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A Generalization of the Aotivateid Complex Theory of Reaction Rates 

brim between reactants and activated complex, a separable reaction co- 

ordinate, a Cartesian reaction coordinate, and an absence of interaction 

of rotation with internal motion in the complex. In the present paper a 

rate expression is derived without introducing the Cartesian assumption. 

The expression bears a formal resemblance to the usual one and reduces to 

it when the added assumptions of the latter are introduced. 

equation for the transmfesion coefficient contains internal centrifugal 

terPsa. 

fonnalisn for separation o f  variables in mechanics. 

can also be weakened and a rotational interaction included in the formalism. 

In applieations of the rate equation use is made of the recent finding that 

in the immediate vicinity of a saddle-point or 8 niniwnn a potential energy 

surf’ace can be imitated in some major topographical respects by a surface 

permitting sepanttion of variables. 

The new 

11 

The derivation emplays an extension of the Stackel-Rob61rtson 

The fourth assumption 

The separated wave equation for the 

reaction coordinate is then curvilinear became of the uaual curvature of the 

path of steepest ascent to the saddle-point. 

coefficients and rates can be made and compared with those obtainable from the 

Calculations of transmiesion 

4 usual one-dhnsional Carteqian-like calculations on the one hand and 

with some based on the numerical integration of the n-dimen8iOMl 

Schrodinger equation on the othera An application to a common three-center 
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Introduction 

In  activated complex theory the  reaction coordinate has 

been assumed t o  be Cartesian and, i n  quantum mechanical treatments a t  

least, t o  be dynamically aeparable from the other coordinates. 

of  any rotat ional  constants'of the'motion onthe internal  motion of the  

activated complex has normally been neglected,and equilibrium between 

reactants and activated complexes has been assumed. 

L 2  
The effect  

3 

4 

5 
In  the  present paper and i n  a companion one on the c lass ica l  

mechanical formulation,this activated complex theory is generalized by 

1, 

i 
Ir 

extending it t o  curvil inear reaction coordinates and, within cer ta in  l imitations,  

by inc3luding the e f fec t  of the constants of the motion on the in te rna l  motion 

of t h e  activated complex. 

made in t he  quantum formulation. It now has,,wider appl icabi l i ty  

than before because of %he avai lab i l i ty  of a recent loca l  approximation method 

for nonseparable surfaces. Separabili ty will not be assumed i n  the classical  

mechanical formulation, however. 

The assumption of separabi l i ty  w i l l  be 
50-e .Q h a t  

'7 

5 

The desirability of extending activated complex theory to 

include curvilinear react$on coordinates is clear  from an examination 

of the loca l  topography of the potent ia l  energy surface near the saddle- 

point, when t h a t  saddle-point occur$ : The path of steepest ascent t o  t h i s  point, t. 

"reaction pfh':is d o s t  invariably 8 curve i n  mass-weighted configura- 

t i on  space, ra ther  than a s t ra ight  line, In some major topographical 

respects t h i s  surface can be matched loca l ly  by one permitting separa- 

t i on  of variables. The reaction coordinate is then found t o  be curvi- 
7 

l inear .  This coordinate is this approximately separable one near the saddle-point,, 
a coordinat,e which leads from the "reactants'  region" of mass-weighted conf igura- 
t ion space t o  the products' region in that neighborhood. 



. 

2. 

8 
Except i n  computer calculations or  i n  ear ly  discussions 

9 
based on t h e  motion of ba l l s  on surfaces, the  dynamical e f f ec t s  o f t h e  

curvature of the reaction path 

the literature. The curvil inear 

character gives risedynamically t o  a centrifugal e f fec t ,  an ef fec t  

smaller a t  t he  saddle-point than at  a short distance from it, where 

the  k ine t ic  energy i s  greater. 
7 

As discussed i n  d e t a i l  elsewhere the 

net r e s u l t  is t o  make the  reaction coordinate i n  mass-veighted con- 

f igurat ion space have a smaller curvature than the  reaction path. 

The centr i fugal  e f fec t  introduces a coupling between the reaction 

coordinate and the vibrations of the complex, j u s t  a s  the  rotat ion 

of a molecule as a whole can influence the  latter's vibration by a 

centrifugal pdienlial. The,effect occurs i n  c l a s s i ca l  mechanics and, 

phrased in terms of probabili t ies,  i n  quantum mechanics when the 

&bo v e  

system haa enough energy to surmount the barrier. At l a w  energies 

nuclear tunneling oacurs and, the fowulae ewggest, so does a non- 

a lass ica l  centrifugal effect ,  negative i n  nature. 

We cons ider  f i r s t  the case where ihe depenaem.. cf :.hi 

p r o p e r t i e s  of t he  a c t i v a t e d  complex on t h e  r o t a t i o n a l  cons t an t s  

of t he  motion can be neglec ted .  I n  a l a t e r  s e c t i o n  t h e  e f f e c t  

of t he  r o t a t i o n a l  s t a t e  on the  behavior  of t h e  a c t i v a t e d  complex 

i s  considered.  

The bas i c  equat ion ,  Equation (21 )  below, reduces t o  t h e  



3. 

usual activated complex expression when the reaction coordinate is 

treated as a Cartesian one. Equation (21) may be used to consider 

several nonseparable n-dimensional problems by introducing into it 

the local approximation method mentioned earlier. lo Comnarison 

with com?uter calculations will then Dermit an assessment of the 

useful range of that local aDproximation and should a l s o  facilitnte 

the physical interpretation of such calculations. 



4. 

Schrodintzer Eauation and Seaarated Eauations 

Certain curvil inear coordinate systems w i l l  serve as bet te r  

s t a r t i ng  points f o r  finding separable approximations t o  the non- 

separable potent ia l  energy function. We s h a l l  suppose that a co- 

ordinate i n  one of these has been selected ae the  reaction coordinate; 

the  process of making the  selection has been b r i e f ly  discuesed else- 

where. 

reaction involving a l inear  activated complex (A + BC +-AB + C) the  reaction path 

i n  mass-weighted configuration spce  leading from reactants t o  

products is a curved one. 

saddle-point region, c i rcular  cylinder, parabolic cylinder, o r  

e l l i p t i c  cylinder coordinates are  much moye appropriate than  t h e  lxsual 

Cartesian ones. 

the c r i t i c a l  point and the reaction path both be curved i n  this space, 

and should one wish t o  include t h i s  feature,  only parabolic or  e l l i p t i c  

cylinder coordinates would be appropriate. 

