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I. INTRODUCTORY REVIEW

At the Istanbul Summer School in 1962 I gave lectures on
"Chiral Symmetries in Weak and Strong Interactions."l Tt is
only recently, however, that the basic ideas that were started
several years ago have begun to bear fruit. We will cover in
the present lectures more or less the same general field, but
certainly there will be a lot more results to be discussed now
than four years ago.

First, let us start with a brief historical review. The
concept of chiral symmetry (or s invariance) originated in
the univérsal V-A theory of weak interactions by Feynmann and
Gell-Mann,2 and others.3 This theory assumes that the basic
Hamiltonian density for weak interactions ig of the current-
current type

H =.EQ s (J (n)J H(m) h.c.) .y
v2 n,m M .
where n, m run over basic lepton and hadron fields. This is
analogous to.the electromagnetic interaction between charged
particles after the electromagnetic field is eliminated.

The current j involves only the left-handed components
of basic fields. By basic fields we mean (e,v) and (p,v')
pairs for the leptons, and some fundamental hadronic field for
baryons and mesons. A great progress has been made recently

with regard to the nature of the last one. We can assume, as



the simplest model, that this fundamental field is the quark Gii
triplet5 q = (ql’ qps q3) which replaces the old Sakata trip-
let (p, n, A).

The strength of the quark model is that it leads to a
number of correct predictions in strong, electromagnetic, and
weak interactions in comparison with some other models. One
way to characterize different models is, as is now Well known,
through the commutation relations and other algebraic properties
of currents. An interesting investigation of different models
along this line was done recently by Okubo . There are of
course some difficulties with the quark model if we regard
quarks as real objects. There are also some models which avold
these difficulties but are otherwise similar in many predictions.
It is certainly a very interesting and important problem to
test various models in their predictions. We will, however,
not attempt it here, although there will be some discussion of
models which use phenomenological fields rather than fundamental
fields. This is only for the sake of conveniently representing
the symmetry properties of real hadrons, and should not be con-
fused with the question of what the fundamental fields are,
which in my opinion belongs to a different level of physics.

The fundamental fields we utilize are all Dirac spin 1/2
fields obeying Fermi statistics. (Here again there are other
possibilities which we will ignore.) The left- and right-

handed components of a Dirac spinor is defined by
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1
7l’R =5 (1'75)7:0
Y5 = Y1VpYsYy = Py (2)
A current j 1is then of the form
J-u =

1y, (I+yg)y = 19" (1-vg)v, ¥

= 1 (1+vg) v 1,0, ¥ = ¥y

(3)

Since this is not a lecture on weak interactions, we simply
state that the currents j

are all charged type

¢ (ve), (v'w)
for the leptons, and the Cabibbo mixture Elq2c0s9 + 3705 sin®
for the hadrons (sin®

0.21) > We are ignoring the problem

of well known CP violation as well as the possible existence
of neutral (2Q

= 0) and AQ = -AS currents.

One of the consequences of the universal current-current

theory is the non-renormallzation (equallty) of all allowed
AS = i

O Fermi (vector) transition amplitudes, which should be

exact in the limit of zero momentum transfer and strict 1sospin
. 2
conservation,

This is well established between the u — e

decay and n - p decay amplitudes to within the somewhat uncer-
tain electr

omagnetic correction and the Cabibbo factor cosb
This non-renormalization is, as is well known, due to the cur-
rent conservation:

Q

. AS=0
J,, " 35
axu L

=0
of the vector AS

(%)

0 part of the hadronic current since its



current density. Note that ﬁii

isotepi

]

fourth compornent iz th

]

i

Eq. {5) is a dyrarical statement meaning that the strong
interactidn Hamilteonian commutes with isospin, Technically
we can use the Ward identity, like in electrodynamics, to |
prove that the renormalization factor Gv/GO cosf. = 22/21 = 1,
Now turning to the axial vector (Gamow-Teller) part of
the current, jA, we cannot easily make a similar argument sinée
it is not obvious that the axtal vector charge (chirality)
E”vuySW = —w+plw is a conserved quantity. Nevertheless, the
near-equality of Gamow-Teller and Fermi constants in nucleon
B decay: - o/ Gy = 1.186, stimulated this conjecture of chirality
conservation. It appears, however, that there is no necessary
connection between non-renormalization and conservation in the
case of axial vector current. On the other hand, it turned
out that the so-called Goldberger-Treiman relation could be
"derived" from such an assumption independently of detailed
dynamics. Let us briefly éketch the argument.
Take the matrix element of the axial vector current

3 Az p o i%’yuy5w of a spin 1/2 particle. TIts general form

M V8
is

<p'lAulp> =1 ,Guu

p p’

G, = Tvpvgth + vsq.Gp + Y59,,8,G55

q = p'-p 5
- Wwhere u_, up' are the initial and final spinors; Gl’ GE’ G3

are real form factors which depend on qg. This result follows ‘ii



from Lorentz invariance including parity and time reversal.
Under charge conjugation C, however, the first two terms are
even, and the third odd. If C is a good symmetry, then the
odd term (second class current) must be zero. This is true

of course only if the CP violation is ignored. Now the con-

servation of a, means auau = 0 or
q <p'la ‘p> = U, (1yeqyeG +720°G,)u,. = O (6)
u i p' 51 T T2/ p '
whether G3 = 0 or not. From the Dirac equation
(iy.p+m)up = ﬁp,(iy'p'-m) =0 ’ 7)
follows that
up,ly - qv5up = =-2nm up,y5up.
So Eg. (7) will be satisfied if
2.2 '
=2m Gy + 975 =0 8)
Eq. (6) becomes thus '
. 2 2
e — A .
My T [1'}’“ /5 + 2m 'qup/q ]Gl/q (9)

We have essentially only one form factor Gl(qg). The second
term of Eq. (9) is called the induced pseudoscalar term, which
is proportional to the gradient of a pseudoscalar density.

In the above argument we ignored isotopic spin, but it is
clear that Eq. (9) will hold between any two states p and p'
provided their masses are equal. (Then the G-parity will be
used instead of C regarding the question of GB')

Let us pursue the consequences of Eq. (9). For B decay
%)

(proton = neutron) q2 is small, and Gy(g aGQ(O) is equal to



1.18. In this static limit we have @
. 2
l'Yu"Y5 + EmN'Y5qu/ q

2
-0,v(Byma,9,/a%)s b, v = 1,2,3

-iGo(p+p')/2mN , po= 4,
The spatial part is the main term, but it contains a large con-
tribution from the induced pseudoscalar term, cancelling com-
pletely the longitudinal part of the Gamow-Teller operator o.
Such an effect 1is not observed in B debay.

We run into a more drastic trouble if we apply the same
argument to wmuv decay. The relevant matrix element <O‘au|ﬂ'(q)>
<><'qLL must vanish i1f quau = 0. Therefofe, strict axial vectro
conservation must be ruled out.

The reason for the above large correction for B decay is
that the induced term has a long range from factor ~ 1/q2,
which can be produced only by an exchange of massless pseudo-
scalar field between nucléon and lepton. No such particles are
known to exist, but we know that there exlist pseudoscalar
mesons (pions) which couple to the nucleon source. These mesons
will contribute to an induced term with a characteristic factor
l/(q2+mW2) instead of l/qg. More precisely, the contribution
from the pion pole to the weak axial current (GO cosOA/2) <n,au‘p>,

between proton and neutron 1is

NN V5

v
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where V2 ErnNN g and -gwqu represent the ccupling of the piop to
nucleon and the external field (lepton pair) respectively. Thus
if we make the assumption that the criginal l/q2 term is a hypo-
thetical 1limit m. - O of this pion contribution, we obtain by

comparing Egs. (9) and (11)

2my Gy (0) G cosbA/2 = 2my GAﬁ/é (12)

&N &1 = 0

This is the Goldberger-Trieman8 relation which relates

J4m = 14,6), G, (= l.IBXIO_S/mpg) and g, the 7 - uv

gWNN(gvgNN A
decay constant. Originally it was obtained using simple dynami-
cal assumptions and dispersion relations.

Because in actuality m. # 0, the real axial vector current
cannot satisfy <n’auau,p> = 0 (unless Gl(qz) nas the form
[qg/(q2+mW2)] Gi(q2), G4 (0) # 0, in which case, however, G, (0)
= 0 or GA = 0, 1in contradiction with 8 decay. Thus auau ~ 0
only to the extent that mw2 can be' ignored compared to Other
parameters such as q2 or mp2. In this sense it is known as the
partially conserved axial vector current (PCAC) hypothesis. To
show this situa*ion more clearly, we use here a formulation due .
to Gell=-Mann and Lévy.9 Take the isotopic axial vectodr current
aui = fayuy5riq. Its divergence 'auaui
numbers as the pion field ¢i. This is true at least if there

has the same quantum

are no hidden quantum numbers that can distinguish them. Then

we can use E;uaul as the definition of pion field after proper

normalization

8uaui(x) = ot (x) (13)
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where C is a constant. It is determined by the condition that

the asymptotic part, or the Fourier component at q2 = —mﬂg, of

¢* has the properly quantized value for a free meson field.

