

FQS theorem is that it showed the possibility of carrying out the two dimensional 

conformal bootstrap program incrementally for c < 1. It soon became clear that 

the classical string ground states are essentially the conformal field theories with 

the critical value of c,  so that classical string theory is essentially a special case of 

the conformal bootstrap. Thus the FQS result indicated the possibility of using 

the c < 1 classification problem as a practical arena in which to  study the more 

difficult problem of finding the classical ground state of string theory. 

5 .  1983-84  

5.1 Conformal and superconformal invariance in string theory 

In the summer of 1983 Friedan began to explore the relation between the 

two dimensional conformal invariance of string theory and the results of his thesis 

(see section 1.2 above)12*1. This was also being explored at  about the same time 

by Lo~elace2~~1 WittenIm1 and possibly others. The essential step was simply to 

juxtapose the existing results, by regarding the general nonlinear model of 2 as the 

functional integral for first quantized strings moving in a background gravitation 

field. Two dimensional conformal invariance was known to be the condition 

for unitarity in string theory['2#'31. Friedan discussed this in his Les Houches 

24 



le~tures[’~1 using general language of Ward identities and operator products for 

the two dimensional quantum stress-energy tensor applicable in arbitary two 

dimensional conformal field theories. In particular, his analysis of the role of the 

(hypothetical) quantum Liouville model applied equally well to arbitrary internal 

degrees of freedom, in particular fixing the Virasoro central charge of the internal 

system as the difference between the critical value ( e . g .  26) and the Minkowski 

spacetime value (4). 

By one of the basic results of Friedan’s thesis,121 the condition of two di- 

mensional conformal invariance was known to be an equation of motion on the 

background gravitational field, Einstein’s equation plus short distance correc- 

tions. The background could be regarded as a description of the string state 

since the graviton is a mode of the string. Thus two dimensional conformal 

invariance is the equation of motion of string. 

Thus fixed points of the rg of the nonlinear model correspond to ground 

states of the string, i .e. string compactifications of spacetime. Friedun’s thesis 

implied that any compactification of bosonic string would have to be flat, at least 

if only the gravitational mode condensed. A richer class of compactifications were 

provided by the results of Alvarez-Gaum6 and Freedman131 generalizing Friedan’s 

thesis to the general supersymmetric nonlinear model. Extending Friedan’s two 

loop calculation for the bosonic model, they found that in the supersymmetric 
model the two loop term vanishes if the one loop term, the Ricci tensor of space- 

time, does. Later the same was found for the three loop term. This suggested the 

conjecture that spacetimes with zero Ricci tensor give exact classical solutions 

of string theory. Eventually it turned out13’l that there were nonzero terms in 

the beta function starting at  four loops. But it was that the higher 

loop corrections could be cancelled by making small perturbations of the one 

loop fixed point, the Ricci-flat metric, the pattern for perturbative fixed points 

originally envisioned in Friedan’e thesis. 

One preliminary step taken by Friedan in the summer of 1983 was a unitarity 
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proof for strings in a background given by one ordinary time direction (c = 1) 

plus an arbitrary unitary conformal field theory with c = 25. This was equally 

applicable to compactifications or possible quantum Liouville models. 

5.2 Uni tar i ty  and spin fields in superconformal field theory 

The superstring theories which were discovered in the 1970’s were being 

refined and studied in the early 1980’s by Green, Schwarz and Brink. In the 

fall of 1983 our attention was drawn to the superstring theories, and to the 

remarkable one loop finiteness results for the type I1 theories due to Green and 

S c h ~ a r z , [ ~ ~ l  by the result of Witten and Alvarez-Gaumd22] on the cancellation 

of anomalies in the low energy field theory of the type IIb superstring. The work 

of Green, Schwarz and Brink was based on the light-cone formalism, which was 

manifestly unitary but not manifestly Lorentz invariant, a serious deficiency in 

a theory of gravity. It was clear that the ideas of superconformal field theory 

should be applied to make a coyuiant formalism for superstring theory. Our 

first step was to develop the general theory of superconformal fields, both to 

understand supersymmetric critical phenomena and to understand the general 

classical ground states or compactifications of fermionic string. 