7 
For example, i n  the case of a three-center atom t ransfer  

For such paths in the v i c in i ty  of t h e  

Should both the vibrational path of steepest ascent from 

7 



I n  curvil inear coordinates q 1 ,..., qn the Schrodinger 

11 
equation has t h e  form ( 1 ) 

H v  = dly , 

where H is t h e  Hamiltonian operator, W 

wave function of the en t i r e  s y s t e m .  

the  t o t a l  mergy, and v/ the  1 

5. 

Cli 

2) 

S The q are generslieed coordinates, and U i s  the  poten t ia l  energy; 

is a contravariant tensor conjugate t o  the  metric tensor get appearing 

i n  the  l i n e  element ds i n  mass-weighted space: 

of the gSt 

12 

g is  the  determinant 

i where x is a Cartesian coordinate of an atom of mas8 mi; the coordinates 

of the k l t h  atom are given @ i = 3k, 

Q 

3k + 1, 3k + 2 . Both gst and 

st are symmetric tensors.  



Under c e r t a i n  condi t ions on U and on gSt, i!?q. (1.) 

can be separated i n t o  m ind iv idua l  equations,  each 

depending on i t s  own set of var iab les .  The wave 

funct ion then becomes ( 5 ) .  

13 

m 

p=1 
2 ) 1 =  a u’ p 

where ‘8‘ 
p a r t i c u l a r  case  of t h i s  separat ion one could s e l e c t  

one set of va r i ab le s  t o  cons i s t  of a s i n g l e  va r i ab le ,  

t h e  reac t ion  coordinate ,  qr, and s e l e c t  a second set t o  

consist of a l l  remaining coordinates .  

Under t h e  assumed conditione gst vanishes when s and t &long 

t o  different sets. 

i s  t h e  wave funct ion f o r  t h e  p t t h  set. As a 
1J. 

I.e., m = 2 then. 
I3 

As a resul t  of t h e  separat ion t h e  Hamiltonian 

operator  has  t h e  form ( 6  ) .  
13 

m 

where I& i s  a Hermitian d i f f e r e n t i a l  operator(7j.The 

p o t e n t i a l  energy U is of t h e  form ( 8), and$p1 and f P 
are defined below. 

6 .  

( 5 )  



The separated equations are: 

m 

(Hja + xpfJ ‘k, - - $5 %?ilr) fp+p ( 3) 

Ci is the  i ’ t h  coordinate i n  set p ( there  are 5 such coordinates), 

and fr  is the h ‘ th  root of the  h x h determinant of the Pi”j. 
The quant i t ies  +&+ and ?i’j depend only on the  properties of the 

metric. 

and are independent of the  potent ia l  energy function j 5 also 
depends only on t h e  coordinates of set p. The $pd a re  conjugate 

P P -  P 

They are functions of the coordinates i n  the p ’ t h  set only 

t o  the pv and may be called the Stgckel coefficients. r %  

The are given by ( 1 1 )  and the  Pipj by (12) .  

where i and j = 1 t o  . kz1 



8.  

The determinant of t h e  C#' , q, i s  related t o  g and t o  t h e  c13 
f :  
CL 

Various coord ina te  systems f o r  which separa t ion  
I % /  6 of v a r i a b l e s  can be made have been described by Eisenhart  

f o r  t h e  case where h = 1 f o r  a l l  w .  
corresponding + 1 s  and f f s  and h i s  results can b e a t  least p a r t l y  

adapted t o  t h e  present  case where h 

Typical apprcximations i n  t h e  l i t e ra ture  of molecular 

H e  has  given t h e  I-L 

P Y 

need not  be  uni ty .  
c1 

dynamics correspond, i nc iden ta l ly ,  t o  s e t t i n g  many of 

t h e  $J v,, ' s  equal t o  zero and many of the gm equal t o  iero 

or t o  constants. 
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The Local Awr-tiw 

As .F e n t i o  ne d 

,earlier it w i l l  be supposed that it has been possible t o  describe 

a coordinate sylstem such that one of the coordinates is dynamically 

separable fron a l l  remaining coordinates in the activated complex region 

and tends t o  lead i n  this v ic in i ty  from the reactants1 "region" 

producte' one. T h i ~  coordinate is then the "reaction coordinate". 

t o  the 

Uhen the potent ia l  energy f'unotion b e  a saddle-point the choioe of 

this s q a r a b l e  coord jh t e  could be made ae desekibed elrsewhere.' (The 

potent ia l  energy surface its approximated by one which p e w i t s  separa- 

t i on  of variableaml') The reaction coordinate forms ene of the s e t s  

p mentioned earlier. 

Since onlp the  nonseparable potential energy surface i n  the v ic in i ty  

of the  saddle-point region is being approximated by a separable 

surface, the groperties i n  the separated aysteni for  the degrees of freedom 

other than q 

maatants . 

It w i l l  be described ty se t t ing  p q u a l  t o  r. 

r are thwe of the activated complex ntther.tkn d the 

T a r e n t h e t i c e l l y ,  it may bd noted t h a t  t h i s  matchi.-g cf 

t h e  two energy su r faces  w i l l  norma1:y be poorer  f o r  conf iTura t ions  

f a r  from the  a c t i v a t e d  ccmilex r eg ion .  

s c a t t e r i n g  of t h e  i n c i d e n t  weve along til-. r e a c t i o n  c o o r d i l a t e  occurs  

However, when most of t h e  

near  t h e  a c t i v a t e d  com?lex reg ion ,  t h i s  Doer f i t  fcr conf lgu ra t ions  

remote from those of thr com?>lex w i l l  o r l y  be cf minor c r n : ~ ~ m .  

Since the  wavelength (more p r e c i s e l y ,  t he  recinroc- '  f-x comb7cr.wt 



10. 

r of t h e  wave v e c t o r  along q ) i s  l a r g e  i n  thr ;cr,ivated com.crlex reg ion  becaustb of thc 

1~ kinetic e n e m  t h w 3  

r a n i d l y  t h e r e ,  most of t h e  s c a t t e r i n g  may i n  f a c t  cccurs .  i n  thnat 

reg ion .  Indeed, the  phase i n t e g r a l  e x w e s s i o n  f o r  tunnel ing  m i n t s  

and s i n c e  t n e  Do ten t i a l  energy changes 

l t y  

up t h i s  l o c a l  s c e t t e r i n g  c h a r a c t e r i s t i c .  

The coord ina te  curves  f o r  separeble  systems a r e  of’ two 

tyoes ,  oyen and c losed ,  t h e  former extending t c  i n f i n i t y .  Exars?les 

of t h e  c losed  tyoe  are c i r c l e s  and e l l i i s e s .  Such a curve would 

orovide a convenient coord ina te  only i f  most of the  s c a t t e r i n g  

occurred over a r e l a t i v e l y  small ?or t ion  of the a r c .  Then, the e r rc r  
actual 

of r ep lac ing  an,open pa th  by an a r c  of a c losed  one becomes minor. 