Now the pion-nucleon coupling constant . is defined by

2

SNy H2y511u1 = (g +mvg)<2[¢1'l> (taken at the extrapolated

value q2 = -mve), but from Eq. (13) this is also = -(l/C)iqLL
2

(1/8) 757y (g

Il

D .
<2,au'l> +mv“)[Gl-q2G2] by using Eq. (6).

Taking the limit g° » O (instead of q° = -m_°), we get
>
gWNN(O) = 2my m_ Gl(O)/C
or
_ 2
C=118m /fWNN(O>’
where
Eonm(0) = &myy(©)/2my (14)

In a similar fashion, the 7 - uv decay constant is defined
by -g,q, = Go(coseﬁJé)<Olaullwa> V2E  so that using (13),
—gqu = -mv2 g = GOC(COSG/J2)<OI¢1,W1> V2E_ = C GocoseﬁJé. This

time &or 1s defined at q2 = -mvg.
Thus
- 2
C =~2m" g /Gycosb (15)

From (1%) and (15) we obtain the Goldberger-Tremain relation (12),

provided that g 0) is used there. Note that Cec mwg, meaning

WNN(
that auau = 0 in the limit m_ - 0. In this formulation, there-
fore, one would not have obtained any useful information had we

put m_ = O at the beginning. The definition (13) fails to define

the pion field. Here it is important to distinguish between

®

w



9.
. 2 . . 2
external pion mass q and internal pion mass m..

This trouble may be avoided if it is possible to write down

a (x) = a x) + % 8u®i(x) (16)

where the right-hand side is expressed in terms of phenomeno-
logical fields, au'l being appropriately defined currents for

baryons and other sources., The condition

auapl - auap'l + % Q¢ = o (17)

serves both as a conservation law and as a wave equation for

massless pion with coupling strength f. If m. # 0, the wave

equation becomes

2
m_

auaul = —%— ¢t = cot (18)

which is equivalent to Eq. (13), with
£ =1 n(0)/G,(0) = Gocoseﬁf? g (19)
In the following, we shall often use the notations of Egs.

(18) and (19). Experimentally
f = GOCOSG/JE g, = GN2 g = 1.05/m_
-~ and

£y (m,)/Gy (0) = 0.8 /..
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II. INTERPRETATION AND CRITIQUE OF PCAC RELATION

There remains the question of interpreting and justifying
the PCAC hypothesis on a theoretical basis. We will discuss it

from various angles.

1). First look at the Gell-Mann-Levy ansatz 'auaul = Co~. As

we have remarked already, this in itself should be considered a

definition rather than an assumption. It is known that there is

no unique way of defining a phenomenological field for a particle.

An appropriate local operator like EBuaui will do if it has the
right guantum numbers and is properly normalized.lo We could,
for example, also use iay5riq with equal justification. Dif-
ferent definitions of a field agree by necessity on the mass
shell of the particle, and may differ only as we go off the mass
shell. Unless we know precisely what a pion field is (e.g., we
know what a bare pion field is in the fundamental Lagrangian),
there is no unique way of defining ¢i. Now it so happens that
the pion is the lightest member of all hadrons, and especially
the next states having the same quantum numbers are 37 configu-
rations with mass > 3m_. These belong to the off-mass-shell

)2 = 1/9 is
small. it may be reasonable to expect that near the pion mass

shell 0 & ¢2 S m £, the ambiguity, if there is any, of q° depen-

contributions. But since the mass ratio (m_/3m_

dence will not be great. This ambiguity would show up in what

we mean by g.(0) in Eq. (14) since it is an extrapolation from
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'Gii the unambiguous mass shell value ngN(qe = -mvg). Their differ-
ence involves contributions from higher states if we write down

the dispersion relation for ngN(qg):

(1/¢) (¢®+m 2)[F, (4°) - a®F,(a°)]

2
2 2 2 , K 2
- goy(-m ) + (Bm?) [ BAEL e (20}
: s A +K
9m7T
Thus the PCAC assumption actually means the assumption about

13

the smallness of off-mass=-shell deviations.

2) According to the first interpretation, PCAC was an accident
in the sense that m. happened to be small compared to all other
hadron masses. Thus the same idea would not work nearly as well
for K mesons, where the q2 extrapolation ranges 0 < q? < mK2,
My, = 500 Mev, and the next state 7m has m > 780 Mev. A more
radical view is that m. is small not by accident, but for good
reason. We have seen that if we let m_ = 0 (not q » 0), then

uey = 0 according to (1%) or (15); or we could have postulated
it as in (17). So two things must go together: a, is conserved,
and there exist massless "pions".

auaui = O means that the Hamiltonian (at least the strong

interaction part) commutes with isotopic chirality

’Xi; j;,ai(x) a x (21)

6ii and this in turn suggests that ){l is a meaningful operator of
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o

certain symmetry under which the Hamiltonian is invariant. If

we use the quark representation, this operation
jx} _ + i 3 »
==-/apPT aq d7x (22)

means that the left-handed and right-handed quarks are given iso-
topic rotations with opposite phases. Together with the ordinary

isotopic rotation

i + 1 3

I~ = q TTq d°x (23)
the combinations

x:t - (Ili_/xil-)/g (24)
correspond respectively to isospin rotation on left-handed and
right-har.ded components. The corresponding group 1is SU(E)L

x SU(2) Since all hadrons are made up of quarks according to

R*
our fundamental assumption, Eq. (24) defines chirality trans-
formation for all hadrons. The fundamental Hamiltonian, involving
only quark fields, must somehow have the property that if we
ignore certain small terms, it becomes invariant under the
operations (Qﬁ), and at the same time the pion mass will come
down to zero, but no other dramatic change will take place.

This is a very strange requirement, and does not look at
all easy to realize. Perhaps it 1is unnatural, and the last
interpretation above is the more reasonable one. But the fact

is that it is possible to set up model systems which do satisfy

the required conditions. We will postpone the detvails of such
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examples to a later section. Here we point out some features of
axial vector conservation.

a). Even if X} commutes with the Hamiltonian, physical
eigenstates of H cannot in general be eigenstates of 7Li. This
is because, first of all, :Ki is a pseudoscalar. So for example,
a nucleon at rest, or a pion at rest cannot be an eigenstate.

(Of course in our limit the pion will be massless so one should
take an S wave packet.) At any rate, j(i can still commute with
H if, for example, CL} has eigenvalue O, or there are degenerate
states of opposite parities. 1In fact there might exist a scalar
o meson into which Wi will be transformed by ixi. The nucleon
might be coupled to the Sll resonance by 7(1. For quarks them-
selves, also a similar situation should exist. (If quarks are
massless, they can be eigenstates of')(i.) Another possibility
makes use of the concept of degenerate vacuum, as will be treated
later.

b)', The amount of mixing of other states under the operation
X} depends on the state of motion. For example, take a single

bare massive guark.obeying Dirac equation. We have
<U> = - <pyT> = - <o vr™> = - hort (25)

where h is the helicity <o*p>/ p . The Lorentz transformation
enhances positive helicity component over the other, and as

v— 1 only the positive one surviwes. Thus ji? becomes diagonal.
For real quarks and baryons there will be a cloud of (bare)

quarks and antiquarks moving inside, relative to each other, so
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the situation will be more complicated. But it shows the advan-
tage of formally dealing with particles with infinite momenta
in considering chiral symmetry.

c). The extension of chiral symmetry to SU(3) 1s of course
a natural step. We will then switch off the K and T masses as
well, which is a more drastic approximation than switching off
the pion mass. The relevant SU(3)

L
among others, by Gell-Mann11 and by Marshak et al.

x SU(3)p group was considered,
12 There 1is,
in addition, one more chiral transformation which is possible on
the quark field. That is the simple s transformation corre-
sponding to Eq. (1), and goes with the baryon number group to
make U(l)L x U(l)g. The SU(3) singlet pseudoscalar meson
associated with this axial current may be the N'(960). If this
is the case, however, it must be a very bad symmetry since the

N' mass is so high., It is a curious fact that the simpler symme-
try should be the more approximate one, although it 1s again pos-
sible to cook up a model for this. (At any rate the large split-
ting between pseudoscalar octet and singlet, which does not seenm

to be the case with vecter and higher mesons, cannot easgily be

understood in the quark model, )

2) We have mentioned two possible views of the PCAC. Can we dis-
tinguish between them? What other predictions will they lead to?
We do not know a satisfactory answer to these, but is rather clear
that the two are more or less equivalent as long as we consider
only a single current operator, namely a single vertex function

which involves conly one pion. There may be differences if we

w
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consider correlations hetween more than one current. As we
switch off the pion mass in each current one by one, we run
into the problem cf non-commutative infrared pions. Namely

the result of switching of of pion masses involved depends on
the order in which the limiting processes are carried out, and
whether we take qg'* 0 or m_ 0, etc, This iz understandabtle
since we canriot apply the earlier argument for the insensitivity
of matrix elements on q2 or mTr2 when there are other scft pions
in the process. The detailed behavior of these amplitudes will
depend on more than just the ordinary PCAC asgumptions. The
current commutation relatiors will of course play an important
role in this respect, but more dynamics will have to be invoked,

especially for cases with three or more pions.

