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Abstract : :

In its usual form activated complex theory assumes a quasi-equili-
brium between reactants and activated complex, a separable reaction co-
ordinate, a Cartesian reaction coordinate, and an absence of interaction
of rotation with internal motion in the complex. In the present paper a
rate expression is derived without introducing the Caitesian assumption.
The expression bears a formal resemblance to the usual one and reduces to
it when the added assumptions of thevlatter are introduced. The new
equation for the transmission coefficient contains internal centrifugal
terms. The derivation employs an extension of the St;ckel-ﬂobertson
formalism for separation of variables in mechanics. The fourth assumption
can also be weekened and a rotational interaction included in the formalism.
In appliqatioﬁs of the rate equation use is made of the recent finding that
in the immediate vicinity of a saddle-point or & minimum a potential energy
surface can be imitated in some major topographical respects by a surface
permitting separation of variables. The separated wave equation for the

reaction coordinate is then curvilinear because of the usual curvature of the

path of steepest ascent to the saddle-point., Calculations of transmission

coefficients and rates can be made and compared with those obtainable from the
usual one-dimensional Cartegian-like calculations on the one hand and
with some based on the numerical integration of the n-dimensional

Schrodinger equation on the other. An application to a common three-center




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



-2

problem is discussed.
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1.

Introduction

In activated complex theory the reaction coordinate has
been assumed to be Cartesian and, in quantum mechanical treatments at

1,2
least, to be dynamically separable from the other coordinates. The effect

of any rotational constants’ of the motion on the internal motion of the
activated complex has normally been.neglectedj;nd equilibrium between
reactants and activated complexes hes been assumed.

In the present paper and in a companion oneégn the classical
mechanical formulation,this activated complex theory is generalized by
extending it to curvilineasr reaction coordinates and, within certain limitations,6
by,inciuding the effect of the constants of the motion on the internal motion

of the activated complex. The assumption of separability will be
made’  in the quantum formulstion. Tt now had wider applicability
than before because of the‘availability of a recent local approximétion method
for nonseparable gurfhces.7 Separability will not be assumed in the classical
mechanical formulstion, however,

The desirability of extending activated complex theory to
include curvilinear reaction coordi?ates is clear from an examination

of the local topography of the potential energy surface near the saddle-

po;nt, when that saddle-point occurs : The path of steepest ascent to this point, t

"reaction path,is almost ihﬁariably a curve in mass-weighted configura-~
tion space, rather than a straight line, In some major topographical
respects this surface can be matched locally by one permitting separa-
tion of variables:7 The reaction coordinate is then found to be curvi-

linear. This coordinate is this approximately separable one near the saddle-point,
‘a coordinate which leads from the "reactants' region" of mass-weighted configura-
tion space to the products' region in that neighborhood.



8
Except in computer calculations or in early discussions
9.
based on the motion of balls on surfaces, the dynamical effects of the

curvature of the reaction PEEEJT

(have been ignored in the literature. The curvilinear
character gives risedynamically to a centrifugal effect, an effect
smaller at the saddle-point than at a short distance from it, where
the kinetic energy is greater. As discussed in detail elsewhere7the
net result is to make the reaction coordinate in mass-weighted con-
figuration space have a smaller curvature than the reaction path,
The centrifugal effect introduces a coupling between the reaction
coordinate and the vibrations of the complex, just as the rotation
of a molecule as a whole can 1gfiﬁ§nce the latter's vibration by a
centrifugal potentiall Th;f:;ﬁgct occurs in classi;alimechanics and,
phrased in terms of probabilities, in quantum mechanics when the
system has enoﬁgh energy to surmount the barrier. At low energies
nuclear tunneling occurs and, the formulae suggest, so does a non-

classical centrifugal effect, negative in nature.

We éonsidéf fifst the case where ihe dépendenum of the
properties of the activated complex on the rotational constants
of the motion can be neglected. 1In a later section the effect
of the rotational state on the behavior of the activated complex

is considered.

The basic equation, Equation (21) below, reduces to the




usual activated complex expression when the reaction coordinate is

treated as a Cartesian one. Equation (21) may be used to consider

several nonseparable n~dimensional problems by introducing into it
the local approximation method mentioned earlier.lo Comnarison
with computer calculations will then permit an assessment of the
useful range of that local approximation and should also facilitate

the physical interpretation of such calculations.




Schrodinger Equation and Separated Equations

Certain curvilinear coordinate systems will serve as better
starting points for finding separable approximations to the non-
separable potential energy function. We shall suppose that a co-
ordinate in one of these has been selected as the reaction coordinate;

. the process of making the selection has been briefly discussed else-

where:7 For example, in the case of a three-center atom transfer

reaction involving a linear activated complex (A + BC — AB + C) the reaction path
in mass-weighted configuration space lea&ing from reactants to

products is a curved one. For‘such paths in the vicinity of the

saddle-point region, circular cylinder, parabolic cylinder, or

elliptic cylinderméoordinétes are:much more appropriate than the ususl

Cartesian ones. Should both the vibrational path of steepest ascent from

the critical point and the reaction path both be curved in this space,

and should one wish to include this feature, only parabolic or elliptic

cylinder coordinates would be appropriate.7
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In curvilinear coordinates ql,..., qnvthe Schrodinger

equation has the form (1).

