-

.
Py

A Generalization of Activated Complex Theory of Reaction Rates

*
I1I. Classical Mechanical Treatment

ARETTE
R. A. Marcus " Vs iaﬁi

Departments of Chemistry, Brookhaven National Laboratory, Upton, N. Y., and

Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 11201

In its usual classical form activated complex theory assumes a
particular expression for the kinetic energy of the reacting system one
associated with a rectilinear motion along the reaction coordinate. The
derivation of the rate expression given in the present paper is based on the

general kinetic energy expression, A rate equation of the customar%{qug_oﬁmw\
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where F* is the free energy of a system constrained to exist on a hyper-
surface in n-dimensional space and Fr is the free energy of the reactants.
The usual derivation is then reinterpreted, in terms of geodesic normal
coordinates, to be somewhat more general than it appears,.

Normally, rotation-vibration interaction is neglected, as in the
above derivation, although not in treatments of some special reactions in
the literature for which the centrifugal potential is important, A

derivation is given which includes the influence of this centrifugal potential

and which omits coriolis effects.
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Introduction

A number of derivations of the activated complex theory
equation for chemical reaction rates have been published.' Several

assumptions normally made in the classical mechanical form of the theory
are the following:

1. For reaction to occur some n-1 dimensional hypersurface in the
n-dimensional configdration space must be crossed. (The hypo-
thetical system constrained to exist on this surface is
the "activated complex". The surface will be called the"reaction
hypersurface".)

2. The probability of finding the system in any part of the
2 n-dimensional phase space on the reactants' side of the above
surface is that calculated from equilibrium statistical mechanics.

3. A system striking the above hypersurface has unit probability
of crossing it and recrossings can be neglected. Thereby, the
transmission coefficient is unity.

4. The kinetic energy along the reaction coordinate has a very
simple form,p2/2 f, where p is the momentum conjugate to this
coordinate and p is a constant, and there are no cross-terms with p in the
total kinetic energy expression,?

In addition, the Born-Oppenheimer aporoximation is
normally employed. Sometimes thié approximation breaks down, the
reaction becoming quantum mechanically nonadiabatic. The rate is

then occasionally calculated with the aid of the Landau-Zener

equation, and some aporoximstions are contained therein.
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In the present paper assumption 4 is removed. Assumption
1 is later weakened by permitting the internal motions of the complex
to depend on rotational constents of the motion. HRemoval of assump-
tion 4 leads,surprisingly perhaps, to a rate equation formally similar
to the usual one of activated complex theory. The reason for this
behavior is described later: it is shown that if one reinterprets the
coordinates employed in the usual derivation as "geode§ic normal co-
ordinstes" no approximation in "assumption" J was sctually made. The

subsequent shortcomings of such coordinates for purposes of comparing with

e qﬁantum mechanical formulation are then noted. However, assumption 4 has

now been removed.

The present paper is confined to a classical mechanical
description. A related quantum mechanical treatment was given
earlie;?While the latter was more general than the classical treat-
ment in that quantum effectswere included,it was also less general
in that the assumption of separability of the reaction coordinate was made for
practical convenience in the quantum treatment but not in the class;cal
one. The feason for this difference has been described previously.

To be sure, the assumption of separability is less drastic than
formerly, because of the availability of a recently devised local
approximation of "nonseparable" potential energy surfaces by
surfaces permitting separation of variables.

One application of the present paper has been made else-
Qhere to electfon transfer reactionsgalt can also be applied to other

reactions in solution for which many degrees of freedom are involved
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in the definition of the activated complex and for which the usual

. 1.2
saddle-point dgfinition'need no longer suffice.

-



The Hamiltonian and Other Properties

The line element in mass-weighted configuration space, ds,

is given by (1).

n n
as? = S wa®)' = D g, dol dgd (1)
=1 1,3=1

where the xk are space- fixed Cartesian coordinates of the atoms (m3 r=m3r+1

3042 the mass of i
=m is A the T'th atom). The q  are generalized coordinates, and gy 3

7
is a symmetric, covariant second order tensor, given by (2):

n k k
k dx Pad 4 (Z)
:5 = m
TN I 2g]
k=1
The contravariant tensor conjugate to g j is gij:
n 3 3
iy . A __91.‘3 2q° (%)
¢ ) Z mk >x b;k '
k=1 :
n . n .
ij - i _ «1 \
E‘;’ €7 By Zj;: By 8 = by (4)

where Si is O or 1 according as itk or i=k.