ITTI. MODELS OF CHIRAL SYMMETRY

Before we embark on practical applica*ions of PCAZ relations,
we would like to look into some model Hamiltorians having chiral
symmetry. This may not be necessary if we take the standpoint 1)
of Section II. But we get more insight doing this, especlally in
dealing with many-meson problems. Also it provides us with a gene-
ral way of finding currents}satiéfying the chiral commutator alge-
bre which we can retain even if the currents are not conserved in

reality.
The first problem we have to face in such an attempt is

that the mass term . Y¥ of a Dirac field violates vy, symmetry

5
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since 1t mixes left- and right-handed comporents:

W= v esY = ¥ g+ Y U

Different models solve it in different ways.

1) Gell-Marn-Lévy type modlel.g’13 Consider quark field g, and
a 3 x 3 complex matrix meson field‘)ylof mixed parity which cper-
ates on g. (The meson-baryon system is more Complicated, but it

does not change ths essentials.) The Lagranglan is given bty
- T + . + + ot
I— 4 1%, 9,9, + 9 g%, 9,95 + 8(a gMay, + d M ag)

2

+ X Tr au)’)’f“ auyrh— -Lig—— Te NN (26)

2

This will be invariant under U(B)L X U(B)R if we define the transz-
formation prorerty by

ar, 2 Ugdr» dg > Ugdp

m - URMU+L (27)

where U is a constant U(3) transformation nmatrix

8 ]
U, = exp[l £ «a,1231]
L 1=0 I ’
8 N
U, = exp[i Z aR1X ] (28)
2 T 1=0

Eq. (27) 1s always possible since no condltion is imposed on ”Q,
: i
- It indicates that M=_ (mik) must behave like- mk ~(3R ,BL*}

with respect to the indices i, k. Under ordinary U(3), we have

+
[ » 80 we

Up, = Ug, 8O 7”—»'U)nU+. Inder Y5 U(3), we have Up = U

w
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have M- U MU', 1In infinitesimal form, this means

8M = ifa-A, M] (U(3))
5M = -ifa- A, M) (v5U(3)) (29)
Writing )7? as a sum of Hermitian and anti-Hermitian parts:
m - i
=S + 1iP = 130 A Sy + i Pi’

we find that S and F behave as scalar and pseudoscalar respectively,
with the transformation rule
6s ifas?,P) (U(3))

[a'}\lP}, oP = '{a' 7\,8} ('YS U(B)) (30)

ifa-A,S8], 6P

S

The Lagrangian (26) becomes, in terms of S and P,

- -5 k! Ty AL
< - av, 9,9 + &(ar 3Sy+iqygN 1Py )

1 -
+ 5 9,51 9,51+ 3Py a.upi)

2
T ‘ y
+ = (S484+P,P) (31)

The conserved currents are:

i - i i i 1 i
ot = fay a5 T8, N, M- 5 TN, M9, N

gy e + 17,5, 813,8) + 11,3,P [, P)

ot = fanvgta - 3 e Mot - § 08 mb g Mm

_ = i O i
= iqy,vsN'a + T, 0,8(A",P} - T, 3 P(A",8] (32)

The bare quark mass must be .zero, but the bare meson mass need

not be zero. We can create quark mass m # O by putting in a bare



18,

mass term myqq so that

. 2m .
i = i _ _ 0 _ 1
W3y = empavshTg = z (0 -y ) 5

or we can assume the real vacuum to be of such a nature that
<s°(x)> = const # 0, so m = g<s°>, and aul splits into two

parts:
i i o] i i 2m
= g ! - - 1 e ==
&y " 2<8 >auP au = 9 P

In the case of U(2); x U(2)g, we can restrict ourselves to

L
a2 x 2 matrix->72 operating on an isotopic doublet g or wN'

N and Y will behave as (2,2%) and (2%,2). Because 2 I 2%,

we obtain two separate real quartets, one consisting of a pseudo-

scalar isctriplet and a scalar isosinglet (Wi,c), and the other
consisting of a scalar isotriplet and a pseudoscalar isosinglet
i

(r=',0')., The former 1s the simplest assignment for the pion in

the context of SU(2). x SU(2),, and was considered by Gell-Mann

R’
and T&vy.® This group is equivalent to So'h).

There 1s a different possibility in a model of this type.
Instead of -7Tland 771%, we may define Hermitian matrices 77%3

and -7%% which transform as
+ + .

My - U M, My = U 1505 (33)
and couple to qguarks like

\ +

1f(qL Y, %7771.% + qR Y o }anR The /'s then
belong to (8,1) + (1,8) rather than (3,3%) + (3%,3), At the
SU(2) x SU(2) level, the pions will belong to (3,1) + (1,3).

This model, however, does not provide a natural relation between

v
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quark mass and the mesons. As soon as the quark mass is
created, mesons of the (3,3*) type will be induced.

1k

2) Nishijima-Gursey type model. We can subject the meson

matrix 'znix) to the unitarity condition

NN = const =1 (34)
without spoiling the transformation law (27). Eq. (3%) may be

satisfied, fcor example, by setting

8 Ld
)71 = expf = K3¢i] (35)
1=0
or
8 -
m=-n+ir s Mo)/a-1c 5 Ay (352)

where the ¢'s are 9 pseudoscalar fields. (If we want only
SU(B)L X SU(B)R, 8 fields are sufficient with the form (35).

This does not work with (35a), nhowever.) Then

— + + 9t
- f:: Q'Yuauq + mo(qR qu + qL 77\. qR)

1 +
+31.9M e, M (36)
By expanding 772 in powers of ¢i, we find that 1t 1s a highly non-

linear system, of which the lowest order terms are
1 226 .06 + (37)
2 u n u n [ B )

In this model, we do not need independent scalar fields, but the

¢'s must undergo a complicated non-linear transformation in such



a way as to satisfy (27). The conserved currents are also non-
linear.
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Recently M. Sugawara posed the questicn of constructing
vector and axial vector currents which satisfy the Gell-Mann
algebra but are expreszed in terms of pseudoscalar meson (and
baryor.) fields only. The Gﬁrsey—Nishijima—type model merntioned
above of course passesses currerits of this nature, but he con-

structs, working from the commutation relations, the following

form of axial charge for pseudoscalar mesons:

(85),° =% (I),° + £(snp) P (38)

Here ¢ and I are the meson field and its canocnical conjugate,
each being regarded as a 3 x 3 matrix (nonet of mesons).

The wvector currents are of course glven by the usual expres-
sion
b

)g” = 1(¢0-T0) " | (39)

It is easy to verlfy the commutation relatlons among ¥'s and a's.
However, singularities due to the non-linearity of 8 makes these
relatlons somewhat superficial. Turning Sugarawa's question
around, we may ask: Is there a Lagranglian that willl lead tc
these conserved currents? J. Croninlu has studied this problen,
and has found that the Lagrangian (36) with the choice (35a) of
YL 1leads exactly to the Sugarawa form of meson currents,

Whether this Cayley form is physically more meaningful than the

exponential form (35) 1s not clear,




3) Marshak-Okubo type model.'® 1If the quark is the only funda-
mental field, we must write down the fundamental Tagrangian in
terms of g. A typical one is the Heisenberg type ndén-linear
model

- f = apY, 9,9;, * 9RY, 2u9g + M (agy,ap) (agy,ar)
+ (agv,a5) (ag7,9R))

= ay, 9,a + M(av,a)(av,a) + (av,vsa) (av,v53)]

(%0)
Since ar, and qp are completely independently of each other,
there 1s no communication between them. The communication must
be established, for example, by a "small" bare mass term which
will break U(B)L X U(B)R. Actually, &£ possesses a larger
symmetry, but its real significance is not clear. As this is
only a model, perhaps we should not attach too much significarnce
to the particular fcrm of interaction, especially since we do

not know whether the real hadrons actually can dyramically arise

from such a Lagrangian.