In the winter of 1983-84 Friedan taught a course in string theory to learn the 

basics of superconformal field theory, including the role of the two superconfor- 

mal algebras, the Ramond algebra and the Neveu-Schwarz algebra. Friedan,Qiu 

and Shenker had already done the unitarity study for the Neveu-Schwarz algebra 

(see section 4.2 above). Qiu realized that we had not done the other algebra, 

the Ramond algebra and adapted our computer programs to get striking nu- 

merical results. The unitary representations of the Ramond algebra began to 

appear in a discrete series at the same values of c as had already been found for 

the Neveu-Schwan algebra. The first nontrivial representations of the Neveu- 

Schwarz algebra, occurring at c = 7/10, had been found to give some of the 

known critical indices of the tri-critical king model (the &-invariant sector). 
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Now it emerged that the first unitary representations of the Ramond algebra 

also occurred at c = 7/10 and provided the remaining critical indices of the 

tri-critical Ising model. 

We developed this picture into a general theory of two dimensional super- 

conformal fields13’1. We found the determinant formula for the Ramond algebra. 

This formula was proved by Meurman and Ro~ha-Caridi i~~]  and was indepen- 

dently found and proved by Thornl3T. We proved the non-unitarity theorem for 

the Ramond algebra, that the possible unitary representations with c < 3/2 form 

a discrete series, and indeed the allowed values of c occurred at exactly the same 

values of c as for the nontrivial unitary representations in the discrete series of 

the Neveu-Schwarz algebra. This strongly indicated that the presence of these 

two sectors was a general characteristic of superconformal field theory. 

We explained this by showing that spin fields, corresponding to the repre- 

sentations of the Ramond algebra, always occured as geometric disturbances in 

superconformal field theories, introducing branch cuts in the fermionic compe 

nents of the superconformal fields. 

Two examples of such spin fields had already been seen in free fermion 

conformal field theories. The Ising spin field introduced exactly this branch cut 

into the free fermion of the Ising model. And the fermionic vertex operator which 

was constructed by very complicated oscillator algebra in the 1970’s was a spin 
field for the superconformal field theory of the ten free massless superfields of the 

covariant superstring. 

We also showed that a local bosonic conformal field theory could always be 

constructed from the superconformal fields and the spin fields by projecting on 

the subspace of even fermion number. This generalized the Gliozzi-Olive-Scherk 

projection in the free superfield theory of the covariant superstring. In particular, 

We showed that the bosonic tricritical king model was the spin projection of the 

superconformal field theory of its soliton excitations. 

As technical language for the study of superconformal field theory we worked 
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out the formalism of superconformal operator product expansions in analogy with 

the analytic operator product expansions of the bosonic conformal field theory. 

We also worked out the superconformal generalization of the differential equ* 

tion technique of BPZ. Q ~ u I ~ ~  used this technique to calculate the fundamental 

operator product coefficient of the superfield of the tricritical king model. 

This work was first reported at the Landau-Nordita Seminar in MOSCOW, 

June, 1984. Bershadsky, Knizhnik and Teitelman[391 had studied the Neveu- 

Schwarz sector of superconformal field theories independently. 

6 .  SUMMER, 1984 

By June, 1984 we had identified a number of key problems in string theory. 

We studied these problems at  Aspen in July and August of 1984, and reported on 

our work in lectures by Friedan and Shenker at Aspen in August, and by Friedan 

at ITP Santa Barbara in August and September and at the APS-DPF meeting 

in Santa Fe in November. A summary of this work appeared in reference 40. 

6.1 Anomalies in superstring theory 

The first and most pressing problem was to find a way to get from weakly 

coupled superstring theory a low energy four dimensional effective theory with 

nonabelian gauge symmetry. Otherwise there could be no possibility of string 

theory being realistic, without completely intractable strongly coupled string 

effects. The difficulty was that only two kinds of superstring theory were known. 

The type I1 theories contained no massless gauge vector modes. The type I 

theories contained S O ( N )  massless gauge vector modes, but their low energy 

limits 

string 

were thought to be anomalouslZ21. The problem of gauge symmetry in 

theory was especially noted by Mandel~taml~~1 and by Witten14’]. Witten 
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had suggested a mechanism for producing gauge symmetry in bosonic string 
theory, using nonabelian two dimensional current algebra. But it was thought 

by both Mandelstam and Witten that such a mechanism would not work in 

superstring theory, because of the shift in the intercept from the bosonic theory. 

It seemed to us worth studying the anomaly in the type I string theories 

as opposed to the low energy field theories, since it seemed conceivable that 

some special property of string theory would cause the anomaly to vanish. We 

realized that the anomaly could be calculated in string theory as the unitarity 

violating one loop six point S-matrix element for the scattering of five physical 

massless gauge vectors into an unphysical longitudinal massless vector mode. 

This was something of a departure from field theory anomaly calculations which 

were then phrased in the off-shell language of current conservation violation. 

The anomalous Smatrix element could not be calculated in the then prevalent 

light cone formalism because it gave no vertex for the unphysical mode. But we 

realized that the covariant formalism did have such a vertex. 