HY = «1‘{" , (1)

where H is the Hamiltonian operator, e the totaleergy, and ¥ the

1
wvave function of the entire system.

n
R o= 4% S 13 #t3 Ly (2
2 s,t=1 gt g8 Bqt

The qs are generalized coordinates, and U is the potential energy; gSt

[ P-4
is a contravariant tensor conjugate to the metric tensor gt appearing

in the line element ds in mass-weighted space § g is the determinant

of the Egt,
s t i i
gst = 2 ~1 _24a _.é.q_ 3 Bgy = Z mi 2z 2x (®
=1 i 9 d 3, d 1=1 24" ¥
2 n s , t - rt t y
das = 2 8s¢ dd dq ). gy 8 =& (&)

s,t=1 r=1

where xi is a Cartesian coordinate of an atom of mass mi; the coordinates

of the k'th atom are given by 1 = 3k, 3k + 1, 3k + 2 ., Both gg and

gSt are symmetric tensors,




Under certain conditions on U and on gS%, Fq. (1)
can be sepafated into m individual equations, each
13 '
depending on its own set of variables. The wave

function ¥ then becomes ( 5).

where'V'u is the wave function for the‘p'th set, As a
particular case of this geparation one could select

one set of variables to consist of a single variable,

the reaction coordinate, qr, and select a second set to
consigl of all remaining coordinates. I.e., m = 2 then.

13
‘Under the assumed conditions gSt vanishes when s and t belong
to different sets.

As a result of the separation the Hamiltonian
()
operator has the form (6 ).

m .
= (¢rl + U (6)
H 5 /fu‘)Hu U

where Hu is a Hermitian differential operator (7). The

potential energy U is of the form (8 ), and c[;"‘l and f

are defined below.
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The separated equatiohs are:

N
O
N’

m
(H)l + X’ufp) \P)l = e%i da?‘}u) f};""}x

u .
a 1 is the i'th coordinate in set a (there are b;1 such coordinates),

and f}1

is the h,'th root of the hy x b, determinant of the ¥,
The quantities ‘@N; and PPiM) depend only on the properties of the

metric, They are functions of the coordinates in the u'th set only
and are independent of the potential energy function; 1(}l also
depends only on the coordinates of set m, The 4»»‘) are conjugate

Vv " (4
to the &‘ and may . be called the Stackel coefficients,
%
z g4 (1)

The ‘P"l are given by ([]) and the #75 vy 12),

$M = (ot g V)V in (11)

where 1 and jJ = 1 to }).1'

T 1 1725
| i,j=1




The determinant of the q‘uv ,‘#, is related to g and to the

f .
W

LA T (12)
g CPJ:TI £, | 1

Various coordinate systems for which separation
15,1 6

of variables can be made have been described by Eisenhart ~’

for the case where hu = 1 for all p. He has given the
corresponding iﬁJs and gds and his results can beat least partly
adapted to the“present case where hu need not be unity.

Typical apprcximations in the literature of molecular

dynamics correspond, incidentally, to setting many of

the <P ) 's equal to zero and many of the grs equal to gero

or to constants.
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As mentioned

searlier it will be supposed that it has been possible to describe
a coordinate system such that one of the coordinates is dynamically
separable from all remaining coordinates in the activated complex region
and tends to lead in this vicinity from the regctants"kegion" to the
products' one. This coordinate is then the "reaction coordinate™.
When the potential energy funetion has a saddle-point the choice of
this separasble coordinate could be made as deseribed elsewhere.7 (The
potential energy surface is approximated by one which permits separa-
tion of variables.17) The reaction coordinate forms ene of the sets
i mentioned earlier. It will be described by setting p equal to r.
Since only the nonseparable potential energy surface in the vicinity
of the saddle-point region is being approximsted by a separable
surface, the properties in the separated system for the degrees of freedom
other than qr are thpge,qf_the_activated complex rathex than of the

r?aetants.

Parenthetically, it may be noted that this matchirg of
the two energy surfaces will normaliy be poorer for confizurations
far from the activated comnlex region. However, when most of the
scattering of the incident wave along the reaction coordinate occurs
near the activated comnlex region, this nbcr fit fo? conf:igurations
remote froh those of the comnlex will orly be of minor conzarn.

Since the wavelength (more vrecisely, the recinrocel I *ae comnenent
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of the wave vector along qr) is large in the sctivated comnlex region becausé of the

low kinetic energy there; and since the votential energy changes
rapidly there, most of the scattering may in fact cccurs’ in that
region. Indeed, the vhase integral expressionlg for tunneling »oints
up this local scattering characteristic.

The coordinate curves for separsble systems are of two
tyves, onen and closed, the former extending tc infinity. - Examples
of the closed type are circles and ellionses. OGuch a curve would
orovide a convenient coordinate only if most of the scattering
occurred over a relafively small pnortion of the arc. Then, the errcr

actva '

of replacing an,open path by an arc of a closed one becomes minor.