L) Spontaneous breakdown of chiral symmetry. Adopiting the
quark model as we do, it is clear that no bare mass is allowed
if exact chiral symmetry is to hold. If quarks exist as par-
ticles, however, they are probably very massive; at least they
cannot be massless, On the other hand, we have approximate

axlal vector conservation where the only visible violation i1s
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symbolized by the pion (and «,TN) mass. So the question is
whether a large real quark mass is compatible with a small vio-
lation of y5 symmetry,

One answer to that question 1s the concept of spontaneous

16

breakdown, It means, essentially, that the system is dynami-
cally unstable against a small perturbation , such as a bare

mass term, which breaks the 75 symmetry. Thus if we introduce
a bare mass my, it will create a finite quark mass m which, in

perturbation theory will be

_ . 2 3
mo=my + Cymy + Comy© + Calg” + vo (41)

where C C .s0oy depend on the interaction constant. If this

1’ Ve’
expansion converges, then m— 0 as my = O,

However, it may not converge for any finite Meys and there
are examples of this. One is the energy gap (which corresponds
to m) in superconductivity. In such a case, the successive
terms of expansion become larger and larger, so the system is
unstable against forming a finite mass, or tends to create mass
spontaneously. We have to treat the problem in a different way,
namely first guess the final answer, and then see whether it is
is self-consistent. The expansion should be done not in terms
of my but in terms of assumed m (like in renormalization theory),

and the self-consistency takes the form

m = mO + C lm + C lmg + C lm3 +

1 5 3 ees =My + mF(m)

(42)

where F(m) will now converge. Then in the limit my = 0 we can

v
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.get a trivial solution m = O as well as a non-trivial one

F(m = 0, my # 0, For a small finite My, M will deviate only

1)
slightly from the equilibrium position my . The solution my
however, is not unique when my = 0. This is because in this
limit there is no communication between qr, and ags conse-~
quently the phase difference between them loses physical meaning.

Of course a mass term

mdq = m(ay ap+ap ag)
of the real particle will change into

m(qq cos2a + iﬁyBQ sin2a) (43)
under the 75 phase transformation

a, > exp(ia)a, ap > exp [-1alag,
but it does not mean parity violation. The parity operator must
be redefined after the s transformation.

The phase a can be fixed only by the phase of the external
perturbation My first give a phase a to My s and then let my = 0,
we obtain a finite mass term with a definite phase a as in Eq.
(43).

This continuous degeneracy of solutions 1s associated with
a corresponding degeneracy of "vacuum". It turns out that once
a phase is chosen, we pick up a particular vacuum state, and
starting from it we get a complete set of physical states.
Solutibns with different phases cannot coexist, namély they

belong to different physical Hilbert spaces.
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The situation is similar to ferromagnetism where there are
an infihity of ferromagnetic states with different orientations
of magnétizaﬁion, The orientation cannot be changed from within.
Only an external force (like magnetic field) will do it, which
breaks the isotopy (rotational symmetry) of the system. In
superconductivity, the phase a corresponds to the phase of the
macroscopically occupied Cooper pair states., This phase is
unobservable in a single superconductor. But disconnected super-
conducting regions (different "worlds") may have their own phases,
which show up when communication is established between‘them,
like in the Josephson effect.

The degeneracy of vacuum is accompanied by the existence of

16,17,18 This

acoustic~type (massless) excitations, or zerons.
statement is the context of the so-called Goldstone Theorem. It
corresponds to assigning a phase a(x) in the mass term which
changes from place to place instead of being a constant. The
corrésponding ground vacuum state will now be modified (exéited)
by virtual creation and annihilation of pairs due to the oscil-

lating part of a. Choosing <a> = 0, we have, according to (43);
the effective mass term in the Lagrangian becomes

nda + 21Gygaa(x)
for small a(x). From this we see that the excitation coupled to
a(x) is a pseudoscalar. Also we can argue that the excitation
must be massless from the fact that in the long wavelength limit,
a(x) - constant, the excitation energy becomes zero because of

the degeneracy.
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Gii This massless excitation is the analog of the "backflow"
introduced by Feynman19 in discussing the motion of excitations
in a superfluid. The backflow re-establishes the overal con-
tinuity of matter when an excitation is set in motion. In a
similar way, when a massive quark is accelerated, it emits a
massless pseudoscalar excitation ("pion") to re-establish the
conservation of chirality so that the continuity equation

uaLL = 0 is maintained, even if a massive quark alone 1s not
Y5 invariant. It is the quark plus the surrounding medium that

has to honor the symmetry of dynamical equations.

5) Derivative coupling model. Take the Lagrangian
-j='civ 3,a + midq + ifqy, verg o, ot
Hu 0 H'o M
1 i i
+3 9,9 9,0 ()

The mesons are massless, and have derivative coupling to the

quarks, or for that matter, to the baryons too. SZéis invariant

i i .
under ¢~ — ¢~ + const., so there is a conserved current

i .= i 1 i )
a = = 1qyu75% q+ F au¢ (45)

the divergence of which just amounts to the meson equation:
i i . =
f = =0 46
d,2, =0¢ + 9, (ifay,v5q) (46)
Interestingly, the bare mass of the fermions need not be
zero since they do not take part in the symmetry operation.

From this we realize that the symmetry group is not SU(B)L X

6ii SU(})R. [It is a semi-direct product of SU(3) and a displacement
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group.] Since the correct group structure appears to be SU(B)L
x SU(3)g from the test of current commutation relations, this
model may not be of interest. But Eq. (45) is a convenient way
of effectively describing the content of PCAC from the second
viewpoint of Section II when only matrix elements of a single
‘current operator aui are considered (but not products of cur-
rents). In this case one interprets (45) as being expressed
in terms of renormalized operators. Thus, in dealing with
nucleons and pions, we replace it by

2, = 61 (0) Tpy, v5T Uy - 73,0, (¥7)
(wr, etc. stands for renormalized operators.) f 1is equal to
f#NN(O)/Gl(O)’ and clearly the first and second terms are
responsible for the primary and induced pseudoscalar terms of
‘the nucleon current vertex G, Eq. (9). 1In addition (47) con-
tains an asymptotic meson part '(l/f)‘au¢ri which determines

the 7 decay amplitude g = Go/f.

IV. CONSEQUENCES OF PCAC RELATIONS-~FORMULA FOR SOFT

PION EMISSION

First we will discuss the consequences of the PCAC hypo-
thesis in problems where only one pion (pseudoscalar meson) is-
involved. As we have seen, there are two interpretations of
PCAC, and correspondingly two derivations of the result, but

they are not really different. The one version assumes
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essentially the chifality conservation to be exact (mv = 0)

apart from specific violation terms, while the other relies on

the relation ‘auaul = CpT. Let us try both of them.

a)20,21 We write the total Hamiltonian as

H = HO + H!
where

(XT, Byl =0, ()Y HAO
Then .

1Xt = Xt )
so that ' o :

Xi out _ Xi in _1 f [Xi(t), H'(t)]dt=s-lxins
or -

Xt g gxlino ss f [ X)), H(t)]at

- (48)

where S is the S matrix. ;(in and ;rout contain, among other

things, baryon and meson parts:
in in in
X = Xg &+ XM )

and
3

X

i,in
Xz
XMi,in =%/¢i,ind3x (49)

according to Eq. (47).

-~ — i 3
‘-71 (O ) wBin'Y)_;'YBT wBlnd

i,in

The meson part ;(M corresponds to a process in which a

soft meson (k = 0, ky— 0) is emitted or absorbed. Thus Eq. (48)

Ay
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-

leads to a relation between an arbitrary process A— B and a
radiative process A - B + 77 of a soft meson:

o0 T SA raa = LX 571+ six Lo
(50)
where m and mirad are invariant amplitudes for non-radiative
and radiative processes. The limiting procedure is for avoiding
the vanishing of ;(M(k) ~ dko. This factor is actually cancel-
led by the normalization . l/Jko of the meson wave function. On
the right-hand side, the first term is computed by inserting
only real intermediate states (energy shell), whereas in the
‘second term we have run over a complete set of intermediate states.
The latter can alsc be computed directly if we know the transfor-
mation property of H' under X T

The first term of Eq. (50) can be simply written

CXSTIMT = (XM - M (X (51)
where ( ;(Bi)i,f is the chirality -hoA\! for the initial or final
baryons if only one baryon is involved. So the soft pion is
emitted when the baryon chirality changes (the first term, which
may be called surface term), or when the chirality conservation
is manifestly disturbed by H' (the second term), If . itself

is induced by H' alone, Eg. (50) becomes

i in . .
T mrad = - XB sSoH" 1 + S4[ALH'] (52)
to the first order in H'. So is the S matrix due to HO alone,

and symbolizes the final state inseraction. ‘ii
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b) Now the second derivation.2’22 The amplitude z”Lrad ie
given by
i ot k 2 i
mrad=/ X (m 2. g )<Blet| a>
_ 1kx 2 1 i
B / m - U )<B,09uau 18>
,2 o y t=c0
= <Bla,™| &>
2 2
m.“- 0
+/d4x e 1KX —T-T-C—— k, <B’aui,A> (53)

By taking the limit kua 0, we have the first term left, which is

_1(m7r2/c)( X 1,0ut_ X i,in). This is the same formula as (50)
if we evaluate it from (48). Since we have taken mv2 # 0, and
k= 0, it is not an amplitude for real meson emission. So the
1s an underlying assumption that zn'rad 1s a slowly varying
function of kg. In contrast, the first derivation assumes

2

smooth behavior on k“ and mﬂg, maintaining k° + m_ = = 0.