!+i cons ider  E R  examde 1.RtC.r. 



r 
reg ion ,  a long t h e  r e a c t i o n  coord ina te  q i n  t h e  separable  Do ten t i a l  

? r o b a b i l i t y  D i c t r i b u t i o n  

energy s u r f a c e ,  t h e  potent ia .1  energy v a r i e s  r e l a t i v e l y  l i t t l e  w i t h  

d i s t a n c e  and the  comnonent of t h e  momentum along t h i s  cco rd ina te  

i s  real  and r e l a t i v e l y  l a r g e .  C l e s s i c a l  c t a t i s t i c s  may tnen be used 

r for q t h e r e  but  no t  n e c e s s a r i l y  f o r  the  o t h e r  c m r d i n a t e s .  The W F I V ~  

r func t ion  of a d 1  degrees  of freedom but q w i l l  be denoted by + '  : 

r For any g iven  value of q and cf t h e  corijUgP LC; ' - 1 r  I vi' 

p t h e  s ta te  of t he  remaining degrees of freedom c2n be regad& a8 dgscrihble 1 r 
an 

by a ( d i s c r e t e )  quantum number 3 : I n  t h e  case  o f A i s o l a t e d  gasecus 

a c t i v a t e d  comolex molecule confined i n  ii vclume,even t h e  t r a n s l a -  

t i o n a l  s t a t e  can be regarded a s  quant ized .  I n  t h e  case of any 

a c t i v a t e d  comnlex i n  s o l u t i o n ,  a macrosconic subsystem can be re- 

garded a s  t h e  complex. I t  can be placed i n  a box and t h e  n-1 

degrees  of freedom regarded as g iven  rise t o  d i s c r e t e  e igenvalues ,  

cha rac t e r i zed  by t h e  quantum number >r, for purpo8eS of the present discussion. 

Insnec t ion  of t h e  se ra rg ted  equat ions  (9) and ( A 4 )  

(Amendix I )  shows t b t  f~ 

r 
For any g iven  value cf q 

converPely. Unlike 3 and q the a ' s  a r e  conc t rn t s  of t ' l e  rnotior., r 

denend,. on t h e  s e % r r t i o n  cons ten t?  a,,...a m' 

t h e s e  conPtPnts determine )r and 3 er.d r ' 
r 

c3 
however. 



12. 

The probabili ty of the system being i n  a quantum s t a t e  described 

by 

P( A, q , p,, T) A q r A p r .  We sha l l  suppose tha t  the reactants are  i n  

s t a t i s t i c a l  equilibrium with t h i s  system. 

system being i n  Aqr ~p~ and of having m y  given value of A 
and since the  number of quantum etatee i n  A q r A  p, i s  A q r A  pr/h, one 

and of being i n  any small element Aq%pr w i l l  be denoted by 
r 

Since the probabi l i t ies  of the 

are independent 

where the given values of pr, qr and automatically f i x  the t o t a l  energy 

06 and where exp(-Nl/kT) is the Boltzmann factor. Q1 is the par t i t ion  

function of the reactants. 

In any one of these quantum s t a t e s  we may take d q r  so small 

t ha t  none of the quantit ies 4 , giJ or g va- over it. P 
When a system is i n  any one of these quantum s t a t e s  i t s  

fn this ' -c inssjcaj  approuimation for th& 

coordinate,A(<) can be treated as a constant ovcr  Asr'. Integration 
- - 

' ,f1Jl'r g'"T dq i . ifr over a l l  qi show t ha t  A($) equals 1/Aq 

Thus, the probabili ty of find the  system i n  the range dpr i=r 
7 

and q denotes the t o t a l i t y  of coordinates (q' , e ,q n ) 0 *. 



For each ( d i s c r e t e )  value of A ,  a n y  cE tk a,< de-erds 

continuously on p except as noted below. The probabili ty of finding the r' 

system i n  d d  e dqi and i n  the s t a t e  is obtained by replacing dpr above by 
k . - P  

I -  I - 1  n 
Upw) denoting this probabili ty by P( dk, , q) d dh dqi 

i rl ru - 
and evaluating (de,/d$)A i n  Appendix I we f ind 

With the aid of ( 1 ' 7 )  it willbe possible t o  express the reaction rate i n  

a form involving summation and integration over the constants of the motion. 

mar s t ep  was not possible front (15) or (16). 

The above transformation from the (pr, 'h) space t o  t h e  

(d k, h )  space i s  permissible only f o r  those 

t o r  does not vanish, i.e. f o r  which #rk f 0. 

implies, as one can see from Eq. @lo) of Appendix I ,  t h a t  dk does not 

depend on p when A is,constant. 

fo r  which the denomina- 

The vanishing of f k  

he Id 
An example i s  ci ted l a t e r .  

r 
It w i l l  be convenient t o  introduce the notation: 

(Y' ,  4) - 
rk 

From Eq. (13) one has: 

( I S >  

Since $$rk is the  cofactor of #rk i n  the determinant j$ (cf E'q.10)' it does not con- 

t a i n  the r t t h  row #Tg and so does not depend on qr; ne i the r  does * f  p + r  Ll 
I 1  

and, so, neither does ( W  , V I  )rk. 

system were normalized so that  ($,$) 

would be normalized t o  unit incident probability current. 

If the wave function i n  the n-dimensional 

equalled unity, t h e  wave function 
I3 rl 
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Calculation of the Reaction Rate 

Total and potent ia l  energies w i l l  be measured re la t ive  t o  the 

potent ia l  energy of the most s table  configuration of the activated complex. 

Q1 then denotes the par t i t ion  function of the reactants measured re la t ive  

t o  t h i s  energy zero. 

reactants,  i .e.,  measured re la t ive  t o  the potent ia l  energy of t h e i r  host  

stable  configuration. I f b  U is the potent ia l  energy of the most s table  

configuration of the activated complex minus tha t  of the most stable one 

We l e t  Q denote the usual par t i t ion  function of the 

of the reactants then Q1 equals Q 

To obtain krate from 

multiplied by the velocity ;Ir, by 
. &he- 

exp(dU/kT). 

(17), one notes tha t  (iy) i s  t o  be 

dqi and by the transmission co- i#r 
ef f ic ien t  kc( d k  ,A) ,A. summed over a l l  and integrated over a l l  values 

f i n a l  expression f o r  krate i s  found t o  be: 



( k  = l , . . . ,  rn) 
where czl i s  a funct ion of dk and A .  