Wo consider an examvle later.
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Probability Distribution

ps

Near any pointbsuff:ciangly-far from £he saddle-noint
region, along the reaction coordinate qr in the sepsrable potential
energy surface, the potential energy varies relatively little with
distance and the comoonent of the momentum along this ccordinate
is real and relatively lsrge. Clessical statistics may then be used
for qr there but not necessarily for the other coordinates. The wave
function of all degrees of freedom but qr will be denoted by ':

Y" = ,lzlr Y ("1, ... ,q" ) ' (12)

For any given value of qr and of the conjugete romeniur
Pr the state of the remaining degrees of freedom Can_beAregnrded;aa describable

by a (discrete) quantum number N ¢ In the case ogtgsolated gasecus
activated comnlex molecule confined in =2 volum% even the transia—
tionai state can be regarded'as quantized. in the case of any
activated complex in solution, a macrosceopic subsyétem cen be re-
garaed as the coﬁplex. It can be placed in a box and the n-1

degrees of freedom regarded as given rise to discrete eigenvalues,

characterized by the quantum number >\, for purposes of the present discussion.

Inspection of the senarated equations (9) and (A4)
(Apnendii I) shows thet v' denende on the sevnarstion constante Qyyeeel o
For any.given value of qr thesé constents determine ) and DL 2nd
conversely. Unlike nr‘énd qr the a's are constents of the motion,

however.
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The probability of the system being in & quantum state described
by A and of being in any small elemént Aq'Ap, will be denoted by
P( A, qr, Pps T) AqrApr . We shall suppose that the reactants are in
statistical equilibrium with this gystem. Since the probabilities of the
system being in AqrApr and of having any given value of A are independent
and since the number of quantum states in Aq°A p, is Aq"A pp/h, one
obﬁains:

"°<1(A’ Pr)/kT
P( A, p, ¢, T) = e ) /n

~
LERY

where the given values of p_, qF and A sutomatically fix the total energy
& 4 and where exp(-et’l/kT) is the Boltzmenn factor. Q; is the partition
function of the reactants.

In any one of these quantum states we may take 4q¥ so small

that none of the quantitiés yf}“) ’ gij or: g vary' over‘ it.

When a system is in any one of these quantum states its

probability of being in a.ny volume element g% .%" dq can be written as

2 V3 -
N’ ’ A(q) g qu 5 Wwhere J(q‘? ls a normalizing factor fror this sis:

T this classical approvimation for the q‘15

BN - - .

g;dmat.e A(q ) can be treated as a coanstant cver Aq . Integratlon
2 i
over all q shows that A(q¥) equals 1/44q" f‘\" } % 7;; dq .

Thug, the probability of find the system in the range dp, .:J!.tl dqi

‘and in the state A is P(y( A, P, @) dpy ;rldq » where

- (>, Pr)/le \‘/"2 g%

Pp)( Mo P @ = 2 2
thﬂ\P'l g? T aqt

and a denotes the totality of coordinates (q‘,...,qn).

R
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For each (discrete) value of A, any of the a, dererds
%

continuously on P, except as moted below. The probability of finding the

system in do(k 'ﬁ_ dqi and. in the state A 1is obtained by replacing dp, above by
i1 - |

. . -n
( dp, /bdk),\d“‘k , Upon denoting this probability by P(« i’ 2, 3) d o« El dqi
and evaluating (a'Pr/a"k)P\ in Appendix I we find
- o /kT
P( L, A, a) = e V¥ ) 2'.8% (7)
Lo 'é i
h 2 ok 2 T

With the aid of (17) it willbe possible to express the reaction rate in
a form involving summation and integration over the constants of the motion,
This step was not possible from (15) or (16).

The above treansformation from the (p,, A) space to the
(& 1o >\) space is permissible only for those K 's for which the denomina-

tor does not vanish, i.e. for which quk # 0, The vanishing of cf:rk
implies, as one can see from Eq. (Al0) of Appendix I, that o, does not
held
depend on p when )\is ﬁconstant. An example is cited later.
r

It will be convenient to introduce the notation:

@) sk LIy E T T 8)
f i#r
r
From Eq. (1) one has:
G LAV S (e

Since ;Jdrk is the cofactor of p’rk in the determinant ¢ (ef Eq.10), it does not con-
Ll f

. R r,
tain the r'th row 7‘,-\) and so does not depend on q° ;3 melther does P# r
and, so, neither does (\v', w-‘)rk' If the wave function in the n-dimensional
gystem were normalized so that (*»" "‘:)rl equalled unity, the wave function

13 :
would be normalized to unit incident probability current.




Calculation of the Reaction Rate

Total and potential energies will be measured relative to the
potential energy of the most stable configuration of the activated complex.
Ql then denotes the partition function of the reactants measured relative
to this energy zero., We let Q denote the usual partition function of the
reactanfs, i.e., measured relative to the potential energy of their most
stable configuration, If A U is the potential energy of the most stable
configuration of the activated complex minus that of the most stable one

of the reactants then Q1 equals Q exp(AU/XT).