In case H' 1s the sole agent of the reaction, we can

expllicitly write

m

1/ -ifduxveikx(mv2-02)<Bout (¢t (x),H(0)] A

-<B%%t | 5r(0)[at™>

in>

A=
A

X 8('xo)’ (54)
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replace ®i by (1/C) Qua“i, and carefully integrate by parts,
watching the factor 6(-x,). We arrive at the same formula (52),
in which the surface term arises from the upper limit of time
integration.

We can analyze the meaning of Eq. (52) in terms of
Feynman diagrams. The first tera involves the operator QCBi
for inltlal and final single baryons, Thus it correzponds to
meson lines attached to those single baryon lines, or the so-
called baryon pole diagrams. The meson is coupied to the
baryon via derivative coupling, as in Zq. (43). Such a term
has an energy denominator E - En.. \/mv2+k2 ~ W which vaniches
in the limit k- O, m. - 0. No other graphs will produce this
type of singularlty. Actually the derivative coupling is pro-
portional to kuy 80 in the above limit, numerators and cenomi-
nators cancel to give a finlte value [~ X Bi" hv which however
depends on the coordinate system in which the limit is +taken.

The sitvation 1s very similar to the infrarsd problen,
where the infrared singularity comes from photons emitted from
initial or final particle lines.

The difference 1s that in the present case the amplitude
at the singularity is finite but rnon-unique.

The second term of Eq. (52) , on the other hand, represents
contributions from non=-pole diagrams in the limit‘gg m. = 0.
Taking a specific model Hamiltonian, we can see how various con-

tributions cancel each cther and the final result depends only

on the presence of the syemetry violating term H'. éii



The above analysis is similar to that of the infrared prob-

lem due to F. Low.24

Both are based on the symmetry property
(75 and gauge invariance). Thus it is not surprising that it is
also possible to derive them by means of the Ward identity tech-
nidue.25
As a final remark, we point out that taking the limit,

}g—» 0 and m_ - 0, amcunts to running away with the meson at
light velocity. 1In this reference frame all the rest of the
(massive) particles participating in the reaction will also be
running with light velocity. This is an interpretation of <the
prescription ¥— ¢ (or p - «) in the general formalism of Fubini

and Furlan.26

It is related to the simple fact that Dirac par-
ticle, whether free or quasi-free (like in a loosely bound syctem
or in the static guark model of hadrong), become diagonal in
chirality (or helic¢ity) because the Lorentz transformation

enhances one helicity conponent and suppressez the other.

V. APPLICATION TO WEAK AND ELECTROMAGNETIC PROCESSES

The formula (50) or (52) should apply to all cases in
general, but so far interesting results have come out mostly in
weak and electromagnetic transitions where H' is theoretically

well defined.
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1) Photo-pion and electro-pion p:r‘oduc:‘cion.21’23’25 We relate

the two processes y+ N—> Nand y+ N> N+ 7, or e+ N<ye + N
and e + N e + N+ . Since the first reaction y + N> N is
possible only for a virtual vy, actually we regard 1t as a limiting
case of the electroproduction via a virtual photon field Au(q).

The Hamiltonian H' is in this case

. - 1 1 '
! = - A A, = =(A = A
H ieqy Nqah s Mg 5 (N5t e g) (55)
and its matrix element ﬂn between nucleons is
mz e JHAU, (56)

where Ju is the well-known electromagnetic current vertex

equipped with electric and magnetic form factors:

0,.,4d
2 . 2
g, =iy Fi(q7) - 1 —%ﬁEE Fo(a®) - (57)

On the other hand, [ X l,H'] corresponds to a chiral transfor-

mation on H', changing a vector into an axial vector:

[t e

-iec_wu’@[?\l,%Q]q A

. k . o
= lee}ikau Au for i =1, 2, 3. (56)
Tts nucleon matrix element is given by Eq. (9) (with the replace-

ment qg-é q2 + m 2 of course). In this way we obtain the

I

formula

L Mt = et L ()R ()]

+ e fegq, G (a)A,(q) | (59)

»

w



The first term reprecents pion emission from the nucleon via
derivative coupling, the second term is the sum of the induced
contact term ( 9Ll - 9u - ieALl in the derivative coupling) and
the photomesic emission term. Note that only the contact term
survives in the limit q - O and pion four-momentum k — O, and

lead to the Kroil-Ruderman theorem. In fact, its coefficient i:

U

I3

efF, (0) = ef 0). {Eg. (59) does not satisfy gauge invariance

l( WNN(

unless the axial zurrent Gu is strictly conserved., For an ad
hoc prescriptioh to avoid it, see Raference 2i. However, the
best way to utilize Eq. (59) will be as a boundary condition on
Mrad at the unphysical mesen mowsenfum k= 0_)

1 2 25 . “ e
el,22,23,25 In the same fasrinn as

2) Neutrino-pion production.
above, we can discuss the processes

V+ N> e(p)+ N

v+ N-e(p)+ N+ 7
We use the basic weak current-current interaction (1) instead or
the electrcmagnetic current-current Interaction., We expect
therefore to obtain a formula similar to (59). Adler and co-
workers have made a detailed analysis of the electron and neu-

trino-induced reactions following the PCAC. We refer to thelr

papers for the details,

%) Leptonic decays of baryons ard mesons. In this category we

have processes like
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M 2 Bo B+ e+ v
Meog: BoB + e+ v +7
for the baryons; and
M M- oe(u)+ v (60a)
Mrag: M= e(w)+ v+ (601)

for the mesons (M = 7 or K). [Strictly speaking, the last one

involves two mesons but we treat it here.] The soft pion emis-

energetically possible, but the branching

5
< -LI’ o R . . ° 4-2
~ 10 ") to be of interest. (Some investi-

sion from hyperons i

ratio is toc small (

9]

gations were done by L., Clavelli,) The me
27

on processes (K£3)
have been treated by Callan and Treiman.

Separating cut the leptonic par*t, it is sufficient to con-
sider a matrix element of the type

<old la>
V!
where Ju is the relevant hadronic weak current. The ztate a is
K or m, and b is the vacuum or 7 for the two reactions (60a) and
(60b). The first process is via the axial vector, and second is
via the vector part of Juo 3¢ the latter is simply of the form

(X or m)

-‘ ! ! > = !
2VEE, <p'lJ |p> = G [(prp') T}

=y !
b + (p=p'),

y f:(K or W)] X{Sine (K- m) |
cosb (m— ) - (61)

where f+ and f_ are form factors being functions of q2 = (p“=p)2°

In the limit of strict vector zcurrent conservation m, = M,
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70 T4

theory to compute f+ and f_ iIn general. For simplicity, we

we expect G_ =G., £ (0) =1, f (0) = 0, but we do not have a

have suppressed the SU(3) indices in (61). For the process

(60a), on the other hand, we may replace JLL by

(Go/@N-1/7) 3,8y c0s0  or (GAZ)(-1/Ty) B, Py sin®  (62)

in accordance with Eq. (47) et seq. So

1
I

//2ETT<O|JH|7T(q)> - (Go/fify)cosé q, = gq,

2Eg<O J, K(q)> (63)

- in6 =
(GoAz f)sin YT e
which should be correct in the limit mw" 0. In the SU(B) limit

(m_ = mK), we expect of course f. =1f, =71, Since G, cose/fw

T K
= GGy (0) cos8/f \n(0) = ~G,p/ T (0)s (62) is nothing but the

0

Goldberger-Treiman relations applied to 7 and K, approcpriately
corrected for the Cabibbo angle.

