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ABSTRACT

We examine some simple models of (renormalizable)

-y

meson-nucleon interaction in which the nucleon mass is entirely
due to interaction, and the chiral (75) symmetry is "broken"

to become a hidden symmetry. e find that such a scheme 1is
possible provided that a vector meson is introduced as an

elementary field.
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I. Introduction

In this paper we shall study some simple models of
strong interactions in order to see whether the following points

of view can be consistently entertained:

2) The mass of the fermion ("nucleon'") arises entirely from
boson-fermion interaction. 1In other words, the bare mass
of the fermion field is zero.

b) The system may allow in addition the 75 invariance {chiral
symmetry ) which exhibits itself as a "hidden symmetry,"
like in an earlier model (the superconductivity model)
considered by Nambu and Jona-Lasinio (NJ).l

c) Some of the particles may in fact be non-elementary,

composite systems in the sense of having vanishing renorma-

lization constants.

By a hidden symmetry we mean a symmetry which is shared
by the equations of motion of the system, but not by the states
which make up the Hilbert space of the physical world.2 Such a
possibility in the theory of elementary particles was demonstrated
in NJ by taking analogy to the theory of superconductivity. This
concept has also been exploited by Heisenberg,3 Goldlstone,L’L Marshak

and Okubo,5 Glashow,6 etc.

In order to realize a hidden symmetry, it 1s necessary that
the vacuum (ground) state of the world be not invariant under the
symmetry operation considered, which means that the vacuum is not

unique but degenerate. Each vacuum state will build upon it a set
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of excited states corresponding to the presence of particles,
and the different "worlds" created by different vacuum states

are orthogonal to each other. We regard the property of the

vacuum state not as something given a priori in addition to the

equations of motion, but as something that must follow from the

latter dynamically.

We shall restrict ourselves in this paper to simple
renormalizable models, in contrast to NJ and the Heisenberg
theory where non-linear four-fermion interactions are introduced.
Since we are interested in the bare masses and the bare couplings
as well as the observed quantities, we introduce a cut off
parameter to make the self-energies and renormalization con-
stants finite.

7

As is known in the Lee model and various other model
theories, the strength of the physical coupling constants cannot
be chosen arbitrarily large in order to have a physically accept-
able solution.8 This condition expresses itself in the require-
ment that the amplitude renormalization constants (22 and 23) be
within the range 0£7<1. Furthermore, we may regard the limit-

9

ing case Z (or Z = 0 as corresponding to a composite particle,

the meaning of which is not completely clear, but roughly indicates
that the state of that particle can be constructed solely in terms

of other fields.

In the following sections we consider models having

either simple y5 symmetry or isotopic y5 symmetry. Neutral scalar,




neutral and isovector pseudoscalar, and neutral vector fields

are introduced in certain combinations to satisfy the symmetry
properties. The calculation is carried out to the lowest order in
the coupling constants and in the limit of large cut-off. The main

conclusion is summarized in the last section.

II. Two-meson Model

Contrary to NJ, let us first assume a neutral nucleon,

a pseudoscalar and scalar meson field coupled in a y5-invariant
similay to the “6- meson 7 moded '°

wayg The Lagrangian 1is characterized by the bare nucleon mass

M = O, the bare meson masses m =m =m_ , and the bare coup-
0 SO jole) o] :

lings Gso = Gpo = GO . The solution we seek 1s the one in which

emerge a massive nucleon, & massive scalar meson and a massless
pseudoscalar meson, the last being a simplified analog of the real
pion (See, however, the remark at the end of Section IV.) . The
solution will be characterized by the observed masses M:fo,

: . 2 2
m #? mp , and the couplings GS F Gp

The general procedure is as follows. In NJ 1t was
assumed that the real masses and coupling constants were expressed
in terms of the bare constants of the theory as solutions of the
self-consistent equations. 1In the present approach we shall ex-
press the bare masses and coupling constants in terms of the
observed quantities. An elegant way to do this is to make use of

11,12

the Lehmann-type formulas. The symmetry properties reflected

in the bare constants then impose conditions among the observed




gquantities., Namely, we write down the conditions

M, = 0 (2.1a)
2 2
Gso = on (2.1b)
)
m° = m° (2.1c)
SO 0O
in terms of renormalized quantities. (As will be seen below, the

last equation is not crucial to our discussion).