To obtein k from (17), one notes that (17) is to be

rate

multiplied by the velocity q', by ;2; dql and by the transmission co-

then «
efficient K(O(k.,)\) y, Summed over all A and integrated over all values

X 19 .T rl
of otk and over all g* (ifr).upmobserving that § equals ¢ Pr the

final expression for krat

. is found to be:

1.
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KT -AU/kT Z -al/kT({P W
rate Q 'k (4} LP') 20
rk
(k = 1:'-0: m)
where ay is a function of dk and A,
i For any preassigned value of \ ak, the remaining a's take
on discrete values, reflected by the quantum numbers .
Accordingly, Eq. (20) can be rewritten in a slightly more
symmetrical form:
-AU/kT ‘ -a7/kT
1 f !
_ kT Y
rate = — Q f zz.m(a) e <¢;*)rldakﬂd? ya
" (4 )
J*k ¥ ek
where o denotes totality of a's, (al,..,9 a,) and where
. I
each \"LL is a functiomn of (q;,,,)qﬂm al,...,am).
When Oy is taken to be aq, one finds:
-AU/KT -aq /KT
k -F
N L K(a) e dory /KT (22
h Q al X s

Jil

The lower limit on aq is =AU, though in practice the
exact value of the lower limit hardly affects krate’
since most of the contribution to the integral comes
from values of a; near the top of the barrier, i.e.,
values near zero. |

" In calculations of the rate constant itself, Eq. (22)

appears to be the most useful form of (21), at least when most

of the activeted complexes are formed in low - vibrational states

for coordinates interacting with the reaction coordinate: Its



use avoids the calculation of (w',¢')r1 and (m',w')rk and also permits

a direct comparison to be made of the values of rcexp(-ul/kT) for the
curvilinear and for the usuel Cartesian approximation. The comvarison can
‘be made as a function of @, for each vibrational state of the

activated complex. On the other hand, for an examination of the manner

in which the curvilinear formula for k approaches the Cartesian

rate
one, Eq. (21) with some k other than 1 is useful, as shown

in some examples described later.

16,
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Trangmission Coefficient

The transmission coefficient (o) is the ratio of trans-
mitted to incident probability currents for the given value of the
constants of the motion, ®, To calculate K an expression for the
probability current in curvilinear coordinates must be used, This
expression has been given elsewhere in terms of the wave function
along this coordinate.l3 The phase integral method can be used for a
semi-classical estimate of i, incidentally, since the Schrodinger-
type equation for the reaction coordinate (Eq. 9 with p= r) can
readily be adapted to this calculation., An improved formula for the
gsemi-classical estimate, one which takes cognizance of the proximity

of the two tfansition points for the case of energies below the top of

0
the barrier, is available and will be discussed elsewhere.2




An Application of Eq, (21)

By way of example, we consider a three-center problem,
A + BC—> AB + C, proceeding via & linear collision-complex. In mass-
weighted configuration space the reaction path is curved:azis mentioned
earlier,this path can be matched in the local approximation by the
corresponding path for a surface which permits separation of variables.
The ﬁatching has been discussed previouslyfind, in the following dis-v
cussion, will be regarded as having been performed.

The plane defined in mass-weighted configuration space
by the tangent and principal normal to the reaction path, thé osculat-
ing plane of this path,will be called the "plane of reaction", In
many diagrams in the 1iteratur:,zolne assumes for simplicity that the
reaction coordiﬁate lies in a plane determined only by the AB and BC
interatomic distances, mass-weighted as in Eq. (3 ’. The remaining

degrees of freedom are taken to be dynamically uncoupled from these

two in those discussions. We consider this special case first.

In terms of the properties of a suitable éoordinate system for
matching of the potentia1~energy functions, the latter assumption leads to a
choice of a cylindrical coordinate systeﬁ (Cartesian, circular, parabolic
or elliptic pylinder):7 The Z-axlis, which is normal to the plane of reaction,
represents the set of all degrees of ffsedom but the AB and BC distances.
The latter two coordinates can be used to describe any point in the plane.
In Eq. (6) one has then three sets, m = 3. 'With proper cholce of

coordinates one can diagonalize the kinetic energy contribution of the co-

18.
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—

ordinates in the plane of reaction and normalize their'cqefficients‘such
that for two Cartesian coordinates in this plane the gS8 are unity. One can
choose 8 scaling factor for the remaining coordinates (represented metrically

Bik;
by the Z-axis) so that the-(det)g 1"J i unity.
When the reaction coordinate is arbitrarily asizmed to be a
. l)a
straight line, as in the usual treatment in the literature, it suffices to

congider only two setsiof coordinates, as in Example 1 below,

instead of three sets. It is shown there that this neglect of reaction
coordinate curvature permits one to obtain the standard literature rate
expression from Eq. (21). The effect of curvature is then discussed
in Example 2 using a circular cylinder metric and in Examples 3 and 4,

more briefly, using elliptic cylinder and parabolic éylinder metrics.