Essentially the same results can be derived from the soft-
pion formula (52). Since nc baryons are involved, only the
second term is relevant, where H!' = J“. Now Ju inrvolves only the
dr s for which y5 = +1., Thus a chiral transformation is equivalent
to an ordinary SU(3) transformation. This is a special feature
of the weak éurrents. ( )(:i,Ju] is simply a different isospin
component of the same Ju oétet. In this way we can obtain the

connection between (60a) and (60b), with the final meson momentum

p' put equal to zero in Eq. (61) as the soft pion limit:
K (K) _ _
o, (r, ®s r_(K)ysino = g v = ger(0)/6,(0) (64)

The form factors are to be evaluated at the (unphysical) point
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2
K *
equation is actually well satisfied, although there is a large

m_= 0, q2 =m Taking straight experimental values, this
experimental uncertainty on the left-hand side (i.e., the ratio
f_/f+). There is a slight difference between the above two
approaches. In the second one, we did not use the K-current in
Eq. (62) to compute K = e(p) + v amplitude explicitly, but only

applied the soft pion formula to relate the two observed ampli-

tudes. Hence the appearance of the form factors on the left-hand

side of (64). One would expect that the large My s violating both

SU(3) (mK # m ) and Ve, SU(3) (mg # 0), would make the PCAC rela-
tion for the K currents unreliable. It is somewhat surprising
that we have still fv = fK in spite of the K m mass difference

(fx/T, ~ 1.28 if sinf, = sinb = 0.21).

4) Non-leptonic decays of baryons. Non-leptonic processes are
a more significant test of both the current-current weak Hamil-

tonian and the soft-pion formula. Here the basic processes are

m . B —
M. 1 BT B+ T

which are caused by the ‘AS‘ = 1 part

»
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H' = —2 (§,(88 = 1), 3,5 (88 = 0)) + n.c.
2 W2
G _ _
= - 9 i 9 r— h. L]
. \/—2 cos sin [ql'yu(1+'}'5)q}, qQ'Y!J(l-P,YD)ql] + c

(65)

of the hadronic current-current interaction. Some general con-

sequences of thls assumption are well known. In particular,
a) it is CP invariant; b) it 1s invariant under the reflection
Ay © A3 c) it consists of SU(3) spurions

8(|az| = 1/2) + 27(,A1, = 1/2) + 27(|s1] = 3/2)
if the quarks obey Fermi statistics. (For Bose statistics, we
have only 8(|AI| = 1/2!)*

If we assume only the octet part to be present, we obtailn
the 'All = 1/2 rule within each isotopié mulitiplet, and the
Lee-Sugawara sum rule linking different multiplets for the
parity violating amplitudes (S wave pion emission). These are
well satisfied experimentally.

The application of the PCAC formula was first done by

28

suzuki®® and by Sugawara.2? The amplitude 772 is a SU(3)

tensor spurion
i Iy _ = 3 ik )/
<8, u B> - 5T MG (66)
which behaves as lAS' =1, 'AI' =1/2 or 3/2, AQ = O members
of 88, 8a and 27. 772 is further divided into scalar (parity-

conserving) and pseudoscalar (parity-violating) parts, so that

¥*
This possibllity is beilng examined
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N =58+ YgP. We can write

ik .26 k 5 16.36 k

i
sjg = S(8s)[(6z 63 z + 0,70570, )

ke 1. 2
§6515,2)1

+ S(Sa)[(53163263k t 6£16j362k)
- (63k6216Z3 6,0,5,%)]

+ S(27)[(Sli6jl - % 631)(65263k + 63362k)
+ perm (j£), (ik)]

Pj%k - P(SS)[(6£16j263k - 6Ei63562k)

. (6jk53i6z2 ) 6jk52i6£3)]

. P(Sa)[(6£i63263k ) 6£i55362k)
- (aJk6315£2 Sjk6215£3)]

£ BT (5 7850 - 2 8.1) (0,78, - 5,761

+ perm (j2), (lk)] :
(67)

introducing six real parameters. The P part, however, does not
satisfy the property b) of H', =o that P = O (in the SU(3) limit

in which the strong interactions also preserve this property).



Applying now the formula (52), the second term [ X i,H']
gives back spurions Zn 1 rotated from M by isotopic transfor-
mation. Thus M (8) - 777(8)1, Mmer) - m (27)i which are
again scalars. On the other hand, the first term must be cal-
culated by inserting baryon intermediate states. It will be
pseudoscalar, and besides of order v since X 1 ~ hwv. Thus the
first and second terms provide p wave and § wave parts of the

30,31,32 There are seven processes to be considered.

amplitude.
°sp+ T

AT > n+ 7

2 -S> p+ T

0O

m

- AN+ T

We write each amplitude as A(A_O) + YSB(A_O), etc, The S wave
amplitudes A satisfy the |AI| = 1/2 rules for A and E because
only n7(8s)i, 777(8a)i can contribute to them. For the X
amplitudes, it turns out that. the contributions from 8 and 27
conspire to produce a sum rule which is different from the
\AI| = 1/2 triangle except for a sign, and therefore experi-

mentally indistinguishable. 1In addition, we get

A(D_°) + 2A(E_7) =3 A(3N) + V32 A(3,T).
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This is equal to the Lee-Sugawara relation only if A(Z++) = 0,
which requires ] (27) = 0, and we are back to octet dominance
and IAI, = 1/2 rule. Although these results are interesting,
they are not altogether satisfactory. Especially the p wave
part seems to vanish like Ub in the SU(B) limit.

One way to improve the Suzuki-Sugawara results seems to be
as follows. We note that the p wave part comes from the baryon
pole diagrams which become singular as we switch off the baryon
mass difference and the pion mass., Thus the limit is actually
not unique, but depends on the exact limiting procedure. We
already remarked that m._ = 0O, means going to a reference frame
in which other particles (the baryon in this case) are moving
with light velocity. So if we keep baryon mass diffference
finite and make m. = 0, UB tends to C. The p wave contribution
as defined in this sense is not zero but of the same order as
the S wave. To make the result manifestly covarlant, however,
we should use the actual pole diagrams to express the p wave
amplitudes, where we can insert actual béryon and meson masses.,

Rather interesting results follow along this line if we

make the simplifying assumptions

a) M (27) = o,
Both 8 and P wave amplitudes then satisfy AI = 1/2 and Lee-

Sugawara relations, and can bhe expressed in terms of four

adjustable parameters: the spurions JM(8,) and %ﬂ(8a)g and
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Gii the baryon-meson coupling strengths f(8a) and d(8 We can fit

)
the data with M(8S)/))L(8a) ~ -0.5, d/f . 2. The latter is
consistent with the value 1.7 obtained from the leptonic decays.
There remain, however, various difficulties and objections:

a) The absolute values of d and f necessary to fit the
p-wave to $-wave ratios are sensitive to the mass differences
in the pole diagrams, but generally tend to be twice as large
as the theoretically expected values d ~ 1, f . 0.5. Individual
p wave decay amplitudes alsc fluctuate sensitively with the bar-
yon mass differences and M (84)/ M (8,). In fact if the
spurions causing baryon mass differences and the weak spurions
have the same f/d ratio, B(Z++)'becomes zero.*

b) The parity conserving meson pole diagrams (B—> B+ K,
K — m) do not appear in the formula, but they also exhibit a

singularity in the 1limit m_=- m_— O, They cannot belong to
T

k
the commutator term [;K i,H'] because of the CP properties.)

c) Pole diagrams are generated by spurions acting on
baryons and mesons. These can be transformed away by redefining
the baryon and meson states. But then ws lose also the singu-
larity of pole diagrams which we exploited avove in the p wave
amplitudes. [Of course the weak Hamiltonian H' cannot be
transformed away by redefining quark states. ]

It appears thus that the problem of p wave amplitudes is

not quite settled yet. We also remark that there is a somewhat

*
ﬁ S. L. Adler, private communication



=

different theory of non-leptonic decays in which the spurion is
assumed to be proporitional to ‘?UUL and auau.jga

Calculation of the spurion (self-energy) W , Eq. (66),
from the original current-current Hamiltonian H', Eq. (65); was
carried out by Chiu and Schechter,33 and by Hara34 recently.
They estimated it by inserting baryon and decuplet intermediate
states between the currents, and using the known electromagnetic
form factors to provide a cut-off. Interestingly, their resultse
for m are of the right order of wagnitude, and m (27) tends
to be small compared to 271 (3). We must say, however, that the
meaning of such a calculation is not very clear, hecause it is
based on two assumptions: 1) =strictly local curreni-zurrent
interaction, and 2) picking of only a few intermediats states

to achieve convergerce in epite of 1).

VI. MANY-PION PROCESSES

Processes involving more than one =soft mescn depend on

—~

more details of the nature of axial -rector currents, e.g., their
commutation relations. Therefore theyfcan algo give ug more
information abrout chiral symmetry.