We wrote a formal expression for the hexagon diagram giving the one loop 

anomalous S-matrix element in the type I theories as a multiple integral of the 

correlation function of the six gauge vector vertex operators on the annulus with 

respect to the locations of the vertex operators and the modulus of the annulus. 

A source of this point of view towards calculating the anomaly by first quantized 
string methods was the work of Friedon and Windeyl'gl and Alvarez-Gaumc51201 on 

calculating the field theory anomaly using the first quantized particle formalism. 

We showed this expression for the string anomaly to Green and Schwarz. 

They realized that they knew how to calculate it, and carried out the calculation, 

making the dramatic discovery that the anomaly cancels in the SO(32) type 

I the0ryl~~1. A well known chain of developments then followed - the Green- 

Schwarz anomaly cancellation mechanism in field the realization of an 

x E8 anomaly free field theory;the recognition by F r e ~ n d [ ~ ~ ]  of the significance 

of 10 + 16 = 26, and finally the beautiful synthesis of the heterotic 
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6.2 No-go theorem for compactification of t ype  II superstrings 

It also was clear to us that a superconformal version of nonabelian cur- 

rent algebra could in fact be used to construct vertex operators for gauge vector 

particles in the covariant formalism. We described the superconformal current 

algebras as straightforward generalizations of the bosonic algebras, replacing di- 

mension 1 chiral currents with dimension 1/2 chiral supercurrents. We pointed 

out that these superconformal current algebras would appear in the supersym- 

metric extensions of the Wess-Zumino-Witten models. These models were being 

studied at the same time by R0hm,1~~1 independently. 

These superconformal current algebras gave vertices for massless gauge par- 

ticles when used in compactifications of type II strings. The shift in the dimension 

of the current compensated for the shift in the intercept in going from bosonic 

to fermionic string. We also showed that, conversely, if a type I1 string theory 

has massless gauge particles then their vertex operators give a superconformal 

current algebra. 

But we were also able to show that in such compactifications it was impossi- 

ble for the charged fermions to be massless. The mass operator for the fermions 

contains the Ramond operator Go for the supercurrent algebra. We proved that 

the zero mode algebra of the supercurrent algebra split into ordinary nonabelian 

charges and decoupled fermions, which gave an explicit positive lower bound for 

the Go eigenvalue and thus for the charged fermion masses. 

This was a n-go theorem for realistic compactifications of weakly coupled 

type I1 superstring theory. Our nego  theorem was only for left-right symmet- 

ric compactifications of type 11 strings. Recently Dolan et al.lr81 and Kawai et 

al.1491 have exhibited left-right asymmetric type 11 compactifications. Dixon, 

Kaplunovsky and VafalS0l have extended our nego  result to these compactifica- 

tions. They combined our arguments for the symmetric case with the classifica- 

tion of unitary representations of current algebra to show that there are no type 

I1 compactifications with a gauge group containing S U ( 3 )  x S U ( 2 )  x U(1) and 
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charged massless fermions. 

Our decoupling result for the superconformal algebras employed a technique 

that Goddard and Olive were then using to make currents from bilinear expres- 

sions in fermions fields, and were applying to demonstrate that the representa- 

tions in the discrete series that FQS had shown were the only possible unitaries, 

were in fact unitary. This proof was completed by Goddard, Kent and OlivelS11. 

6.3 Superconfonnal  field theory and covariant superstr ing theory 

The third problem was to complete the covariant quantization of super- 

strings by describing the superconformal field theory of the world sheet of the 

string. This had been only partially carried out in the 1970’s. In particular, the 

vertex operator for fermion emission had not been completely constructed and 

the spacetime supersymmetry of the covariant theory had never been demon- 

strated. The spin field of the ten free superfields of the superconformal theory of 

the worldsheet of the covariant superstring had been constructed in the 1970’s 

by very complicated oscillator algebra. The scaling dimension of this spin field 

was 10/16. The calculation of its four point functon, in order to find the four 

point scattering amplitude of the massless fermionic modes of the string, was a 

tour-deforce of oscillator algebra. The result had actually been obtained first by 
Mandelstam using light-cone functional integral methods. 

By the general superconformal field theory, we knew that the dimensional 

10/16 spin field had to exist because there was a corresponding Ramond repre- 

sentation. But a more transparent construction of the spin field was needed in 

order to make calculation possible. Even more essential was to find the missing 

part of the fermion vertex which would bring its dimensional up to the value 1 

which was needed in the covariant formalism in order that its integral over the 

world-surface give ghost free scattering amplitudes. 