When the reaction is symmetricel, e.g., when A + BA —3 AB + A, the vi-
bration of the activated complex in the plane of reaction is rectilinear
and Examples 2 and3apply.However, when the vibrational coordinate curve
in the plane of reaction is not a straight line, and when one wishes |
to describe this curvature, one of the coordinate systems in Examples !
3 or 4 should be used. The various dﬁv's, fu's, and gst's are known for
a variety of coordinate aystems.15’16

The aﬁove cylinaér co;réinate systems can“also beauaed?tO'représent
a more generél picture of the three-center reaction in which additional
coordinates besides the two bond distances are permittedzﬁo contribute

to the plane of reaction. If one cdnsiders the n- dimensional curve

describing the reaction path in mass-weighted éonfiguration space, the
osculating plane of the path would be taken to be the plane normal to

the Z-axis. One then proceeds as before.
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Some applicationsof Eq. (22) to the calculation of the raté
constant using some of the' following coordinate systems and reaction
coordinates will be reported elsewhere.lo The present. discussion will
be concerned instead with gn amplification of the precedingdiscugsicn,
with showing in Example 1 how the usual activated complex theory equatibn
in the literature is a s§e§131 case of Eq. (21), and with discuésing
in Examples 2 ahd 3 the approach of the curvilinear formulae embodied
in (21) to the Cartesian one. A suitable choice of k for the latter

purpose will be desecribed.
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Example 1. Cartesian Metric.

With mequal to 2 the T ¢, p's for the Cartesian
e

s i 220 o

metric are given by (23).

<’¢11 %12\ (1 -1> 23
$21 P22/ 0 1

One must first determine which ¢r~k's in Eq. (2]) vanish.3ince yf;zfij is the co-
factor of ‘z{ij in ¢, it is seen from (23) that only 5512 o

1 is selected as the reaction coordinate,

is zero, Thus, if q
the continuous variable Oty in Eq. (21) should not be taken
to be Qpe Otherwise, it makes no difference whether q]‘ or qL2
is selected. -We choose q2 to be qr and o to be

ol,. The "f/z-equation for the reaction coordinate then depjends
only on Qss SO K depends only on Qg The \Pl-equation for
the other degrees of freedom depends only on (0‘1“'0‘2)1 which
thereby takes on discrete values. They are denoted below by oc::-.

Since a, equals (al-ae) + a,, Eq. (21) then reduces to (24):

$ -AU/KT -a,/kT )
_xr of 2 b
krate h . Q e /K,(CIQ) e Jaz/kT {

where Q:F is the partition function of the activated complex,
Z ,’exp(-voc;‘/kT'). When tunneling is neglected, K (a,)

d .

1 . .
vanishes for ay<0. In the same classical approximation

it is unity for o, 2 o0, as one sees at once from the ¥,

equation.
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€ Eq.2%) Is
séquivalent to tgg standard equation in the literature for the activated
i
complex theory.

Example 2. Circular Cylindrical Coordinates.

We take q1 = r and q%mose when r and O are the

1
usual polar coordinates. The qSlN’s are given byt

- 2
¢11 %12 %13 1 (-1/4Y) -1
2 i
2 N
931 935 933 0 ° 1/

The reaction coordinate is taken to be along the arc of a

circlle and, therefore, to be q2. Use

of this coordinate system implies that the potential energy
surface, plotted in mass-weighted coordinates, is symmetrical

along qr about the saddle-point region,

2

From (25) ¢¢21, olo) 2 and ¢¢23 are found to be

2
l/q1 » 1 and O, respectively. Hence,«y, or <, but not “G may
be picked as o to avoid a singular transformation .

To show the approach of Eg. (21) to-a Cartesisn formula in this case we shall

select a,,since the Vé¥=equétion (and henceff) depends only

on o, The VB-eqUation dépends only on Gz, which takes on
: 2

discrete values. The W&-equation depends on o - g = az/(ql) . For any

preassigned value of ag,cx'»otj'then takes on discrete values.
Let o' = o - Qe Noting -that aj = oz + a', Eq. ()

becomes

22‘.




23.

k¥ —AU/kT_3 f
s

< (a,) ,1' q'/kT<—-? a', ] d az/kT

k =
rate 2

where ng denotes Zd‘ exp(-OI3/kT), the partition function for
3
all coordinates of the activated complex other than gl and q2,

and where < > denotes an average value:

t,2 i t2 i ]
CLy=SIvle T8 T ad/IyiT e Tt

The average depends on the subscripts indicated in (26), «' and
&, ,because ' depends on them,

Thé vibrational motion in the plane of reaction (coordinate ql)
is coupled to that along the reaction coordinate q2 vid a constant
of the motion,cxe. The remaining motions of the complex,

described by the #%- equatlon, are dynamically uncoupled from

these two.