General formulas for n-meson processes can te written dow:

in terms of time ordered products of n axial vector currents,

taking their divergences., This wag done explicity by Weiﬁberga’B ‘ii
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Complications arise when we take the limit k — O for individual
currents. 1In taking multiple limits the result can depend on
the order in which we perform it and on the direction of the
vectors k. We can see this situation by considering, for
example, pole diagrams in which N mesons are successively
emitted from a baryon line at the end or beginning of 'a diagram.
We have a product of energy denominators

N n 5

I [(p+ = k)

2 \ 2
+ M) = I2peX ko + (2 k:)7]
n=1 i=1

This becomes singular as any partial sum

- 0,

™3
N

i=1
although this will be compensated for by the numerator so that
no infinities will result. The numerator also contains products
of vertices which do not commute because of the SU(2) or SU(3)
spins. Turning things around, when we are given various multiple
limits of an amplitude, we have tec find an interpolaticn fcrmula
between these limits showing the dependence on Ki explicitly.
No general way to do this is known, and it will probably depend
on detailed dynamics.

Two examples will be discussed here. One is the low energy
T - N scattering according to a version due to Tomozawa,36 Ram@n

and SudarshanJ25 and Weinberg.57 The other is the non-leptonic

decays of K meson.
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1) w - N scattering
Consider the amplitude
— 14 i, i,
1H)ZQUJJ u, = <b|(auv(x), avJ(xA)+|a> s

(1,3 = 1,2,3) (68)

where a and b are nucleon states. Taking one divergence, we get

Uy, au mu%j by = <b (auaui(x)’ avj(x'))+ 2’
- B(xg=x'g) <b [a,(x), & J(x')] &>

At this stage we will uses the commutation relatlons hetween

current dernsities according to the quark model. Thus
[a i(x\ a i(x"' = 2ie b k(x\ {x =x' ) (69)
o ;2 Y )J - iJk V 7\ ‘J’ u

(We ignore the protlem of Schwinger terms.)

nece, trhen,

Taking another divergenc

5 0, 0, M 5, = Qa0 Dt 10>
= 5{xg=x"g) <l auaui(x)’ a“oj('w)”a>

- 6h(x-x1)zieijk <bl znuvk(x),a>

- 2'V64(x=x')2ieijk <h,uvk(x)|a>

The Tirst term is directly T oanplitude

M (k,k1) for the proces
¢1,a31] dependz on whal happens

m
[e8)
(@]
9]
i
Cus
1.
)
=
=)
4
i

G

v

PCAC formula, The
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to ¢l under a chiral transformation, which cannot be fixed by
the current algebra. If we borrow the language of the o model,

we may write

6 (xp=x' o) [8(x), agd(x')] = -2i6, co(x) B (x-x')  (71)

iJ
where the set (9%, o) belong to a quartet (2,2) of SU(2) x SU(2).
[The sextet (3,1) + (1,3) is not possible hecause it gives the

. . . K, ya4 \ .
antisymmetric form -2ie, . ¢ (x)0 (x-x') for the commutation (6,%4) ,

ijk
which violates the crossing symmetry.] Going to the momentum
space (k'™" kout)

_ ij
ubkuk'vzvuv (k, k" Juy

,Wwe have

2

-ic - ij
= u (k, k' )u
(k2+mW2)(k'2+m 2) b )n

[

+ eiéijc<b|o(k-k*)|a>

<141r (k-k )] a> (72)

(k+k') vEi ik

Now ml‘](k,k’) has the general form
7”713(k,k') = AD 4 A deg Ty

+ iV’(k+k')(3+i€ijka+B_6ij) (73)

and

<o(k-k')> = Upu, Fo(k-k*)

k . — K '
(k,rk' )<Y, “(k-k')> = 1 U, T [y'(K+k')F1(k—k )

+ 0, (kekt) (k=K' ) Fo(k=k')Ju,

TRY v 2
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»

A, and B, are functions of v = (p+p' ). (ktk') /4, kg, k'g, and
k.-k', and the % éign designates signature under crossing:

"
V= o=V, kgéa k'“., If we assume that'771 can be expanded in

these variables around zero, i.e., k = k' = 0, we may write
A+ =a,
A =a_+ va'_
B, =D,
B =Db_ + vb'_ (75)

up to linear terms in k and k'.

The left-hand side of Eg. (72) is proportional to both k
and k'. So terms of Tinear order on the right-hand side would
have to cancel each other. We must be careful, however, since
)71HV contains pole diagrams, so that the left-hand side can be
finite in the 1limit k, k' = O, Explicit evaluation gives the
result

1]
kuk'vmw) (-k,k') ~ O.

Thus, comparing the two sides, and noting

Vo —m(ko+k'o)/2 ~ m iy (k+k')/2,

we obtain the relations

a_ =0, Db_=0
2mv4
% T 77 FS(O)
c y
m
(ma'_ + b, ) = - g (76) Gii
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iii Eq. (77) predicts the m - N scattering lengths at k = k' = 0]

= a / + = a / -—.&__ ( 8 ) 'FS(O)

mTT
1l + —
m
L -1a - 2 (fTrNN(O))Q T
3 “1/2 T 3 %372 T Tw VINIB m_
1+ —
m
- 0.10 m_"* (77)
m

Experimental values at threshold: al/2 = 0,17 u 0.005 mw-L,

-1

a = -0.088 p 0.00k4 m_~~ agree very well with Eq. (77) if

3/2
FS(O) = 0. There is no convincing argument to show that this

28 26

must be so (in the limit k = k' = 0). Adler”  and Tomozawa
achieve this by taking the divergence of <Nb + vtau(x)[Na>
before, instead of after, reducing it with respect to m. The
two results differ by the o term (which however vanishes on the
pion mass shell). Which one to choose is, however, a matter of
assumption about analytic structure. We must also bear in mind
that the extrapolation from real amplitudes to unphysical limits
is a delicate one for multi-plon problems. For example, A+
equals gvﬁN(O) ngN(mv)/mN (instead of O) when one pion 1s on
the mass shell (k2 = -mve) and the other one 1s such that

k12 = 0, prk = kek' = 0,30
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ﬁii

Eq. (73) is also a relation between scattéring lengths and
-GA/GV° If we express the left-hand side of the second equation
as a dispersion integral involving m - N total cross sections
Op— = O.t+s we arrive at the Adler-Welsberger relation.39 (How-
ever, they applied the PCAC formula directly to the dispersion
integral. )

The same technique may be applied to p — 27 (Kawarabayashi
and Suzuki),uo and with more caution, to m - 7 scattering
(Adler,38 Weinberg37). Kawarabayashi and Suzuki obtained a
relation
(0)/1.18)2 /47 = 3,

(78)

as compared to the experimental value T EQS, The results (74)

2 2.2 2
fpvw Jhm = 2mp /4 = Qmp (f

TNN

and (78) are compatible with the p-meson dominance model with

universal vector meson coupling (Sakuraihl)

2) K- 27 and 37 decays

The non-leptonic K decays were first treated by Callan and

Treiman.27 Here we follow a more elaborate procedure,42 The
processes

7ﬂ1: K->7

}772: K- 7 + 7,

2413: K- Wl + vg + WB (79)

are linked by successive applications of the PCAC relation. The
main problem is how to relate the mass limits to the real ampli- Gii

tudes, and take account of the non-commutative nature of limiting

procedure,
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The task is relatively easy if we only compare neighboring

reactions in (79). First, Ml is given by

ml = -<7TIH'IK> \/HmeTT (80)
suppressing isospin indices. 7” 5 is related to this in two
limits

lim )”2 — f<Tr2|[ XI,H']|K>

7, =0

1
lim .
7 =0 n, - -1 f<~rr1|[xz_,H']|K> (81)

We ignored the "surface terms" coming from possible scalar
meson poles. Because of the nature of H', Egs. (81) relate -
m to m by simple isotopic transformation, as in the

2 1
earlier examples. If we again assume octet dominance, we get

the following relations

f)ﬂl(K+ - T = --7'22(K+ - 7t k4= 0)
= M2(K+ - 7 K o= 0)
= -1m2(KlO—-> T k.- 0)
= -ime(Kl% AR k .= 0) (82)

In addition, if we apply the PCAC to the K meson, we find

M (& = 1% Ky = 0) <<t |t Ao H11| 0> = 0

(83)
We can satisfy these requirements by expanding the vertex
. . . 2 2
@ ~ function mg in the three mass variables k%, kvl, kTr2 , up
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to linear terms. Actually

2 2 2
M.l x 2 x 2
2\°K ° Wl ’ W2

must vanish at the symmetry point:

mg(u?,u-g,ug) =0 (8%4)
because of the CP properties mentioned after Egq. (59). The

solution to Egs. (82)-(84) is given by

+ 2.0 2 2y, 2
Mo (& > 757°) = Ak ° - %, °)/W°,

o] + - . 2 2 2 2
mQ(Kl - rT) = -1 A[2kS - kLT -k _F)A5,

A

£ ] L(K > ) (85)
where ug may be taken to be the average mass of the meson octet,
and Eq. (82) is applied to this symmetry limit. The first of
Eq. (85) simply expresses the ]AI\ = 1/2 rule: m 2(K+ - vevro)
= 0 (to within electromagnetic effects). The second and third
equations determine the spurion 7721 from the experimental value
for ))QQ(KIo - ) ml = A/f = 3.9 x 107" Mev/f.
Interestingly, the ratio qu/s of" the weak spurion and
Gell-Mann~Okubo (medium strong) mass spurion turns out to be
roughly equal for the meson case and the baryon case (as deter-
mined from the‘baryon non-leptonic decays). It is known also
that the electromagnetic mass'spurion Se also satisfies the same
~universality Se/s ~ const, So the concept of universal spurion
coupling (Coleman and Glashow) seems to be a meaningful one.