While we were thinking about the problem of the missing dimension 6/16, 
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Goddard and Olive suggested that the superconformal ghosts might provide the 

missing dimension 6/16 contribution to the fermion vertex operator. We de- 

scribed the superconformal ghost system and calculated the ground state energy 

in the Ramond sector. It was indeed 6/16, corresponding to a spin field of the 

needed dimension. We also showed that the integal of a U(1) ghost current gave 

a scalar field whose exponential was the dimension 6/16 spin field. 

8.4 CompactiAcation of superstrings on Calabi-Yau spaces 

The third problem was to understand the process of compactification, in 

order to explain why the low energy limit of string theory should appear four 

dimensional, if it does, and confront the low energy effective theory with experi- 

mental particle physics. 

It was clear from Friedan’a thesis12] and its supersymmetric generalization131 

that compactifications of superstrings were given by six dimensional manifolds 

with vanishing Ricci tensor, of which the only known nontrivial examples were 

the Calabi-Yau manifolds. 

Although we pointed out the existence of these compactifications, we did 

not think it would be fruitful to study them as spacetime manifolds with met- 

rics. Our main reason was that we realized that the spacetime picture of the 
compactification is only valid in the large radius limit, where the perturbative 

expansion of the nonlinear model makes sense. We thought it important to realize 

that the precise description of the classical string ground state is the nonpertur- 

bative conformal field theory of the world-sheet. Since the only natural scale in 

string theory is the Planck length, we expected that the large radius limit for the 

compactification could not be accurate. 

Moreover, the Calabi-Yau metrics were only known via an existence proof; 

none had ever been constructed and still it is true that no smooth Calabi-Yau 

metric has ever been constructed. Given such limited knowledge, it seemed un- 
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likely that the nonperturbative nonlinear model could ever be described starting 

from the Calabi-Yau space. 

We adopted what we considered to be the best 1ong.range strategy. Rather 

than trying to study individual Calabi-Yau spaces to get candidate classical string 

ground states, we thought it more likely to be fruitful in the long run to attack the 

general abstract problem of finding the exact conformal field theories representing 

the string ground states, as a special case of the two dimensional conformal 

bootstrap program, and possibly eventually deriving the Calabi-Yau metrics from 

the conformal bootstrap. 

6.5 Loop expansion in superstring theory 

During the Aspen period, we also began to think about the form of the 

covariant loop expansion for superstrings, by analogy with the loop expansion for 

the bosonic ~ t r i n g l ' ~ ~ ' ~ .  We made the basic observation that the GOS projection 

would be implemented in at  g loops by summing over all 4 g  spin structures on 

the Riemann surfaces with g handles. 

7.  1984-85 

7.1 Spin fields and the fermion vertex 

During the fall of 1984, in collaboration with our graduate students J. Cohn 

and 2. Qiu, wdS21 worked out a straightforward construction of the spin field of 

the Ramond-Neveu-Schwarz world-surface fermions yY(z ) ,  which is the matter 

part of the spacetime fermion vertex. This was a necessary step in the program 

of basing superstring theory on superconformal field theory. It was a transparent 

construction based on the abstract definition of the spin field as the field which 
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introduces a branch cut in the surface fermions t,!~p(z). It made evident the super- 

conformal properties of the vertex. It used a technology which made calculations 

practical. In the 1970’s the matter part of the fermion vertex had been con- 

structed and its four point function had been calculated by a tour-de-force of 

oscillator algebrals31. 

We attacked the problem from two directions, which were merged together in 

the final answer. One approach was based on an analogy with condensed matter 

physics. The critical king model in two dimensions is equivalent to a single 

surface fermion $ ( z ) .  The king spin field is exactly the field which produces a 

branch cut in this fermion field. Thus the spin field of the d surface fermions T,!Jp 

could be constructed as the product of d king spins. Luther and PeschellS41 had 

constructed the product of two Ling spins in terms of exponentials of a single 

scalar field. We expected to be able to construct the matter spin field in terms 

of exponentials of d / 2  scalar fields. 

The second approach, initiated by J. Cohn, was to start from the nonabelian 

algebra of SO(d) currents j p y  = T,!JpT,!J”. The spin fields were defined by their 

operator products with the currents, determined in turn by their transformation 

properties as SO(10) spinors. Cohn and Qiu calculated the four point function 

by the differential equation technique for current algebras described by Knizhnik 

and Zamolodchikov~ss~. 

The two approaches merged when we realized that the d / 2  scalars of the 

generalized Luther-Peschel construction were also the the d / 2  scalars of the ver- 

tex operator construction of the SO(l0)  current algebralS61. The spin fields of 

the generalized Luther-Peschel construction were exactly the exponential vertex 

operators corresponding to the spinor weights of SO(l0). 