The resemblance of Eq. (26) to the Cartesian result (24)

! 1 !
is increased by introducing a,, a, and K :

1 2

Gy = 0y - a3 - az/q% (28)
ay = az/ay | (29)
k' (ay) = Klay) (30)

where qé is the value of q' at the saddle-point. Equation (26 becomes:

1 2 !
— AU /KT ¥ -  -a,/xT q! -, /KT
_xr 74 AT gt , {4; ea’/ (e 5l e Jay /KT (31)
rate h Q - a) q12

The transition of (31) to (24) may be seen by studying the

behavior of the former in the'region where the curvature of each coordinate

curve near the saddle-point is small. The curvature of the ql




coordinate curve is already sero. The curvature of the g?

curve passing through the saddle-point is equal to the reciprocal of
the radius vector there, i. e., to the value of 1/q' for that curve.
When q' is very large, q' undergoes only small fractional variations
during any typical motion of the activated complex, and may be replaced
in (31) by its value at the saddle-point, qo'. Similarly, in the ¥,-

i

2 2
equation, the a,/q' becomes az/hg‘ .

s .
" Then, a; becomes an eigenvalue of the ¥,-equation and, also, the sum in

(31) becomes independent of a,. One obtains:

1
£ VATS kT
kraﬁe qéh,oo E% % e N%az) e da , /T (32)
%,

where Q# equals Qf 2%; exp(—a:/kT). It is the partition function of the
activated complex for all coordinates but the reaction coordinate. Eq. (32)
is in fact identical with (24).

In Appendix II it is also shown that the separated wave

equations become those for the Cartesian case. This reduction and that.

given below for Exﬁﬁpie 3 can-presﬁﬁébi&falso be used to suggest physically
motivated apﬁroximations in (31) to simplify the integration-sumnmation when
the curvature conséquences of the metric in the vicinity of the saddle-
point are slight.

AWe conclude this section with some remarks on the use of Eq. (22)
to calculate krate’ For this calculation it is convenient to introduce

ay defined above (it equals a,-a;) and to note that da, ecan be replaced by da1'. Eq.




(22) may then be summed over the discrete values of a,, yielding:

- U/kT - /kT '
G ' fg Z;'C(az),e D s ar (33)

k = a

rate

im0
I

Noting that for any given value of “1' the solution of the fq-equation
yilelds the allowed values of a,, ik may be calculated for these a,'s,
summed as in (33), and finally the latter may be integrated. For systems
in which almost all of the activated complexes are formed in their lowest

ql-vibrational states the first term in the sum suffices.

25.
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Example 3. Elliotic Cylinder Coordinates.

This coordinate system contains an added parameter, d, and
therefofe offers a somewhat more flexible choice in matching the separable
and nonseparable‘energy surfaces over a larger distance from the saddle-
point. When 2d, the distance between the foci of the confocal ellipses
vanishes, the coordinate curves degenerate into those for the circular

cylinder system and (34) and (35) become identical with (25) and (26).

Coordinates q' and q? are introduced. They equal (ry + r,)/2 and (r, - r,)/2d,

vhere r; and r, arec the distances of a point in the plane to the twr foci.

The matrix of 4 's 15:10
n
e . N
7 - 1/(qt - d?) a1
/ta (34)
2
a2 1/(1-q? ) -d?
N0 0 1 ’f

As a reaction coordinate one may select a hyperbola or the
arc of ellipse; qr then becomes q' and q?, respectively. We consider the

r = 2 case first.

(a) Reaction coordinate along arc of ellipse:

When the potential energy surface)plotted in mass-weighted
coordinates,is symmetrical about the activated complex region,the saddle-

point will occur on the major or minor axis of the ellipse, i.e., at q°= % 1 or O,

respectively. -\\\9
. ! ' 2 -1
The quantities gg?', gg??,4d?3 equal: :(q' -d?), 1 and O,

respectively. Accordingly, only the choice of a, = a3 is forbidden
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in Eq. (21). We taske a, = a, to show the approach of (21) to the Cartesian formula.
The ¢ ,-equation depends only on a,, which therefore has

. 2 -

discrete values. In the Y,-equation, z;aJ 4,v equals a, - a3 - oz (q' -d%).

For a preassigned a,, ay - a5 therefore has discrete values. The V,-equation

is to be solved to obtain K . It contains %?ay dZV , 1.e. (a1 - a3)d2
21

+a, (1-g% ). K is seen to depend on ay; - a3 and on a,.
Introducing a' = a, - a, the expression for krate becomes
a SO Y S T L Naw s (35)
- —3 ! a
rate n © Q Z K(az, a') e < 2 > 2
Qs ay q1 -4

" where Qf = zé exp(-a5/kT) and where the average, ¢ », is defined in Eq.
3
(27). |
The approach of expression (35) to (24) can be seen by

examining the behavior of (35) when the curvilinear effects of the

metric are small near the saddle-point.

(b} Reaction coordinate along a hyperbola

For a symmetrical potential energy surface the saddle-

point occurs on the transverse axis?? of the hyperbola, i.e. at q' = d.

L 2=1 i
Since gg'', g4'? and 4¢'3 equal = (1-g® ),~d? and O, respectively, only

the choice of a, = a3 is forbidden in (21).