Next we come to the relation between m2 and MB'
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Proceeding in a similar fashion, we obtain the relations
L S~
+ -+ _+ . -
WB(K ST ko= 0) = Mj(k"'ﬂ'mm kr—’)

7”3(}{20 - 7%7tnT; k & = 0) =0 (86)

f 7,22(Klo > atrT) = - )123(K+ - 7r_Tr+7r+;kW+= 0)

--)”B(K+ - 7 7%7%; Koy = 0)

o o_+_ -, A
K2—>Tr'rr1r,k7ro—0)

X

I
\N
=~
N
e}
l
=]
’_.l
O
3
no
O
=
W
O
~
=]
(@]
I
O

(87)
This time, the off-shell interpolation must be done with
respect to four mass variables as well as the two Mandelstan

variables. Thus, for example,

M, oo

2 2 2 2
= a + ka + c[kﬁ + ko ]+ dk g
2 L A2
+oef(k - Kp)™ + (ko = ky)™)
2 188
+ f(kvo - kK) . (88)

Comparing with Eq. (86) we find

a =0, b+ e =0, c+d+ e+ =0 (89)
since the relations (86) must hold for arbitrary values of kK2
2 _ 2 _
and kv = kw when kwo = 0, In the rest frame of K, ]213

+ -
therefore reduces to
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M5 (5,° = 7% 17) = (bef) my(me~2E o) + (c=b)m 2
(90)
The linear expansion (88) amounts to keeping only S waves,
which allows only T = 1 final state at the same time. Experi-
mentally, these conditions are well satisfied. Further, if we

use the PCAC relation for the K current, we obtain
O _+ = ' ,
M (5,0 > 77" 175 1 = 0) = 0 (91)
which entails b = c. Complete SU(3) symmetry can be shown to

imply, in addition, b = d, so that b + £ = 0. These will make

Eq. (90) vanish completely, so we cannot adopt the extreme

symmetry limit, In reality m 2 >>m 2, and this suggests at
K T

any rate that the second term of (90) may be ignored. We then

obtain a formula
mB(KgO - 7TO‘[T+7T- = f mg - TT T )[l - 2):: /TVIK]

(92)
which predicts nct only the total decay rate, but the energy
dependence too, Experimental data are in good agreement oHn

both counts as is shown by

: -6
7}23 ° 5 797ty e = (243 £ 0.03) x 10

x [1 - (2B /500 Mev)]

. - -6
7)25(1{20 N Jexp = (2:67 * 0.1) x 10

x [1 - (2B /500 Mev)(1l # 0.1

(93)

)]

@

v
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. . <. ‘. [elln) = - .
Similarly, we find for other decays K - 7 o s K-> ot 3

and KQO - 797°7C equally satizfactory results.
Complications arise when we apply PCAC relations suzcess-
ively as we did for the 7N scatteringo‘a Thus we cobtain
9u 9\1' <Tr|(au"(x';av‘](x’ JH'(

’/+‘K>

= c2<n)(¢i®iH')+lK> - c<TrK[an,¢i]szK>6(xO=xo')
n< s 1- J
+ V<7r|(® lag5H 1), \K> 5(x5")
+ c<nl(¢‘j[aoi,H'])+|K> 6(xg)

+ 2i e < v ,r” 'K>6(XX}5\X\

1jk

+ <rllagds (ag L B[RS B(xy) Bixy')

wet e <rl|egfa, o g st exy (99
ijk

The right-hand side muist be symmetric under the intercharge
ie j, xe x'., The firszt term gives mB" The rest ig rzlased

to MQ’ ml and some new processes.,

3) K.y decays

Recently Welnberg”;.nd Clav ellf!t:reated the K 4 decays and
were able to reproduce ‘the experimental data quite well. Here
we follow Clavelli who combined the vector mescn dominance model
with PCAC. Consider the decays KW - 7 + 7 + ef + v,

(o] o) , ‘ .
@ T + T 4+ et + Vv, etc., wheose amplitudes are denoted by



/V/:j' = <7r+7r-|Jp|K+> (8EW+EW_EK+)1/2, etc.,

By taking different mesons out via PCAC, we get relations between

K,y and K_, amplitudes, In particular, lim 7}{7;’ = 0, This

3 T =0

shows, as in K — 37 decays, the importance of off-mass-ghell cor-
rections without which agreement between theory and expsriment

is not very impressive. Purthermore, if we take two mesons out
via PCAC, we find a hcst of further relations between Ke4 and

X amplitudes which depend on the order of two limiting pro-

ez

cesses. For example

1im iim = 0
T =0 #%eo 7?7 H ’

e 5o = /o)
where fK is *he Ke2 coupling constant. It turns out that these
limiting valuez, rot only for soft 7 but also for soft K limits,
can be reproduced by taking the vector meson dominance model.
The PCAC relations sszrve as boundary conditions which fix certain
parameters., The dlagrams we consider are those containing p and
K¥ poles, as shown in Fig. 1. As we learned in 7-N scattering,
the p meson is related to the commatator of two T meson currents
Similarly, the K¥ iz related to the commutator of 7 and K cur-
rents., The lepton vertex in these dlagrams correspond to the
a-ial current <p!aU[K> and <W§&UIK*> respectively. According

to the spirit of PCAC, therefore, they must also contain the

v
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induced pseudoscalar terms (Fig., 1). It is these induced terms
that play a key role in satisfying the PCAC relations.
The amplitude ZQH has the general form

v lv 2K

+Fy “uvap Tv A Bp

where 7T = k_etc., and the F's are functions of q2 (momentum
transfer to leptons) and other variables,

Clavelli shows that this model makes a prediction about
%37 1° .y F3 form
factors for Keu, including th;ir momentum dependence. F4 =0

a) f, and f_ form factors for K.z, and b) F
in this mecdel, and is probably small anyway. ) Agreement with
experiment is very good. (He further takes into account the

27 final state interaction in Keh by means of a 7m scattering

phase shift of -1 m ",

4) Many—meson problem in the Gﬁrsey model.

We discuss here a possible unified treatment of many-meson
processes on the basis of the Gursey type model (Section III).
The underlying assumptions will be that 1) the scalar mesons do
not exist as well-defined resonanceé (in contrast to the Gell-
Mann-Levy type mcdel), and 2) we may expand non-linear functions
of meson fields and interpret the latter as effectivé renormal-~

1zed fields., Tke choice of the unitary meson matrix (Eq. (35))
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is where the dynamics will come in, and. the result will depend
in general on the choice,

The essential points are as follows. We first take the
meson matrices ;&Z(¢(X)) and Y (¢(x)) which behave as
(ER,BL*) and (BL,BR*). We also have definite expressions for
the vecter andbaxial currents uui and aui. These will be
expanded and expressed in terms of @i and E;u®i, In discussing
the leptonic decays of mesons, we replace the basic hadronic
current ju in Hw by the above meson current. If we regard this
as an effective Hamiltonian, we get automatically all possible
processes like K— uv, K> uv + 7, K-> uv + 27, In the case of
non-leptonic meson decays, one way may be to form a product of
meson currents (probably with a phenomenological coupling con=-
stant rather than GO)°

Another way is to introduce a spurion matrix S “k6’ which

should belong to (8L,l according to the basic current-current

)
Hamiltonian. We then form an invariant with respect to
SU(})L x SU(B)R out of 8§, %7 and Zﬂ+} A simplest non-trivial

form is

feee = T, M9, ")

The derivatives are necessary since otherwise ?}{7}[+ =1, By
expanding M ahd Mt we can reproduce the relations obtained
earlier about K— m, 2m, 37T debaysu In particular, the energy
and maés dependence of the amplitudes arises from the derivatives

in the above formula,
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Probably this procedure can be generalized to all other
processes we have considered. The basic point will be to write
down an effective chiral invariant local Hamiltonian (to be
regarded as an approximate 3-matrix at low energy) in terms of
h.(x), m+ (x) and the phenomenological fields for other

particles. Work along these lines is being pursued by J. Cronin.
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K* K*

Figure 1. Ke4 Diagrams
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