The kinetic energy T equals #(ds/dt)? and so is given by (5)

in terms of the generalized velocities éi.

n
T= b 2 g4 d (
i,j=1

in
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Some of the qi's are usually rotations, with the result
that many of the gij are then neither diagonal nor constant. Since the
generalized momentum p, equals a(T—U)/Zbdi, where U(q',...q") is the
potential energy, p, is given by ((p).q From (4) To (&), Eq. ( 7)

10
is obtained for H, the Hamiltonian of the system.

> ] 6)
n 13 n P

H=4%2Z g’)pp, + UQ@Q,...q") (7)
i,j=1 J

We shall also need the line element,ds, in ordinary con-

figufation space:

n n N
2 — Z. k 2 - Z i j (L.‘)
ds? = 15 (dx)? = 351 %4y dq~ dq
where aij is a covariant tensor. The contravariant tensor alj is con-
jugate to it. Both are defined in (4 ):
o F x5 . F 2 bdd (%)
85 ~ Z i A N R A X
J =1 2q° 3gq k=1 3x  dx
. n . .
o, oo gl -
a a. = — a a = R
j:l Jk j=l kj k {
We shall make use of some resulte on determinénts. Becausé |
of the product rule,((l) follows from (2), and (\%) from (9 ).11
n n i ?
k/ - AX .
det g = T m (ﬂdet "_'f) ' (i1
i,J=1 1ij k=1 1,71 g
n n i 2 PR
a = det a = (’det ox ‘ ’ Loie
1,371 ij 1,751 vy '



The volume element in mass-weighted configuration

space snd that in ordinary configuration space will be denoted by 4T

e
and dV, respectively:

n
L .
dr (det gij)z l ]1 dq” (12,
i= .

n - : n
oL l I . n 1 7 . :

(det ai.)l dg’ = (det QX TT dq" (1=
I i i,j=1 dq’ i=1

av

Because of ([!), one obtains (I5) from (i2).

n " . ’El? i n _%_
we = [TT )V )aet 25 7T agts [T @) ay (15)
=1 dqY  i=1 k=1

The area element of a coordinate hypersurface on
which qN is constant will be denoted by d% and by 4S8 for mass-weighted
end ordinary configuration space, respeétively. These area elements
are the volume elements in an n-l dimensional space in which qu is

12
zero. Hence,

T
dq = (det gi.)z W dql (1%
i, M A
. N . ;-
ds = (det a, .)VZ —ﬂ_ dql ’

1,580 M i



Since ggNN and det g.., are each the cofactor of Enn
1,50

in g, they are equal. From (16) one then obtains (I8). Eq. (i4)

follows similarly from (!7), since both ae™ ond det s, are

1,5
the cofactor of &N in a.
i ]
a5 - (ggNN)% T gt (19)
i
1 (IQI
as = (aaNN )L —TT_ dql

17N
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Derivation of the Rate Equation for a Reaction Hypersurface Dependent

on Coprdinates Alone

When the "reaction hypersurface" depends on the coordinates
alone, it is independent, thereby, of any constants of the motion.
Otherwise, the latter would appear as parameters in the equation
of the hypersurface. The equation of this hypersurface, S, may be

written as

f(ql,.;.,qn) = 0 (on S)

A choice of coordinates can be made so that S is a coordinate
hypersurface for one of them, q¥. Thus, qF is constant on S, and can be
taken as zero on it. This surface will be a gF¥- coordinate hypersurface
both in mass-weighted and in ordinary configuration space.