This introduction of the vertex operator construction of current algebra into 

string theory was independent of the heterotic string c~ns t ruc t ion l~~l  which was 

being done at the same time. In our application there was a new aspect, because 

the matter spin field is multi-valued when d is not a multiple of 8. We announced 
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the construction in 40,23, and 57. But the press of other work delayed publishing 

the details until 52. 

7.2 Covariant quantization of superstrings 

During the winter of 1984-85 we worked out the complete spacetime fermion 

vertex and we demonstrated the spacetime supersymmetry of the covariant fermionic 

E. Martinec collaborated with us in this work. 

This work laid the foundations of the covariant superstring theory and has 

been the basis for a great amount of work on the loop expansion of the super- 

string theory. It made possible the investigation of string theory as abstract two 

dimensional superconformal field theory. It provided the technical apparatus for 

gauge invariant fermionic string field theoryl5*I. 

Key elements were the use of local conformal currents to generate surface 

BRS transformations and spacetime supersymmetry transformations. Once the 

local properties of these currents were determined, the BRS invariance and su- 

persymmetry of the amplitudes could be demonstrated by contour deformation 

arguments on arbitrary world-surfaces. Interesting obstructions to these defor- 

mations have recently been found and related to expected violations of nonrenor- 

malization theoremslS91. 

We made a detailed study of the superconformal world-surface ghost system. 

We bosonized the bilinear ghost number current of the superpartners of the ordi- 

nary fermionic ghosts. This bosonization of bosonic fields showed novel features. 

In particular, additional degrees of freedom remained after bosonization, which 

were described by a second bosonic field. We showed that there were infinitely 

many equivalent Hilbert spaces for the spacetime fermion states, generalizing the 

two equivalent pictures found by the early workers on the covariant formalism. 

We constructed the local BRS current on the world-sheet and determined 

the spacetime fermion vertex operators by BRS invariance. There were infinitely 
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many vertex operators corresponding to the infinitely many different pictures. We 
showed that the different pictures are equivalent in the sense that they give the 

same string scattering amplitudes. We constructed the picture changing operator 

which takes one picture to another. The full significance of these different pictures 

remains to be understood. 

We constructed the local world-sheet current which generates spacetime su- 

persymmetry transformations and used it to demonstrate the spacetime super- 

symmetry of the string theory. 

7.3 Conformal invariance and the string equation of motion 

In the spring of 1985, Friedan collaborated with C. Callan, E. Martinec and 

M. PerrylG01 to extend the results of his thesis121 to the general background of 

massless string modes, including the dilaton field and the antisymmetric tensor 

field and the gauge fields of the heterotic string. The main mystery which was 

resolved by this work was how two dimensional conformal invariance could give 

the equation of motion of the dilaton field. This confirmed that two dimensional 

conformal invariance could be considered as the string equation of motion. Part 

of this work was done independently by Senlsll although he did not solve the 

key problem of the dilaton. The form of the dilaton coupling was suggested by 

Fradkin-Tseyt linle2l 

7.4 Ideas in string field theory 

In 1984, W. Siege1 began the construction of a gauge invariant field theory 

of strings in Minkowski space, in which the string fields correspond to the states 

of a single first quantized string. In the spring of 1985, T. Banks and M. Peskin 

began the construction of string field theory in terms of the Virasoro algebra of 

the conformal field theory of the world surface of the first quantized string. 
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In the spring and summer of 1985, influenced especially by the work of 

Banks and Peskin and by conversations with Banks, F r i e d ~ n l ~ ~ 9 ~ ~ 1  formulated a 

collection of proposals and ideas about the fundamental formulation of string 

theory. 

The ideas of 63 included: the need for background independence of a fun- 

damental string theory; the string field as a half-density; the formal gauge in- 

variance and background independence of the the interaction vertex (overlap 

integral); the possibility of a background independent trilinear action with the 

usual kinetic term of the background dependent action provided by the vacuum 

expectation value of the field; the vacuum expectation value as the ground state 

of the corresponding two dimensional conformal field theory; the trilinear string 

field equation as a version of the conformal bootstrap equation or the renor- 

malization group fixed point equation, the solutions being the two dimensional 

conformal field theories; the crucial role of the string midpoint. 

The ideas of 64 included: the need for an- abstract algebraic string equation 

of motion without the need for an a priori choice of spacetime; the Virasoro 

algebra commutation relations or equivalently the operator product relations 

of the two dimensional stressenergy tensor as an abstract bilinear equation of 

motion expressing two dimensional conformal invariance; and the role of the 

local-global principle in string field theory, the string field equations of motion 
defining a germ of a conformal field theory expressing the local properties of the 

world sheet. 