When the approach to the
Cartesian case is 1nvestigate§"it'is noted in Appendix II that d tends to
zero. Thus, only the choice of a, = a, is permiésible for ihvestigating
the approach. For calcuation of krate in general, however, ak = g, Or a,

can-be used. For brevity, a detalled investigation of the approach will
will be omitted.
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E le L. P i inder C inates

Because the symmetry of the two perabolic coordinates,
it makes no difference which of the two ié selected as reaction coordinate.
If the potential energy surface is symmetrical about the activated com-
plex region, the saddle-point occurs on the axis of the confocal para-
bolas.

Effect of Rotational Motion on krg&g

In calculations of reaction rate constants rotation-
vibration interactions are normally neglected. They were omitted in
the derivation of (21) and (22) by making some of the g'° conataﬁt and,
thereby, some of the dﬂV constant or sero. The influence of the
interactions will now be considered for completeness. Although this
neglect is normally quite justified, there are a number of related
problems where their inclusion is a matter of some importance. Fdr
example, the rates of unimolecular dissociation are influenced bty
the centrifugel potential in the molecule. Calculations of the
dependence of ths dissociation rate on the energy of a decomposing

molqcule should allow for it.




In the first approximation a "diatomic approximation“ may
suffice. In the latter only the rotational-vibrational interaction
associated with a rotation involving the two largest moments of inertia
is considered and one may proceed as follows:

In this "diatomic approximation”, the Schrodinger equation
has a form permitting separation of varisbles according to the formalism
described earlier. The wave equation is first separated into equations
for the translational (center of mass), rotational and internal motions
using this formalism. The equation for internal motion now contains a
rotational constant of the motion, which appears in a centrifugal
potential term. The sum of the potential energy and of this centrifugal
potential has a saddle-point when the original potential emergy function
has one and when the centrifugal distortion is not too large. A suitable
system of internal coordinates is then introduced to permit this effective
potential energy surface to be approximated by a surface permitting sep-
aration of variables, as described previously. Thereby, the choice of
the rgaction coordinate vili:;:;end on the rbtational state of the
activated complex. With this qualification in mind, Eqs. (21) and (22)
again apply, but now the summation over the rotational a should be
made only after the other summations and the integration have been
performed. ' |

A slightly méré generaliapproach would be to neglect the
vibrational ﬁngular momentum as before and to t?eat the activated com-
plex as a symmetric top. Althdﬁgh separation of rotational from internal

motion does not fall within the previously described formslism, one can

29.




easily effect the separation in a standard way. The separated equation
for the internal motion contains rotational constants of the motion and
can be treated as in the preceding paragraph. Once again, the summation

over the rotational a's in Eqs. (21) and (22) would be performed last.

30.
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Appendix I. Evaluation of (? pr/ ‘ﬂk) Ne

We first note that when a set u contains a single coordinate,

a, Eqa. (4 ) reduces to:

i
L
L
+
e
1
(U =

e 4"1,\) v, (A1)

The semiclassical approximation for wr is then derived in the
standard way by letting ¢y equal exp (1 Sryh),with sT ex-

panded in a power seriles in fi:

r r % » K2 r o
= - — AL)
S SO+131+(1) Sp + .. (

Retention of only the leadlng term yields the classical ex-

pression
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SO is a’function of qr and of the ¢g's, and aSO/a_qr is the

momentum pr conjugate to qr._ Hence, we have:

. m '
2. : r ,/\ 1,1, \
Lps o+ Xp (@) = T oo, by (D) A
2 ' r
» v=1
We chall also need (AS), obtained by multiplying (9 ) by
"
%u- and integrating over ld‘g‘“f‘, a symbol for the product i=1p dq"t,
[ x K n | 1
(H +X £)yadad*= 5 « 8 £ ¢y aq
Jq’“ | M P'yll“" v=1 " v .u"'u u9~ As

M continuous variation of pr at constant discrete quantum number
)\ will cause a continuous warlatlion in some of the “JS’ and
zero varliation in the others, Since the otp's enter the
.separated equations, some of-the \{» 's are continuously
. altered, with no change in number of nodes s While others are
unaffected.0nletting the «,and '/:“ in each of these m-1
equations (AS) @rith/,(*r) undergo their variations resulting
from a change in Pr"SAPr’ and noting that the differential

operator is Hermitian? one finds:
e

8, (H,u+ TR c#w RN ~

8y (H + X 4f | £) 4 agH
. , - %o o
+ ll‘u H woou v ?u.v ¥ wu ~

C

n
MB

l* 4
jsbuv V] u‘bu Sv
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Because of Eq, (9 ), the left-hand side vanishes for the

exact wave function, Hence,

* u
" f Buv T ¥y 4,99, =0 u#r AC)

From Eq. (AY) one also obtains:

s

m ' '
' H /**. )
= Dp_ 6D AT

On solv ing Eqs. (Ae) and (A7) for Jo(k in terms of &‘};r by
23
means of Cramerk rule one finds:

Pp 5pr{2 (- 1) I- f¢uv M lU,Ul dq ]}(-l)

60'k = ' V#k (Ag

g( L?‘r fﬁwp. )ulwl J¢rv

whefe P represents an’ even or odd permutation of the Vh
(£ =1 to m) from the standard order 1, ...., m. By in-
terchanging the order of operations in the denomlnator

of (AB), 1t can also be wrltten as

|2' daq* ) (A
~»

r P _ ’
,J : .(-l) ¢b"r Pgr(%”y 8! !uH
p#r |

- If ¢ denotes the determinant of the ¢uV’ this integral

becomes




Similarly, the numerator of (AR) becomes P,tp, multiplied by

such an integral with % replaced by an m-1l x m-1 cofactor

namely, the cofactor of 3 in 3, Because of (/0) this

rk
cofactor equals 3 ér.'k. One thus finds with the aid of (18),

S, = pp SPe (¥, ¥, [ f1e")® qb,E.- £0

We may thus conclude that (apr/aqk)\ equals the value used
in the text.

34
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Appendix II. Approach to the Cartesian Case

The curvature of a ql— coordinate curve in the plane
of reactioﬁ,lf(i), for any of the cylinder coordinate systems in
Examples 1 to 4 equals '(B log gii/B qj)/2 ‘g?’j | , where qj is the other

coordinate in the plane of reaction. Since the element of arc length

J

along the gqY-~ coordinate curve is dsj, where
ds, = gé dq , (A11)
J 33 .
one can also write:
_ 1| dlog .
K(i) = 2‘ N €14 I (A12)

s,
J

The %, - equation, Eq..(Al) with r replaced by i,can be

congerted to a form more suited to the present proof. We first write gl/ 2
as (g;, 843 gz)l/ 2, vhere g, is the determinant of the g 's in the set
# = 3. In the case cf no dynamic coupling between the set p = 3 on the

i and qj on the other, g8, is in-

one hand and the other two coordinates q
dependent of qi and qj. In the numerator of (Al) f‘i is now multiplied by
1/2

(g / A 1},}( 1/2 3; f“) Eqs. (13) and (A11) ere next used. One then

ety
notes from (11),\3

and g“ equal pfﬂ and dj]:, since 1 and j are one-
dimensional sets. Since g, 2#7;. fp, and dgfil commute with d/dq1 one

finally obtains
a% ., |
—3 e +&-¢11(x +ia|} o) % =0 (A13)

+ K
de; (3) dsi n? | v=1 .

!
where « (3) equals + ulog gn/é ’j’ and 8o has the same magnitude as
vc( 1)° An equation similar to (A13) obtains for 4 with 1 and j merely
interchanged.




For the curvilinear case to approach the Cartesian one
several conditions must be fulfilled. (a) The curvatures r(y) end
K(j) must become negligible in (Al13). (b) Jil Ki in (A13) mst tend
to become a function of qi alone. (c) Eggél'ﬁiw o in (A13) must become
approximately constant over the relevant region of configuration space
near the saddle-point.

We consider Examples 2 and 3 individﬁally.

(1) Example 2. From (A11), (A12) end the known'Z,,'s the limiting case

of vanishing curvatures of the curves passing through a point occurs

~ when ql tends to infinity. The term ﬁil Z,a g,y 18 given by (28)
v Y 949

and (29) for 1 = 1 and 2, respectively, with qo1 replaced by ql. When
ql has some large value, qol, fhis term becomes essentially a constant
and so condition (c) above is fulfilled. Condition (b) is also ful-
filled. Finally, the nz' in (29) is the same as the one in (32) and
the proof is complete.

(11) Example 3. From Eqs. (A11), (A12) and the known g44's one may
find the conditions under which conditione (a) to (c) above are ful-
filled. They correspond to'large q1 and relatively small d. This case
then reduces to the circular cylinder case, namely Example 2, and will
not be considered further. If the reaction coordinate is that in
Ezample 3b, the chéice o, =@ is forbidden ﬁhen d tends to sgero. .Thus,
in that case q must be chesen as a, if one wishes to investigate the

approach to the Cartesian case,

36.
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n .
The kinetic energy in classical mechanics is 4 > gij qqu, so that the
Vs i, j=1

. . n :
momentum conjugate to ql, Py, is ;El giqu' " ITh-the systems being
. J = - ’

considered gij vanishes when i and j belong to different sets. Since the

ir

reaction coordinate is a one-dimensional separable set g°~ vanishes when

i £ r., It then follows that €ir also vanishes for i # r and Epp equals

1/g"F. Hence, p,. equals §"/g"F. Eq. (11) then shows that P. = dr/Brl

rrj

since hr = 1 and there is only one g , namely g”.
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This expression is deduced from the equation for the curvature in

generaligzed coordinates. See, for example, Eqs. (16), (18) and (19b)

of Reference 7, with N and 1 replaced now by 1 and j, respectively. The
cited value ofk(i) follows at once from these equations, when one notes

that all components of the curvature vector vanish except those in the

plane of reaction.