For any preassigned value of  

on discrete values, reflected by t h e  quantum numbers h . 
Accordingly, Eq. (20) can be  r ewr i t t en  i n  a s l i g h t l y  more 

4 -- ’ , a k J  t h e  remaining a’s t ake  -. __ 

symmetrical form : 

where r. denotes t o t a l i t y  of a’s, (al,,,,? am) and where 
each ‘y, i s  a f ~ ~ c t i o ~  of (Q,..,,? +l r h  ~ 1 , * . . , a  >. 

m 
When “k i s  taken t o  be alJ one f inds :  

-AU/kT - -a,  /kT L J’ F K(“> e dal/kT kT e =: -  

Q “I “i 
krate h 

The lower limit on a1 i s  -AU, though i n  p r a c t i c e  t h e  

exact va lue  of t h e  lower l i m i t  ha rd ly  a f f e c t s  krateJ 

s i n c e  most of t h e  con t r ibu t ion  t o  t h e  i n t e g r a l  comes 

from values  of a1 

values near  zero. 

near  t h e  top  of t h e  b a r r i e r ,  ice., 

In calculations of the rate constant i t s e l f ,  Eq. (22) 

appears to be t he  most useful form of (21) ,, at l east  when most 

of the actfveted ccmplexes are formed in low a vibrational s t a t e s  

for coordinates interacting with the reaction coordinate: Its 

\, 2 2: 



I t  t t  

use avoids the calculation of (rb ,J, )rl and (tl, ,$I )rk and also permits 

a direct comparison to be made of the values of k t  exp(-al/kT) for the 

curvilinear and for the usual Cartesian approximation. The cornoarison can 

be made as a function of a1 for each vibrational state of the 

activated complex. On the other hand, for an examination of the manner 

in which the curvilinear formula for kmtt approaches the Cartesian 

one, Eq. (21) uith some & other than is useful, as shown 

in some examples described later. 



17. 

Transmission Coefficient 

The transmission coefficient IC(OC) is  the r a t i o  of trans- 

mitted t o  incident probabili ty currents f o r  the given value of the 

constants of the motion, d .  To calculate K an expression f o r  the 

probabili ty current i n  curvil inear coordinates must be used. This  

expression has been given elsewhere i n  terms of the wave function 

along t h i s  coordinate. The phase in tegra l  method can be used f o r  a 

semi-classical estimate of )c , incidentally,  since the Schradinger- 

type equation f o r  the reaction coordinate (Eq. 9 with = r) can 

readi ly  be adapted t o  t h i s  calculation. An improved formula f o r  the  

semi-classical estimate, one which takes cognizance of the proximity 

of t h e  two t rans i t ion  points fo r  the case of energies below t h e  top of 

the  bar r ie r ,  i s  available and w i l l  be discussed elsewhere. 

13 

20 
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By way of example, we consider a three-center problem, 

A + BC-+AB + C ,  proceeding v i a  a l inear  collision-complex. 

weighted configuration space the  reaction path i s  curved. 

In  mass- 
4,21 

As mentioned 

ea r l i e r , t h i s  path can be matched i n  the loca l  approximation by the 

corresponding path f o r  a surface which permits separation of variables,  

The matching has been discussed previously and, i n  the following d i s -  
7 

cussion, w i l l  be regarded as having been performed. 

The plane defined i n  mass-weighted configuration space 

by t h e  tangent and principal normal t o  the reaction path, the osculat- 

ing plane of t h i s  path,will be called t h e  "plane of reaction''. 

many diagrams 

In  
4,21 

i n  the literature one assumes f o r  simplicity t h a t  t h e  

reaction coordinate l i e s  i n  a plane determined only by the AB and BC 

interatomic distances, mass-weighted as i n  Eq. (3  ) . The remaining 

degrees of freedom are  taken t o  be dynamically uncoupled from these 

two i n  phose discussions. W e  consider t h i s  special case first. 

I n  ~ I T Q ~  of the properties of a suitable coordinate system f o r  

matching of the potential  energy functions, the lat ter assumption leads t o  a 

choice of a cylindrical  coordinate system (Cartesian, circular,  prarabolic 

or  e l l i p t i c  g l inde r ) :7  The Z-axis, which is  normal t o  the plane of reaction, 

represents the s e t  of a l l  degrees of freedom but the  AB and BC distances. 

The la t ter  two coordinates can be used t o  describe any point i n  +,he plane. 

I n  Eq. ( 6 )  one hag then three sets, m = 3. 'With proper choice of 

coordinates one can diagonalize the kinet ic  energy contribution of the co- 
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" 

ordinates i n  the plane of reaction and normaliEe t h e i r  coefficients such 

tha t  for  two Cartesian coordinates i n  t h i s  plane t h e  gss a re  unity. One can 

choose a scaling fac tor  fo r  t h e  remaining coordinates (represented metrically 

by the Z-axis) so t h a t  the det g w is unity. 
(p=3) 

When the reaction coordinate i s  a r b i t r a r i l y  assumed t o  be a 
l , Z l  

st raight  l i ne ,  a s  i n  the usual treatment 

consider only two s e t s  9f coordinates, a s  i n  Example 1 below, 

i n  the  l i t e r a tu re ,  it suff ices  t o  

instead of three se t s ,  It is shown there that t h i s  neglect of reaction 

coordinate curvature permits one t o  obtain the stmdard l i t e r a tu re  r a t e  

expression from E q .  (21). The e f fec t  of curvature is then discussed 

i n  Example 2 using a circular  cylinder metric and i n  Examples 3 and 4 ,  

more brief ly ,  using e l l i p t i c  cylinder and parabolic cylinder metrics. 

When the reaction is  symmetrical, e.g., when A + BA +AB + A, the vi- 

bration of the activated complex in the plane of reaction is r ec t i l i nea r  

and Examplea 2 and3 apply*Hovever, when the vibrational coordinate curve 

i n  the plane of reaction is not a s t r a igh t  l ine ,  and when one wishes 

t o  describe this curvature, one of the coordinate qwtems i n  Examples 

3 or 4 should be used. 

a variety of ooordinate system. 

The various 6 ' 8 ,  f * e ,  and gstla a m  k n m  f o r  
P9 Ir 

15,16 
_ _  

The above cylinder coordinate systems can-also bg td represent 

a more general picture of t h e  three-center reaction i n  which additional 

coordinates besides t h e  two bond distances a re  permitted '60 contribute 

t o  t h e  plane of reaction. 

describing t h e  reaction path i n  mass-weighted configuration space, the 

osculating plane o f  the path would be taken t o  be the plane normal t o  

t h e  Z-axis. 