These ideas were presented in the context of string field theory and had 

some influence on subsequent developments in string field t h e 0 r y l ~ ~ ~ ~ 1 .  They 

also provided some of the philosophical roots for our formulation of string theory 

as modular geometry (see section 8.8 below). 
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7.5 Off-shell string theory and the two dimensional rg 

In November 1985, Friedad*T discussed formulating off-shell string theory 

directly in terms of the two dimensional renormalization group acting in the 

space of two dimensional supersymmetric field theories. 

The classical equation of motion would be the renormalization group fixed 

point equation. Stochastic quantization would be performed by doing a random 

walk in the space of quantum field theories with a driving force given by the 

beta function. This could be construed as doing asymptotically long distance 

two dimensional physics in the presence of noise. 

The absence of tachyons in the classical ground states of the string is equiv- 

alent to the absence of ultra-violet instability in the corresponding two dimen- 

sional renormalization group fixed points. Thus the classical ground states are 

completely attractive fixed points describing distinct phases of the two dimen- 

sional system. If there are continuous transitions beween these phases, then there 

unstable fixed points on these boundaries. The unstable fixed points are also su- 

persymmetric conformal field theories. The unstable trajectories leading from an 

unstable fixed point go to different classical ground states. For example, these 

would be superconformal field theories interpolating between distinct Calabi-Yau 

spaces. 

When the beta function is written as the gradient of a potential, the unstable 

fixed points correspond to saddle points. The conformal anomaly coefficient c 

measures essentially the number of degrees of freedom of the conformal field 

theory, which should decrease under the renormalization so the saddle 

points should be superconformal field theories with larger values of c than in the 

classical ground states. 

Nonperturbative effects would be dominated in the stochastic quantization 

by trajectories passing from one ground state through the lowest saddle point to 

another ground state and back again. These effects of these trajectories could be 
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calculated in terms of the non-scale invariant quantum field theories associated 

with the renormalization group trajectories leaving the saddle points. The tra- 

jectories from the lowest saddle point could break degeneracies associated with 

the classical ground states, for example fixing the string coupling constant and 

breaking supersymmetry. 

The unstable fixed points would break the discrete degeneracy of classical 

gound states only if all the corresponding stable fixed points are phases of a single 

two dimensional system. The quantum ground state would be determined by the 

network of transition probabilities between the classical ground states given by 

the trajectories through the unstable fixed points. 

Distinct string theories would correspond to the different maximal non-scale 

invariant two dimensional systems all of whose infra-red stable long distance 

limits are conformal field theories with c equal to the critical value. Such two 

dimensional systems would be extraordinary, since there would be not a single 

trajectory with trivial long distance limit (mass gap). A maximal system is one to 

which no degrees of freedom can be added to give new fixed points without leading 

to some long distance limit with c less than the critical value. Gauge invariance of 

the off-shell string theory is only possible if every irrelevant direction at the fixed 

points comes from some unstable fixed point, which again would be a remarkable 

property. 

In this picture, each string theory would correspond to a single ur-two di- 

mensional field theory with infinitely many relevant parameters, all of whose 

long distance limits wod,d be the classical ground states, for example the various 

Calabi-Yau space nonlinear models. 

These ideas have had some influence on subsequent work on the renormal- 

ization group equation as string field equation of m0tionl~~1. 
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8 .  1985-86  

8.1 Supersymmetry in the twisted c = 1 gaussian model 

In our work on unitarity, superconformal field theory and two dimensional 

critical p h e n ~ m e n a l ~ ~ j ~ ~ l  we noted that the second member of the super discrete 

series, after the tricritical Ising model, had central charge c = 1, characteristic 

of the one component gaussian model (nonlinear model with field taking values 

in the circle). In the fall and winter of 1985 we completed the study of the 

supersymmetric c = 1 gaussian model by showing that it corresponded to the 

c = 1 critical Ashkin-Teller model at a special value of the ~oupling~'~1. This 

example of supersymmetric critical phenomena is experimentally more accessible 

than the tri-critical Ising model because there is a supersymmetry index which 

prevents the supersymmetry from being spontaneously broken away from the 

critical point. 

It was obvious that the gaussian model at some special values of the coupling 

has a chiral fermion field of dimension 3/2 which becomes the super-partner of 

the stress-energy tensor and gives superconformal invariance. Several of the 

scaling dimensions allowed by unitarity fit the pattern n2/24 of the gaussian 

model dimensions at these couplings. But two other dimensions, 1/16 and 9/16, 

did not fit this pattern. 