In order to make the expressions Tinite, however, we
have to introduce a cut-off mass parameter,A , and this spoils
the elegance of the whole procedure. (This would also be neces-
sary on dimensional grounds since otherwise we would have no mass
scale). We shall therefore content ourselves with those cases
where A is large compared with M, m and thus the qualitative
conclusions are insensitive to /\ . In this case, the elaborate
Lehmann type formulas will be unnecessary

13

We introduce, in the standard manner, the renorma-
izati t Z Z Z and , -
lization constants 22’ 35° %37 %18 and le, and the self-energy

integrals which we denote by A. Then

2 -2 2 2
G, = 275 25 Zgg G (2.2)
2 2 2 o
Gy = Z1p %o %35 Gy

M = M-M o= M o= A/Z, |, (2.%a)
2 2 2

Sms = ml - mS By/Zsg (2.%b)
p > o

gmp = myo o-m = ABD/ZED (2.3c)




For derivation of these formulas, see Ref. 13, By straightforward

ééloulation, we find

Z, = 1l-s-p, (2.4)
Zyg = 1-4s, Zg, =1 - by,

Z)g = 1-25+2p, 2 = 1 + 2s-2p,

Ay, = M(p-3s)

hyg = ~(6E/0m°) AP Ay = -(Gh /er) AT

s = (6/zert) JURMT). b = (a5/3ent) [, (AT/0).

We have Kept only the leading divergent fTerms in each of the
expressions corresponding to the lowest order self-energy
diagrams.14 We have ignored here the meson-meson interaction of
)2

, 2 .
the form XO(¢ 2 + QD” s which will only contribute additional

S

terms to Egs. (2.3b) and (2.3%c).

We also note that the formula for SM is valid only if
<Qs(x) > =0, and <<¢p(x) > = 0. The latter is of course a
consequence of parity conservation which we assume for the solu-
tion, but the former condition is not a priori dictated by our
assumptions. 1In fact,«<¢8>># O leads to a result similar to NJ,
and this may be the simplest way of obtaining a non-trivial
solution. In this paper, however, we will adopt the convention
<¢s> = 0. The reason is that, as is discussed in the appendix,
the contribution to the fermion self-energy coming from this

effect becomes negligible in the 1limit of large cut-off.

A physically acceptable solution must satisfy




1 2 2, 2 O, 1 > 2,

From the last two, and Eg. (2.4) we get
s £ 1/, p £ 1/4,
The first condition is then automatically guaranteed:
22 > 1/°2.

However, the right-hand side of Eg. (2.3%a) for the fermion mass

15

now becomes
M(p-3s) / [1 - (o +s)] g (1/3)M

so that this equation cannot be satisfied. We conclude that our
system does not have a self-consistent solution with M=%0. The
interpretation of this result is that, as is clear from above,
the scalar and pseudoscalar mesons do not produce a sufficient
amount of fermion self-energy. This follows only from the re-
quirement that the fermion mass be entirely due to self-energy,

and does not depend on the condition G2 = G2 . The same

S0 po
conclusion is reached when we consider a model which incorporates

the isospin (see Section IV.).

IITI. Vector Meson Model

Since spin O mesons are not suffiicient to produce a
self-consistent nucleon mass, we shall next add a neutral vector
meson field to our pickure. Its bare mass and bare coupling will

be m  and G _ , and Eqgs. (2.2) and (2.3) will be generalized in
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@ 4 an obvious manner to include the vector meson. We now have
"
. 22:1—8—p—2v
= - h
Z3S 1 ts
Z = 1 - Ubp
5p B
23'\7 = 1 - 16/3v
Zy 4 = 1 +2s - 2p - 8v
le= 1 - 2s + 2p - 8v
Zlv: 1—s—p—2v=Z2
A, = M(-%s + 1lp + 6v)
2
ABS = _ GS /\2
38 2
T
J 2
Ap = G /\2
8 2
T
2
A = - Gv 2
%V = N\
/8T
S = 2 2
j»\ A > b= Gp L A
521r IVI 32?2 M2
v = j /\
2
(3.1)
From the condition Z3 Z 0, we get
s £ 1/4, p<£ 1/4, v £ 3/16, (3.2)
’ but in addition 2, Z O requires
° s +p+2v £ 1. (3.3)