If one considers the n- dimensional curve 

One then proceeds as before. 
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Some applicationsof Eq. (22) t o  the calculation of the rate 

constant using some of the'follaring coordinate systems and reaction 

coordinates will be reported 

be concerned instead with an amplification of the p r e c e d i n g d i ~ ~ ~ s i o n ,  

with showing i n  Example 1 haw the usual activated complex theory equation 

The present discussion w i l l  

i n  the literature is e special case of Eq. (21), and with discussing 

i n  Examples 2 and 3 the approach of the curvilinear formulae embodied 

i n  (21) to  the Cartesian one. 

purpose will be described. 

A suitable choice of k for the latter 



21. - 

Example 1. Cartesian Metric. 

( s  f o r  t h e  Cartesian 
\-",..#--* - " %3 With mequal  t o  2 the  

16 
metric are given by (23) . 

One must first determine which #rkls i n  Eq. (21) vaish.3ince $#j is the  co- 

factor  of 6 i n  d, it i s  seen from ( 2 3 )  t ha t  only $I2 
ij 

1 is zero. Thus, i f  q i s  selected as t h e  r eac t ion  coordinate ,  

t h e  continuous v a r i a b l e  ak i n  Eq. (21) should not be taken 

t o  be  u2. 

i s  selected. 

d2. The V2-equation f o r  t h e  reac t ion  coordinate  then depends 

only on a2, so Kdepends only on a2' The vl-equation f o r  

t h e  o ther  degrees of freedom depends only on (al-a2), which 

thereby takes  on discrete values. They ere denoted below by tX1. 

Since a1 equals  (a l -a2 )  + a2, Eq. ( 2  1 )  then reduces t o  ( 2 ' ) :  

Otherwise, it makes no d i f fe rence  whether q1 o r  9' 
We choose q2 t o  be  qr and Uk t o  be 

r 

whereQ$ is t h e  p a r t i t i o n  funct ion of t h e  activated complex, 

# u p ( -  d: /kT' ) .  When tunnel ing is neglected,  ~ ( u ~ )  
% 

vanishes f o r  a240. I n  t h e  same c l a s s i c a l  approximation 

it  i s  uni ty  f o r  a2 2 0) as one sees a t  once from t he  Q 2  

equation. 



he-quivalent to the standard equation in the literature for the activated 
1) 21. 

complex theory. 

Example 2. Circular Cylindrical Coordinates 

We take  q 1 2 = r and q-cos 8 when r and 8 are t h e  
16 

usual  po lar  coordinates .  The $ps’s are given by; 

The r e a c t i o n  coordinate  i s  taken t o  be along t h e  a r c  of a 

c i r c z l e  and, therefore ,  t o  be  q . Use 2 

of t h i s  coordinate  system i m p l i e s  t h a t  t h e  p o t e n t i a l  energy 

surface,  p lo t t ed  i n  mass-weighted coordinates ,  i s  symmetrical 

along qr about t h e  saddle-point  region. 

From (25) gj$21, $$22 and @$23 are  found t o  be 

3 or “c2 but not 4 may 
l2 l / q  1 and 0, respec t ive ly .  

be picked as ak t o  avoid a s ingular  transformation . 
To show the approach el” Ec;. (21) to a Cart,ee%m formula in this case we shall 

s e l e c t  n2,s ince t h e  y2- equation (and hence K) depends only 
\ 

on C! The 7 equation depends only on 0: which takes  on 
2’ 3- 3’ 0 - q2/(q 1‘ ) .For an! - “3  d i s c r e t e  values. 

preassigned value of cx u - d  t hen  takes  on d i s c r e t e  values. 

L e t  0:’ - 

The Yi-equation depends on o1 

2’ I 3 

Noting t h a t  a1 = a3 + a ’ ,  Eq. (2’) - - n3‘ 
becomes 



+ 
3 where Q denotes exp(4 /kT), the partition function for 

all coordinates of the activated complex other than q1 and q , 
3 

d3 2 

and where < > denotes an average value: 

The average depends on the suoscripts indicated in (26),  e(' and 

a2,because 3' depends on them. 

is coupled to that along the reaction coordinate q2 v i a  a constant 

of the motion,d2. 

described by the 9 
these two. 

The vibrational motion in the plane of reaction (coordinate ql) 

The remaining motions of the complex, 

equation, are dynamically uncoupled from 3- 

The resemblance of Eq. (26) t o  t h e  Car t e s i an  r e s u l t  ( 2 4 )  
l 1 

i s  increased  by in t roducing  a , ,  u 2  and : 

where qb i s  t h e  va lue  of q' a t  t h e  saddle-point .  Equation (26) becomes: 

The t r a n s i t i o n  of (31) t o  (2.4) may be seen by studying t h e  

behavior of t h e  former. i n  t h e  reg ion  where the  curva ture  of each coord ina te  

curve near  t h e  saddle-point  i s  small. The curvature of the q 1 



coordinate curve is  already SOTO. The curvature of the  q2 

curve passing through the saddle-point is equal t o  the reciprocal of 

the radius vector there, i . e., t o  the value of l/ql f o r  that, curve 

When q1 is very large, q' undergoes only small f ract ional  variations 

during any typical  motion of the  activated complex, and may be replaced 

i n  (31) by its value at, the saddle-point, qol. 

equation, the az/ql 

Similarly, i n  the 4tl- 
.=- 2 

becomes a2/qg1 

1 

Then, a, becomes an eigenvalue of the $,-equation and, also, the sum in 

(31) becomes independent of a2. One obtains: 

1 

a1 
where Q + equals Q$ I exp(-a,/kT). It is the partition function of the 

activated complex for all coordinates but the reaction coordinate. Eq. ( 3 2 )  

is in fact identical with (24.). 

In Appendix I1 it is also shown that the separated wave 

equations become those for the Cartesian case. This reduction and that. 
. - .  

given below f o r  Exeuaple 3 can presumably also be used t o  suggest physically, 

motivated approximations i n  (31 ) t o  simplify the integration-s-tion when 

the curvature consequences of the metric i n  the v ic in i ty  of the aaddle- 

point are sl ight .  

I 

We conclude t h i s  aect,ion with some remarks on the use of Eq, (22) 

t o  calculate kmte. 

a l  

For t h i s  calculation it is convenient t o  introduce 
1 I 

defined above (it equals a,-a,) and t o  note that da, can be replaced by da, 



(22) may then be summed over the discrete  values of a3, yielding: cr$ 
I 

I 
Noting that f o r  any given value of a1 

yields  the allowed values of a2 ,  K, may be calculated f o r  these a 2 @ s ,  

summed as i n  (33), and finally the l a t t e r  may be integrated. 

i n  which almost a l l  of the activated complexes are formed i n  t h e i r  lowest 

ql-vibrational s ta te8  the first term i n  the sum suffices.  

the solution of the  ?,-equation 

For systems 



Example 3. ElliDtic Cvlinder Coordinates. 

