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In contrast to the short distance behavior of quantum chromodynamics 

(QCD), which is within the scope of perturbation theory and thus can be 

subjected to quantitative tes ts ,  the large distance or strong coupling regime of 

QCD is not well understood yet even qualitatively. An overriding problem of 

interest in quark confinement, and various theoretical schemes have been put 

forward to show that the quarks can indeed be confined. These schemes, though 

, varying from one to another in  detail, rely on the idea that the growing coupling 

constant at large distances plays a key role. It is not clear yet, however, 

whether confinement is a natural consequence of QCD alone, or it requires some 

independent and extraneous assumptions. 

(Introductory remarks made at Orbis Scientiae Conference, 
15-20 January 1978, Coral Gables, Florlda.) 

*Work supported in part by the Department of Energy and the Guggenheim 

ton leave from the University of Chicago. 
Fellowship. 
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Another important aspect of gauge fields is the existence of topologically 

nontrivial configurations such as  vortices, monopoles and instantons. They may 

be regarded as natural conseQuences of gauge physics. Most likely these 

configurations also a re  crucial to the understanding of confinement as  is claimed 

by a number of recent papers. For this reason I have planned this session to be 

organized mainly around the topological problems. 

My own remarks on these questions will be very brief: 

1. Action versus Free Action - _  

There is a formal analogy between statistical mechanics and the Feynman 

formulation of 'quantum field theory, which seems to become especially relevant 

in gauge theories. This analogy was emphasized by the Princeton group' who 

made use of the concept of entropy. Let us write down the Feynman integral (in 

the Euclidean form) for a gauge field 

where the coupling constant does not enter the definition of F 

measure is not clearly defined, but we intend to integrate over the A P without 

imposing.specia1 gauge conditione. 

corresponding phase space volume which we write, symbolically as exp S : 

. The functional 
P V  

For a given value of the action, there is a 

Z =/exp [ - TI,+ 1 S (I)) d1 
g 
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Let us call 0 free action in contrast to the action I. In principle, we 

should minimize 0 rather than I, and this difference could become important 

for large g2, which plays the role of temperature. 

This statement takes on a real significance when the topology of gauge 

fields is considered. Suppose w e  s tar t  from the lowest value of I ,  i. e. the pure 

gauges: F = 0,  I = 0. This part of phase space can be parametrized by a 
I*V 

unitary matrix field u, 

+ + 
A = i u a u ,  U U = I  

P I* 

The field u, however, may be topologically non-trivial. For example, choose 

i n  the case of SU(2) theory. Then u becomes singular at the origin, and F 

I cannot be identically zero since the Pontrjagin index 

and 
P V  

is computed to be nonzero. Thus we might say that pure gauges are  not a well 

defined concept, or the entropy cannot be defined for given I, a t  least not for 

I = 0. There seems to be a sor t  of uncertainty principle between I and S due to 
2 topology. Clearly this is related to the Gribov problem and Singer's 

observation of its generality. At any rate we are  forced to enlarge pure gauges 

to their neighborhood which I will call almost pure gauges. It is conceivable 

that for large enough g the gain in S by including various topologies can out- 

weigh the cost of larger!I, thus actually owering the free action. Then the 

topology-averaged field configurations which minimize the free action may 

3 

2 
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deviate substantially from the naive classical configurations which minimize 

only I. 

2. A class of almost pure gauges. 4 

It is both natural and convenient to consider the following clase of almost 

pure gauges 

(5 1 
+ A =ifu Bu 

P 

where f is a scalar  function which vanishes a t  the singularities of u. The 

topological characterization of a singularity will not be altered by this if f -1 in 

a region surrounding it. From Eq. (5) we obtain 

It is not surprising that this class of configurations cover varioua known 

examples of nontrivial topology such a~ instanton. meron. monopole, and string. 

A more interesting point is that w e  can generalize a. (5) further as 

(7) 

The many-instanton solution of I t  Hooft (in the singular gauge) is indeed of thie 

form. Furthermore, Eq. (7) can be written as a London relation 5 

N 

+ J. = ihiui  D u 
1P P i  

where 

D u = 8  u + i u A  
P '  P P  
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f t  and hi are related by 

fi = Ahi / ( l  +AEh ) . (9) 1 
Then a simple superposition principle holds fo r  the  currents J 

many instantons, and the total current is conserved: D J = 0. It might also 

be instructive to observe that Eq. (8) can be further simplified if J is defined 

in terms of a 2 N x 2  rectangular matrix U: 

to generate 
iC( 

c c P  

cc 

U =  X@hi Q ut (assuminghi,O), U + U = ( Z h i ) l ,  

(10) J =- [ U+(DccU) - (D,U+) U] . 
cc 

U has a guaged SU(2) symmetry acting from the right, and a global SU(2) xSN 

symmetry acttng from the left whlch may be generalized to SU(2N). These two 

are independent, like color and flavor. 

3. A remark concerning the Wilson criteria. 

The Wtlson criterion is widely used to test the confinement property of a 

theory. In the context of functional integration, one evaluates 

( W ) = Z  wi Pi  I 

W = T r a p 1 1  ?Y%dxccl (11) 

where pi is the weight of a configuration 1. In general Eq. (11) is expected to 

yield an asymptotic form 

(W) - a e x p I - A L ] + b a p I - p L n ]  + - e ,  n > l  (12) 

where L is the linear dimension of the Wilson loop. What I would like to 

emphasize is that to prove confinement, one must f i rs t  show the absence of 

configurations contributing to the f i r s t  t e r m  rather than the presence of 

configurations contributing to the second term. I suppose that the former task 

is more demanding and difficult than the latter. 



- 7 -  

REFERENCES 

1.  

2. 

C. Callan et al., Phys. Lett EB, 375 (1977). 

V. M. Gribov, Lectures at the 12th Winter School of the Leningrad 

Physics Institute (1977). 

I. M. Singer, Berkeley preprint (Math. Department), 1977. 

See also Y. Nambu, Cal Tech preprint CALT 68-634, 1977. 

Y. Nambu, Annals of the New York Academy of Sciences 294 
(Five Decades of Weak Interactions) p. 74 (1977). 

3 .  

4. 

5 .  