@ The fermion self-energy relation becomes




/@ M = M (-3 +p+6v) /(1 -85 -p - 2v)
- “or -s +p +4v = 1/2, (3.4)
4
which is now consistent with Egs. (3.2) and (3.3) if
v = 1/8 + Su;p = 1/16. (3.5)
Further we see that Eq. (3.%) means
2, = 0, zlp = U(p-s) (3.6)
Next consider the condition (2.1b) for the equality of Ggo and
Ggo . Egs. (2.2) and (2.3) give
p(1-25 + 2p -8v)° (1-4s) = s(1-4p) (1+ 25-2p-8v)2  (3.7)
which leads to
a) s-p = 0
2, 2
or b) (1-8v)“+ 4(p-s)° - 4(1-8v) (8ps-s-v) = 0 (3.7)
Combining Eqs. (3.4) and (3.7), we obtain three solutions
a) s =p < 1/4, v = 1/8
“1s T hp T O Fxg = Zgy
b) s =1/4, Z}s=zls=0
' =0, Z, =1, < O. .8
The solution b), however, corresponds to an indefinite form
Gss/GpS = 0/0, so that we will replace it by a stronger one
L " .
b ) p=s=1/", v =1/8,
. 21y = g = Tap = Dz = 0, 2, = 1/4, (3.8 )

@ which is a limiting case of a).
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The relation 72, = O means that the bare coupling is zero,

1

whereas Z, = O means that there is no free energy term for the

3

bare field in the Lagrangian. The latter 1is often considered

9 In the case b')

to be characteristic of composite particles.
above, then, the scalar and pseudoscalar mesons are bound
states induced by the vector field (which causes attraction

between fermion pairs).

In the case c¢), the pseudoscalar coupling constant is
zero, which means that the pseudoscalar field 1s dynamically de-
coupled at least within our approximation from the rest of the
system. It is rather remarkable that one can still talk about
75 symmetry, but the significance of such a solution is not
clear.

Finally, the third condition (3.lc), together with
Egs. (2.3b) and(2.3c) means

> >
Mgt My = Asg/Zag o Bgp/7a (3.9)

This equation, however, does not amount to a self-consistency

requirement in our approximation where the right-hand side is

independent of m_ and m, Our solutionsa) and b') clearly
mean mS2 = mp'2 , and mo2 itself will tend to oo as

zZ Z — 0.

3s ° T3p .

The equality of the scalar and pseudoscalar meson
masses in these cases a) and b') are only due to our approxima-
tion of keeping the leading divergent terms. If we take into

account the correction terms, all the expressions in Egq. (3.1)




will have to be modified, and so will the solutions (3.8) and

(3.8'). The first order mass split ms2 - mp2 = A may be
oBtained by putting m, = m_s and s = p in computing the Z's
and the A's. We find
2
A, - A =16 2 M~
35~ fap AN
0
Z - Z = 0 > 0, .10
35 = Z3p (A°) (3.10)

Neglecting the difference of the ZB'S since it 1s convergent,

we get (for the cases a) and b'))

2 2 2
mg " -y = 16 M /z3 > 0. (3.11)

}
It has often been assertedl’lr

that the breaking of s
invariance in our fashion should necessarily lead to mp = 0.
This, however, is a rather subtle property which does not follow
from our formulas alone. The results of the present paper are

independent of this question,

IV. Vector Meson Model with Isospin

We consider here a simple generalization of the pre-
ceding model by assuming a fermion field of isospin 1/2, a
scalar (s), a pseudoscalar (p), and a vector field of isospin

O, and a pseudoscalar (p') field of isospin 1. If Gy, = GpO s

we have a simple invariance, and if G =G , We have an
D Y5

80 p'o
isotopic invariance. The former turns out to have only one
pic vg Y

solution: p = O, corresponding to case c¢) of Eq. (3.8), due to

the fact that the condition Z3V Zz O cannot be met in the other




-

-

'

cases.