This  coord ina te  system con ta ins  an added parameter ,  d, and 

t h e r e f o r e  o f f e r s  a somewhat more f l e x i b l e  choice  i n  matching t h e  sepa rab le  

and nonseparable  energy su r faces  over  a l a r g e r  d i s t a n c e  from t h e  saddle-  

p o i n t .  

vanishes ,  t h e  coord ina te  curves  degenerate  i n t o  those  f o r  t h e  c i r c u l a r  

c y l i n d e r  system and (34) and (35,) become i d e n t i c a l  w i th  (25)  and (26;. 

Coordinates q1 and q2 are introduced. They equal (rl + r2)/2 and (r l  - r2)/2d, 
where rl and r2 are the distances of a point in the plana, to the t w  foci. 

When 2d, t h e  d i s t a n c e  between t h e  f o c i  of t h e  confoca l  e l l i p s e s  

16 The matrix of 6 I s  i s :  
PV 

A s  a r e a c t i o n  coord ina te  one may s e l e c t  a hyperbola o r  t h e  

a r c  of e l l i p s e ;  qr then  becomes q 1  and q2, r e s p e c t i v e l y .  

r = 2 case  f i r s t .  

We cons ider  t h e  

(a) React ion coord ina te  a long a r c  of e l l i p s e :  

When t h e  p o t e n t i a l  energy surface,  p l o t t e d  i n  mass-weighted 

coord ina te s , i s  symmetrical  about  t h e  a c t i v a t e d  complex region,the saddle-  

p o i n t  w i l l  occur on the  major o r  minor axis of t h e  e l l i p s e ,  !..e., a t  q2= f 1 or 0, 

r e s p e c t i v e l y .  
2 -1 

The q u a n t i t i e s  bb21, d622,6jd23 equs.1 . . ( q l  -d2),  1 and 0, 

k r e s p e c t i v e l y .  Accordingly, only t h e  choice  of a = a 3  i s  forbidden 



27. 

i n  Eq. ( 21). We take ak = a2 t o  show the approach of (21) t o  the  Cartesian formula. 

The $3-equation depends only on a3, which therefore has 
2 -i 

discrete  values. 

For  a preassigned a2, a l  - a3 therefore has discrete values. 

i s  t o  be solved t o  obtain k . 

In the $,-equation, T a d  jdl4 equals a l  - a3 - a 2  (q' -d2). 

The $2-equation 

It contains T a u  jd2v , i . e .  ( a ,  - a3)d2 
2 -1 + a 2  (1-q2 ). & i s  seen t o  depend on a 1  - a3 and on a2. 

Introducing a *  = a l  - a3 the expression f o r  krate becomes 

+ where Qs = exp(-a3/kT) and where the average, e > , i s  defined i n  Eq. 
a 3  

(27) 

The approach of expression (35) t o  (24.) can be seen by 

examining the behavior of (35) when the curvil inear e f f ec t s  of the 

metric are small near the saddle-point. 

(b)  Reaction coordinate along a hyperbola 

For a symmetrical potent ia l  energy surface the saddle- 

p o i n t  occurs on the  transverse axis22 of the hyperbola, i . e .  a t  q' = d. 

Since 8jd1 l ,  jdjd12 and jdjd13 equal (1-q2 ),-d2 and 0, respectively, only 

the choice of ak = a 3  is forbidden i n  (21). When the approach t o  the 

Cartesian case is investigated it is noted i n  Appendix I f  that d tends t o  

zero. 

the approach. 

can be used. 

2 -1 

Thus, only the choice of % = a1 is pemlasible  fo r  investigating 

For calcuation of kmte i n  general, however, ~k = a1 or  a2 

For brevity, a detai led investigation of the  approach w i l l  

w i l l  be omitted. G 
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ExanDle L. Parabol  i c  CY1 inder Coordinates 

Becaum the tspmetry of the two parabolic coordinates, 

it makes no difference which of the two is selected as reaction coordinate. 

If the potent ia l  energy surf'ace is symmetrical about the activated com- 

plex region, the saddle-point occurs on the axla of the confocal para- 

bola8 . 
Effect of Rotational Motion on k ate 

In oslculat iom of reaction rata constants rotation- 

vibration interact ions am normally neglected. They were omitted i n  

the derivation of (21) and (22) by making $me of the  gra constant and, 

thembp, some of the 

interact ions will now be considered for  completenees. Although this 

neglect is normally qui te  jus t i f ied ,  there are a number of re lated 

problem8 where t h e i r  inclusion is a matter of some importance. 

example, the rates of unholecular  dissociation are influenced lq 

the centrifugal pa ten t ia l  in the molecule. 

constant or  mro. The influence of the 
li,' 

For 

C a l d t i o n s  of the 

dependenae of the dissociation r a t e  on the energy of a decompoeing 

molecule should allow f o r  it. 



In the first approximation a "diatomic approximation" may 

suffice. In  the latter only the  rotational-vibrational interact ion 

aseociabd with a rotat ion involving the two la rges t  moment8 of i n e r t i a  

is considered and one may proceed as followe: 

In  th i e  "diatomic approximation", the Schrodinger equation 

has a form permitting separation of variables according t o  the formalism 

described earlier. The wave equation ia f i r a t  separated in to  equations 

for the  t ranslat ional  (center of =sa), rotat ional  and in te rna l  motions 

using this PorsPalism, The eqaation f o r  i n t e n d  motion now contain8 a 

rotations1 conskant of the motion, whioh appears in a centrifugal 

potent ia l  term. The sum of the potent ia l  energy md of this centrifugal 

potent ia l  has a saddle-point uhen the or iginal  potent ia l  energy function 

has one and when the centrifugal d i s tor t ion  is not too large. 

system of in te rna l  coordinate8 is  then introduced t o  permit t h i s  effect ive 

potent ia l  energy surface t o  be approximated by a d a c e  permitting sep- 

arat ion of variables, as described previoualy. 

the m o t i o n  eoordinate wiU.,depend on the rotat ional  s t a t e  of the 

activated complex. With this qaalificiation i n  mind, Eqs. (21) and (22 )  

A sui table  

Thereby, the choice of 
770" 

again apply, but now the summation over the rotat ional  a should be 

made only a f t e r  the other summations and the  integration have been 

performed . 
A s l igh t ly  more general approach would be t o  neglect t h e  

vibrational angular momentum as before and t o  treat the activated com- 

plex as a symmetric top. Although asparation of rotat ional  from internal 

motion does not f a l l  within the previouely described f o m l i s m ,  one can 



6ld easily e f f ec t  the separation in a standard way. The separated equation 

for the internal motion oontains rotational constants of the motion and 

can be treated as in the preceding paragraph. 