At the Santa Barbara string workshop in August, 1985, we learned of the 

work of Corrigan and.Fairlid711 on twisted bosonic fields, of the existence of 

fixed p ~ i n t s l ~ ~ l  and of the values 1/16, 9/16 for the scaling dimensions of the 

twist fields and excited twist fields. It was immediately obvious that the full 

supersymmetric c = 1 model was the twisted version of the gaussian model at the 

special, supersymmetric coupling. The symmetry of the twisted gaussian model 

is the dihedral group D4, which is exactly that of the Ashkin-Teller model, and 

its operator products also correspond to this spin model. After doing this work 

we learned that Thorn had earlier obtained a result on the six vertex model which 
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could be interpreted in retrospect as demonstrating the equivalence between the 

Ashkin-Teller model and the twisted gaussian model, although he did not note 

the supersymmetry at special values of the coupling. A number of workers have 

recently obtained similar results inde~endently.1~~1 

8.2 The Ising model fermion as Nambu-Goldstino 

In 70 we also showed that the fermionic soliton field of the critical king model 

(c = 1/2) is the Nambu-Goldstino of spontaneously broken supersymmetry in the 

tri-critical Ising model (c = 7/10). 

We noted that one of the relevant trajectories leaving the c = 7/10 tri-critical 

Ling model k e d  point preserves supersymmety, but that the supersymmetry 

could be spontaneously broken away from the fixed point, because unitarity al- 

lows no supersymmetric states of the Ramond algebra and so the Witten index is 

zero. Then there would be a massless fermion mode, a Nambu-Goldstino, along 

this trajectory and the long distance limit would be described by a nontrivial 

k e d  point. Since the number of degrees of freedom, i.e., c, is reduced by the 

renormalization grouplesl, that long distance fixed point would have to be the 

unique conformal field theory with c < 7/10, namely the Ising fixed point. By 

the Ward identity for broken supersymmetry, the Nambu-Goldstino is noninter- 

acting at long distance and thus becomes the free fermion of the king model. It 

is known from analysis of the lattice versions of these models that there is such 

a flow to  an king fixed point, and so supersymmetry must be spontaneously 

broken. This is a striking example of how supersymmetry puts rigid constraints 

on the global topology of the renormalization group flow. 

8.3 Super Riemann surfaces and super moduli space 

In the fall of 1985, Friedads? gave the mathematical definition of super 

Riemann surfaces and described their basic properties and some of the basic 
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structure of their super moduli spaces. The super Riemann surfaces provide the 

natural setting for superconformal field theory. They are the world surfaces of 

fermionic strings. The basic tools for superconformal analysis and algebra on 

super Riemann surfaces were developed: super power series expansions, super 

line integrals and contour integrals, the super Cauchy theorem and the super- 

conformal tensor calculus. 

Our graduate student, J. C0hn,1~~1 extended this work to describe the N = 2 

super Riemann surfaces which provide the setting for superstring theory, fermionic 

strings in spacetime supersymmetric backgrounds (see sections 8.6, 8.4 and 8.5 

below). Super Riemann surfaces have provided the mathematical setting for 

extending the covariant quantization of fermionic to higher l00ps1~~1. 

Some aspects of the theory of super Riemann surfaces seem to have been 

independently described by and by Baranov and S c h w a r ~ , [ ~ ~ I  in quite different 

language. Some aspects of supermoduli space and its role in fermionic string 

theory were earlier discussed by Moore and 

8.4 N = 2 superconformal unitarity and superstring compactification 

In the winter of 1985-86, Boucher, Friedan and Kend7’1 obtained determinant 

formulae for the N = 2 superconformal algebra and found the constraints on its 
representations due to unitarity. The results are the first step in classifying the 

N = 2 supersymmetric critical phenomena. They are also the first step in the 

abstract classification and study of supersymmetric string ground states as N = 2 

superconformal field theories. 

In the spring of 1985 Qiu and Shenker had obtained some preliminary re- 

sults on the N = 2 algebra, and at the Santa-Barbara workshop Di Vecchia 

and reported similar results. At this time Friedan was contem- 

plating the idea of constraining or even classifying string ground states by the 

representation theory of algebras of conformal fields. The N = 2 algebra seemed 
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a relatively accessible starting point. Candelas et uf.lall had shown that spacetime 

supersymmetry in the low energy effective field theory of string is equivalent to 

the Kahler property of spacetime, which is also the property which gives N = 2 

supersymmetry in the world sheet nonlinear model. 