75 invariance.

Egs. (3.2) and
ahd
respectively..-

placed by

- 12 -

So we shall consider in the following only the isotopic

Eq. (3.1) is now replaced by

pr— p— — — l —
22 - 1 5] p 3p
=1 - , =1 -
Z3S 1 8s, Z}p 1
Z3p1=1 - 8p', 2, =1
p - p 2 3\.] -
_ _ _ 1
le =1 + 2s 2p 6p
A =1 - 2s + 2p + 6p!
1p
_ _ _ 1
le,_ 1 2s + 2p 2p
Z1v T %2
A, = (-3s + p + 6V)M
2
A, = -G 2 B
3 S2 A s ABP =
b
2
A = - g ! 2 A =
5p' PN T
Wy
(3.3) are replaced by
s <1/8, p<£1/8, p'<

s +p+ 3" +2v £1

2V
8p

- 22y

5
- 8v

- 8v
- 8v

1/8, v 3/%2  (4.2)

(4.3)

The two crucial relations (3.4) and (3.7) are re-

- 25 +2p + 6p' +8v =1

p'(=s +p +p')° (1-8s) = OX's(1-8p') =

, (M.Qa)

0 (4.4

respectively, since the Z's reduce simply to




& O 0
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le = 0
= - L t
le bs + 4p + 12p
- 1 Nyt
le, 4s + Up + Lp (4.5)

Egs. (4.4a) and (4.4b) express two conditions among the four con-

stants s, p, p' and v.

Proceeding as before, we get three solutions

— ! — —
a) s =p+0p', Ziq = le, =0
b) s =p' =1/8, D = 0, v =1/16
c) p' =0, Zan1 = 1, 2, =0 (L.6)

V. Conclusion

The moral of this admittedly crude study seems to be

the following:

a) The assumption that the fermion mass arises
entirely from interaction with boson fields i1s not always self-
consistent. This assumption is only part of the s invariance
requirement and may be imposed on its own merit from a differ-
ent point of view. In particular, spin O fields are not
sufficient to build up the fermion mass, but a vector field will

do.

b) Once the first condition is satisfied, it is also

‘possible to impose the full 75 invariance condition which ‘intro-

duces further relations among the coupling constants.

¢) With the presence of a vector field, it is possible
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to consider the scalar and pseudoscalar mesons as composite in
the sense that Z3 = 0, But the vector meson itself and the

fermion seem to remain elementary in the models we have studied.

We point out, incidentally, that 1if only the assump-
tion a) is kept, one can make Z, = 0. Because of the relation
(2.3%a), one must demand A9 = O for consistency, so the condition
a) is also necessary for 22 = 0. Taking the model of Section 3,

we find a solution

1 - 25 =1/2 - 2v

1 - 2p =-1/2 + 6v

One easily sees that v and s cannot be zero, and that all the
mesons are elementary. It is interesting, perhaps, to compare
ﬁhis result with the conjecturel6 regarding tﬁe "compositeness"”
of a fermion, in which a vector field was found necessary (but

may not be sufficient) to make the fermion a possible Regge pole.

We thank Dr. D. Lurié for useful discussions.




@ Appendix

We shall study here the possibility of assuming

<<¢S (x)> # 0. If this is the case, we have an extra contri-

bution, to be called M to the fermion self-energy in addi-

2:
tion to the ordinary type called Ml' Thus
My = CGgo <¢s(x)>
2 2 N
= =(0go/Mgs) Ty S, (0)
2 2
= (G o/m ) 2, T S(0) (A.1)

The second line follows from the equation of motion for ¢S

(Q -nl)g = o, W

SO S
All the fields here are unrenormalized, and so is the fermion

propagator Su(x)°

Now the renormalized S(x) is expressed in the Lehmann

representation of the type

oo )
Stw = % B/Dx/u fo 47 (o £ () ol

- [AP 0w g e

(A.2)
where A(K) is the Feynman propagator with mass o . Then one
can show that

-1 =
z, = £ e
2
% oo
N - ]
@ (M,+ My) f £ de = /ﬁz doe (A.3)
o
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following Lehmann's derivation, but paying due attention to the

fact that {@> * O.