Over the rotational a's in 

Once again, the summation 

(21) and (22) would be performed last. 
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Appendix I. Evaluation of ( pd a %) x. 

We first note that when a set contains a single coordinate, 

qr, Eq. ( 4  ) reduces to: 

The semiclassical approximation f o r  $ is then derived in the 

standard way by letting JI equal exp (9 Sr/fi)> wi th  S r  ex- 

panded in a power series in i?: 

P 

r r -r i s 2  r s = s *  + - s  + ( $  s 2 +  . . .  i 1  

Retention of only the leading term yields the classical ex- 

pres s ion 

,as, .2 m 



r 
So i s  a func t ion  of q and of t he  a ' s ,  and aSO/aqr i s  t h e  

momentum p conjugate t o  q Hence, we have: r 
r 

We s h a l l  a l s o  need ( A g ) ,  obtained by mult iplying ( 9 ) by 

rFr dqpi, ++ cn4 i r t e g s t i n s  over dq* a symbol for the product 
* 

. . w )  I i=l 

TContinuouz var ia t ion  02 p a t  constant  d i s c r e t e  quantum number 
F 

vdll cause a continuous va r i a t ion  i n  some of t h e  ~ J s ,  and 

1s en te r  the  % zero v a r i a t i o n  i n  t he  o thers .  Since the 

separated equations,  some of the 

a l t e r e d ,  with no change i n  number of' nodes, while o thers  a r e  

unaf fec ted0d7le t t ing  t h e  ci(,and 4. 
equations ( p s )  M t h P e )  undergo t h e i r  va r i a t ions  r e s u l t i n g  

from a change i n  1 ,$t, 
operator  i s  Hermitian7 one f i n d s  : 

' s  a r e  continuously 
+P 

i n  each of these  m-1 
P 

and not ing t h a t  t h e  d i f f e r e n t i a l  r *  

n 

32 



w Because of Eq. ( 9  ), the  left-hand s ide vanishes f o r  t h e  

exact wave funct ion.  Hence, 

From Eq. (A4)  one a l s o  obta ins :  

On so lvz ing  Eqs.  (A6) and ( A 3  for &d 
213 k r hi terms of xp by 

means of Craze& rule one f inds :  

where P represents an 'even o r  odd permutation of t h e  L)~: 

( 5  = 1 t o  m) from the  standaFd order  1, ... ., m ,  By in-  

terchanging the order of operat ions i n  t h e  denominator 

of (A8) ,  it can a l s o  be wr i t t en  as 

If + denotes the  determinant 

be c m e  s 

of t h e  + t h i s  i n t e g r a l  
uv' 

. .  



- . . . . . . . - .. - . . . - . . . . . . . . . . .. . . . .. . . .. . - .. - 

34 

Simi lar ly ,  t h e  numeretor 02 (48) becomes prep 

such an i n t e g r a l  with 6 replaced by an m-1 x m-1 cofac tor  

namely, t h e  cofac tor  of i n  3 .  Because of' (10)  t h i s  

Cofactor equals 0 Qrk. 

m u l t i p l i e d  by r 

rk 
One thus finds with the a i d  of (18), 

We may thus conclude t h a t  ( ? P ~ / ~ Q )  

i n  t h e  text  . 
equals the valueused 

J. 



Appendix 11. Approach t o  the Cartesian Case 

i The curvature of a q - coordinate curve i n  the plane 

of reaction, K f o r  any of the cylinder coordinate systems i n  

coordinate i n  the plane of reaction: ’ Since the element of a rc  length 

along the q - coordinate curve is  ds where j 
j ’  

one can also 

conwerted to a 

J J J  

write : 

The \PI  - equation, 1%. (Al) vith r replaced by 1,can be 

form more suited to the present proof. We first write g 1/2 

a8 (gii gj3 g%)’’; where 8, is the determinant of the grtls in the set 

gr = 3. 

one hand and the other two coordinateer qi and qj on the other, g 

In the uase of no dynamic coupling between the set p = 3 on the 

ia in- e 
dependent of q I and q 3 . In the numerator of (Al) g, is now multiplied 

dimensional sets. Since g ’ f ’ and 4jdi1 commute with d/dq i one 
B clfi P 

finally obtalna 

dYli+ 
ds i  

* 
where ~t equals 9 b log gii/a tsJP and 80 ha8 the 8ame magnitude a8 

(j) 
An equation rimilar to (Al3) obtains for 41 with I and j merely 

(j)’ 3’ 
K 

interchanged. 



For the ouwilinear cam t o  approach the Catrtebian one 

reveral  conditions must be W i l l e d .  (a) The curvatures K, and 
(i 1 

m a t  become negligible i n  (A13) .  (b) bil Si i n  ( A 1 3 )  lrrust tend 9 j )  
i t o  become a function of q alone. ( c )  ?bi1 bi,, a4 in ( A l 3 )  must become 

approximately constant over the  relevant region of configuration spgce 

near the saddle-point. 

We consider Exaples  2 and 3 individually. 

(i) ExamD1 e 2. From (All), (812) and the knavn'bgiils the l imiting case 

of vanishing curoaturea of the curves passing through a point occurs 

when q1 tends t o  inf in i ty .  The term bil L, a3 bit i e  given by (28) 

and (29) f o r  i = 1 and 2, respectively, with q: replaced 
1 1 

q has 80- large value, q, 

and so condition ( c )  ubove is f u l f i l l e d .  

f i l l e d .  

q'. When 

this term becomes eseent ia l ly  a constant 

Condition (b) is ale0 ful- 

Finally, the at in (29) is the same as the one i n  (32) and 
I 

the proof l e  complete. 

(ii) W D 1  e 1. 

f ind the conditions under which oondition8 (a) t o  ( 0 )  above are ful- 
l filled. They correspond t o  large q and relativelg small d. This case 

then reduces t o  the oircular  eylinder case, namely Example 2,and w i l l  

not be considered further. If the reaetion ooordinate is that in 

Example 3b, the choioe % = at i s  forbidden when d Lends t o  sero. 

in that case % must be chesen as a1 if one wishes t o  invert igate  the 

Pram ws. (All) ,  (812) and the known giils one may 

Thus, 

approach t o  the Cartesian case, 



SOC. 2, 29 (1937); E. Wigner, 2. physik. Chem. B a ,  203 (1932). 

M. G. Ebms and M. Bolanyi, Trans. Faredq Soc. 31, 875 (19351, employ 

an argument based on the  pa r t i t i en  function f o r  the  imaginary fre- 

quency,, a par t i t ion  function normally derived f o r  a r e c t i l i n e a r  (i.e,, 

Cartesian) vibrat ional  coordinate. 