The results of 79 were that, as for the N = 0 , l  algebras, unitarity singles 

out a discrete series (with c < 3), which applies to critical phenomena. But 

it also puts interesting constraints on the representations for c 2 3 which are 

relevant for string theory. In particular, unitarity forces stability of spacetime 

supersymmetry under small N = 2 perturbations of the background as long as 

the U(1) charges of the N = 2 algebra are quantized. This led to a systematic 

study of the relation between abstract N = 2 superconformal invariance of the 

world sheet and spacetime supersymmetry (see section 8.5 below). 

Di Vecchia, Petersen Yu and Zhengls21 proved for the N = 2 discrete series 

the analog of the -Goddard-OliveKent result on the N = 0 , l  discrete series, 

that all of the representations in the discrete series allowed by the non-unitarity 

results of Boucher et are in fact unitary. 

8.5 Spectral flow, N = 2 and superstring compactification 

In a continuation of, reference 79 (see section 8.4 above), Friedun, Kent, 
Shenker and Witten made a detailed study of the N = 2 algebras with boundary 

conditions interpolating between the b o n d  and Neveu-Schwarz type boundary 

conditions. It was shown that the S&-invariant vacuum of the Neveu-Schwarz 

sector always flows into a Ramond state whose corresponding spin field is essen- 

tially the spacetime supersymmetry world sheet current, as long as the N = 2 

charges are integers. This is the condition that the partition function of the 

string can be extended to the N = 2 super moduli ~pace1~~1  (see section 8.6 be- 

low). This was the key step in showing that N = 2 superconformal invariance 

of the world sheet with integer N = 2 charges is in fact exactly equivalent to 
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spacetime supersymmetry. Parts of this work were also done by 

8.6 N = 2 super Riemann surfaces and supermoduli  space 

Our student Cohn extended the theory of super Riemann surfaces to N = 2 

super~ymmetry['~I. This provides the appropriate setting for studying string 

compactifications with spacetime supersymmetry and hence is the right place to 

phrase general statements about finiteness and nonrenormalization theorems. 

8.7 Two Dimensional S t r ing  

Shenker investigated the string with world sheet N = 2 supersymmetry["l. 

He pointed out the potential inconsistency involved in dropping the zero mode 

of the bosonic partners of the spacetime coordinates. This makes it necessary 

to confront the presence of a second time coordinate. At best it seems that a 

heterotic version of such a string will have an infinite number of massless particles. 

8.8 The modular geometry of string and conformal field theory 

In the fall of 1985 C a r d ~ l ~ ~ I  produced an important piece of work, showing 

that the requirement of one loop modular invariance severely constrained the 

allowed multiplicities of representations of the Virasoro algebra for models in the 

discrete series. This immediately led uslS6l to the idea that a partition function 

well defined on moduli space for arbitrary genus Riemann surfaces might be an 

appropriate starting point for a general abstract description of conformal field 

theory. This view was bolstered by the observation that correlation functions 

reconstructed by allowing handles to degenerate would be crossing symmetric as 

a consequence of modular invariance. 

Such a description is well suited to  string theory since the specification of the 

classical ground state already contains the arbitrary genus information necessary 
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for quantum calculation. The ghosts make the partition function into a density 

to be integrated over the moduli space. Non-perturbative effects have their origin 

in some completion of the finite genus moduli space, the surfaces of infinite genus. 

A key problem was to find a way to encode the necessary degree of smooth- 

ness in the partition function to reflect world sheet locality. All conformal field 

theories have a certain amount of analytic structure, T ( z )  is analytic, but the 

general genus one partition function already shows that the partition function is 

not an analytic object. In certain simple (chiral) theories, though, the partition 

function is the modulus squared of a section of a holomorphic line bundle on 

moduli space[87]. 

The genus one result does suggest interpreting the general partition function 

as the norm squared of a holomorphic section of a vector bundle with flat metric 

over moduli space-a modular geometry. Flatness, combined with the holomor- 

phic nature of the section, gives the required real analyticity of the partition 

function. The flat metric is equivalent to the specification of a representation of 

the modular group. 

An important requirement remains to be imposed. The partition function 

must factorize This requirement can be implemented naturally by 

demanding that the modular geometry be formulated on a new universal moduli 

space, where as a handle on a surface degenerates to a node the surface joins 

holomorphically to the surface with nodes erased. This erasure reflects the trivial 

correlations of the identity operator. 

A modular geometry on universal moduli space yields a conformal field the- 
ory. Conversely, given a conformal field theory, generalized conformal blocks can 

be (formally) constructed to represent the theory as modular geometry. So clas- 

sifying conformal field theories is equivalent to classifying modular geometries. 
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