We have thus ~ e
o
TS = -4 4 pdx
= -4 4%¢) [pde + R
() =/
= 4 A (D) Zz (MD"'MZ) +E (Aq)

where A(O) (o) = [—i/(?w)uj./ﬂﬁup/(p2—ié ) is quadratically
divergent, whereas the remainder R is at most logarithmically

divergent. Eq. (A.1) becomes, setting M = O,

) 2 2
M, = 4@::4()(") M_,/m,f; + Grng/?/?n,o

(A.5)

We note that both A(O) (o) and msg are quadratically divergent,

so that ng alo) (o)/hsg = O(). Then M,/M is of the order of
(Mg//\g) I ( /\2/M2) ~ 0 in our high cut-off limit. Thus it is
consistent to assume <¢é> = 0, and the bulk of the fermion

self-energy comes from the ordinary type Ml‘




References

1. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

2. Y. Nambu, Lectures at The NATO Advanced Study Institute
in Istanbul, July 1962.

3. See, for example, H.P, Dirr and W. Heisenberg, Zeit. f.
Naturforschung, 16a, 726 (1961).

4, J. Goldstone, Nuovo Cimento 19, 154 (1961).

J. Goldstone, A, Salam and S. Weinberg, to be published.

5. R. E. Marshak and S: Okubo, Nuovo Cimento 19, 1226 (1961).

6. S. Glashow, to be published,

7. T. D. Lee, Phys. Rev. 95, 1329 (1956); G. Kallén and W.
Pauli, Kgl. Danske Vidensk. Selsk. Mat-Fys. Medd 29, No. 1
(1955) .

8. H. Ruderman and S. Gasiorowicz, Nuovo Cimento 8, 861

(1958); V. N. Gribov, Ya. B. Zel'dovitch and A, M.
Perelomov, J. Exptl. Theoret. Phys. 40, 1190 (1961 ).

9. J. C. Howard and B. Jouvet, Nuovo Cimento 18, 466 (1960);
M. J. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961); A. Salam, Nuovo Cimento 25, 224 (1962);
J. S. Dowker, Nuovo Cimento 25, 1135 (1962); S. Weinberg

J‘.Sptatr?e épu%%\&.Shesfj_; 2 427C1957);
10. . GelI-Mann an . vy, Nuovo Cimento 16, 705 (1960).

11. H. Lehmann, Nuovo Cimento 11, 342 (1956); E. Ferrari
and G. Jona-Lasinio, Nuovo Cimento 10, 310 (1958), 16, 867
(1960).

12. H. Lehmann, K. Symanzik and W. Zimmermann, Nuovo Cimento

2, 425 (1955); K. Ford, Phys. Rev. 105, 320 (1956).

13, F. J. Dyson, Phys. Rev. 75, 1736 (1949); P. T. Matthews
and A. Salam, Phys. Rev. 94, 185 (1954). Egs. (2.3)
and (2.4) do not conform to the original Lehmann formula,
but rather to the alternative formula,12 in which the

inverse of a propagator is expressed by a spectral

7

11




14,

15.

16.

- 18 -

representation. This has an advantage in imposing the
physical condition on Z.

The cut-off is here done by casting the divergent ex-
pressions into spectral forms with upper limit /\ . For
logarithmic divergences, the result is independent of the
way of cutting off to within convergent terms.

We are deviating from a strict power series expansion

by keeping the factor 22. Dropping 22 would change some
of the quantitative results below.

M. Gell-Mann and M, L. Goldberger, Phys. Rev. Lett. 9,
275 (1962).