Solids 2, 121 (1957), gives an elegant formulation f o r  si te-to-site 

G. H. Vineyard) i n  J. Phys. Chem. 

motion i n  crystals.  He assumes the reaction coordinate t o  be rec t i -  

l inear.  

dynamical properties of the  system infinitesimally close t o  tlie 

(n-1) dimensional hypersurface i n  configuration space defining the 

properties of an activated complex. (The t o t a l  number of coordinates 

i n  configuration space i s  n.)r, 
. "  

CIn- the' quantum treatment, the implications of the uncertainty principle 

eliminate such considerations. 

based on the  properties of t he  potent ia l  energy function over non- 

infinitesimal distances from the  a b v e  hypersurface. In t h i s  caee, 

however, the problem of separabili ty of the  equation of motion arises.  

For example, the angular momentum of the complex gives rise t o  a 

centrifugal potent ia l  whose influence on the  vibrationalmotion is 

One must employ instead a treatment 

3. 

usually, and just i f iably,  ignored. Tbere are  some instances, such 

as i n  bimolecular reactions of negligible activation energy,where it 

ahould be and has h e n  included i n  literature calculations, as w e l l  

as i n  those on the reverse unimolemlar disraeiation. 
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10 . 
11. 

12. 

13 

In some problems 

excited molecules, a loca l  equilibrium between a hot molecule and the 

activated complex fo r  i t s  reaction i s  assumed instead. (E.g., R. A. 

Marcus and 0. K. Rice, J, Phys. Colloid Chem. 2, 894 (1951); R. A. 

Marcus, J. Chem. Phys. 20, 359 (1952).) 

R. A. Marcus, J. Chem. Phys. ( t o  be submitted). 

The vibrat ional  angular momentum is neglected. 

ordinates are chosen t o  sa t i s fy  the Eckart conditions, however.) 

See footnote 14, Ref. 7. 

R. A. Marcus, J. Ch-0 Phys. 41, 000 (1964). Aug. 1 issue. The 

features which are matched are t h e  tangent, t he  first curvature vector, 

t he  first curvature, and the  force constant along each extrema1 

path 

Quantum calculations: 

(London) Spec. Publ. 16, 57 (1962) . 
Wall, L. A. Hiller, Jr. and J. Mazur, J. Chem. Phys, 3, 255 (1958), 

as i n  the unimolecular reaction of vibrationally 

(The internal  CG- 

- 

of ascent or descent t o  the saddle-point. 

E. M. Mortensen and K. S. Pitzer ,  Chem. SOC. 

F. T. Classical  calculations: 

ib id  2, 1284 (1961); N. C. Blais and Bunker, ibid 2, 315 (1963) - 
and references cited therein. 

S. Glasstone, K. J. Laidler and H. Eyring. Theory of Rate Processes. 

McGraw-Hi l l  Book Co., Inc. (1940) a 

Calculations are  i n  progress by J. Lane and R. A. Marcus fo r  n=2. 

E.g., W, Paul i ,  Jr. Handbuch der Physik, 5, 39 (1958). 

E.g., A. J. McConnell, A ~ ~ l i c a t i o n s  of Tensor Calculus, Dover Pub- 

l icat ions,  Inc., New York (1957). 

R. A. Marcus, J. Chem. PhyS.41,OOO (1964). A u g .  1 issue. 

I1 there shows how the formalism embodied 
Appendix - 



t 

i n  the equations of the present paper, ( 5 )  t o  (131, includes 

the influence of rotat ion i n  the case of a diatomic rotating-vibrating 

molecule . 
Germtqy 

14. P. G. Stbckel, Habi l i ta t ionsschrif t ,  Halle,^(1891) ; A n n .  Mat. Pure Appl. 

Ser. 2A, a, 55 (1897). 

15. L. P. Eisenhart, Ann. Math. 2, 284 (1934). 

16. cf. P. H. Morse and H. Feshbach, Methods of Theoretical Phvsics, McCraw- 

H i l l  Book Co., Inc. New York (1953) , p. 655 ff e 

17. This procedure is a generalisation of the customary one of in t ro -  

ducing the harmonic approximation for the  potent ia l  energy surface. 

The latter approximation r~orresponds in fact t o  the  reaction coordinate 

I 
n 
w 

curve being a s t r a igh t  l i n e  i n  n-dimensional space and t o  the remaining 

coordinate curves lying i n  a hyperplane. 

i s  the reaction path i n  this mesa-weighted configuration space, a 

path which is d i s t inc t  from the reaction coordinate. 

tangential  a t  the saddle-point. 

Normal t o  this hyperplane 

They are co- 

18. 1.0.) the W.B.K. cxpression,snch q t h a t  used by R. P. B e l l ,  Proc. Roy. 

Sot. (London) A&&, 2W (1935) or  that i n  Ref. 20. 
n 

The kinet ic  energy i n  c lass ica l  mechanics is 3 Z 

momentum conjugate to q , pi, is iE gij4J. .- Ih the systems being 

considered gid vanishes when i and j belong t o  different  sets* Since the 

reaction coordinate is a one-dimenaional separable set gir vanishes when 

i * r. 
l/grr. Hence, pr equals 4r/gm. E q .  (11) then shows that pr = 4r/f11 
since hr = 1 and there i s  only one g 

qiqJ, so t ha t  the  19. 
i n i,j=l ‘ij 

j=1 

It then follows that gir a l s o  vanishes f o r  i + r and g, equals 

r r  
j, namely glf. 



,. 20. Et. A. Marcus, J. Chem. Phys. ( to  be submitted). The discussion is based 

on some results contained i n  a recent book by J. Heading, An Introduction 

t o  Phase-Internal Methods, Methuen & Co., Ltd., London (1961) . 
E. g., R. E. Weston, Jr., J. Chem. Phys. 2, 892 (1959). 

. 
22 r 

22. A. B. Grieve, Analytical Geometry ( G o  Bell and Sons, Ltd. 1948), p.85. 

23. Beg., 0.  Schreier and E. Sperner. 
btrix 'Fheory. Chelsea Pub l i~h iag  Co., Hew Pork 2nd Ed. (19591, p.101,98. 

This expression is deduced from the equation for the curvature in 

generalised coordinatee. See, for exasple, JZqs. (161, (18) and (19b) 

Introduction t o  Modern Algebra & 

2& 

of Reference 7, with M and i replaced now by i and j, respectively. The 

c i ted  value of k 

that d 1  components of the curvature vector vanish except those in the 

plane of reaction. 

follows a t  once from these equations, when one notes (i1 