The reaction rate is the net rate at which systems cross S.
It can be computed under the equilibrium assumption for the reactants as
follows: The probability thatia system in equilibrium with the reactants
will lie in a volume element of phase space, ;ﬁ; dqidpi, will be denoted
by,oir dqidpi, where Ais the equilibrium phase space density:

-H(p,q)/kT/ -H(p,q)/kT
JO = e e

i 20)
T dq”dp, ¢
1=1

On dividing the above probability by dq¥ and multiplying by &, the prob-

ability that the reacting system will cross the elementYT' dqi of the
itr
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. ‘ e .rﬁ - 1 _
hypersurface S in unit time is found to be (Jp 4§ des ) [ da™ | where lie
' - 11 i¥r

integration is over all p; such that only passages from the reactants'
'side of S to the products' side are counted. The rate constant is then

obtained by integrating over the coordinates,
k = f a* ¥ ap. T adt - (21
rate jo i=1 i i#r |

By definition of a rate constant pf a homogeneous reaction (it has units of
,moles/volume and time) the gq-integration in (2|) is such that three

translational coordinates of the activated complex are integrated over

a unit volume, Fér a heterogenebus reaction the integration in (21) is such

that the two translational coordinstes of the activated complex parsllel to

the interface of the two phases are integrated over a unit. area of the inter-
face.l4 In the denominator of (20) the intecration over the translational coordinates

of each reactant is over unit volume. )
On one side of S (the reactants', say), q" is negative and

on the other side it is positive, Accordingly, in order to count only
passages from one first side of S to the other, the integration in

(21) 16 such that §T is confined to the interval (0, + =),

- According to Footrote 10, &' 1s given by

- ! \
§r= & g Pj \

N}
o
~at

=1
For any given value of 4T, (22) represents the equation of & hyperplane in

momentum space. Integration in (2|) may therefore be performed as

follows: For any given value of (ql,...,qn) the p,'s are integrated
over the infinite half-space in momentum space, corresponding to zll

n .
variations in p, subject bo ;Ei gl Py lying between zero and infinity.
J=
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Z r

By integrating P, from - jFr g J pj/grr to eoand by integrating the

remaining pj from - epto e@this integration can be performed.

During

a subsequent integration over all qi other than i=r, q¥ is kept at the

value zero.
> e-—H/kT/ j,)pr' The p, integration yields (23):

o ~(FT=F)/&T

krate = h ¢
- #/}(T -H*(P,Q)/‘KT e i n_]
where e = /] e {{ dq dpi/h ’
ixr
-F/%T -H(p,q)/kT n .
e = // e ?? dqldp:/hn
. i=1

and H' isgiven by (26). It is the value of H when q"

oI

- q

Since 4T is T\H/?¥p?, 4T exp(-H/kT) equals -kT

= 0. Thus,

it is the value of H for a system constrained to exist on the hyper-

surface of 8.

where
r
Ut = U(ql...,q") et q =0
‘ - .3
# 1 aioj - ) Z-n lj.
=% Z g..4¢ =% g p.p
i,j#r 13 i’-j#r l\]
and
¥ ) ‘s -1
ir r, rr
g = Z [T T ]
i,Jj#r

i o7
The quantity glj is easily shown to be conjugate to gij

. r . - =
space for which dq° = 0, i.e., on the hypersurface, .

on

a guh-

s
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= 2 gy - by (1,57)
¥

F# is the free energy of the constrained system and F
is the free energy of the unconstrained reacting system. In both free
energies and in all subsequent free energy expressions the ususl
product of factorials, which corrects for indistinguishability of
like particles, is omitted for brevity. These factors cancel in
computing (23).

In passing, we note that Eq. (23) has been obtained

without introducing assumption 4.

Integration over the momenta in (24) ard (Z5) can readily

be performed. One obtains:

—F*/kT ol —U'*/kT
e = ( 2mkT) * | e ag /nPt (365
~F/T ) /‘ U /KT
e = (2mkT) = (/ e 4t /" (22

where df is given by (16) and dz by (13).

On introducing an effective mass m defined in the next

section, the expression for the rate constant becomes:

 # ,
. i kT $°8 / ~U /T
Koate '—'(kT/ZTl')/e ( m") do{ e av

where dV is given by ( I4) and dS by (17).

~~
N
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An Effective Mass

An effective mass, m#, for motion normal to S in
ordinary n dimensional configuration space may be defined in seversal
ways. A definition suited to our purpose is the fellowing: When
the momenmnnilis normal to S in this -ordinary configuration
space the proportionality factor of p2/2 in the kinetic energy will
be designated by l/h:f To evaluste mji one may proceed thus:

The covariantcomponep%s of a vector‘)L,of unit length

(magnitude ) normal to the qr—coordinate hypersurface S in this

. 15 . -l
space are equal to b)i = 5; (arr)z' The covariant components of
-4
D, Dy are therefore equal to 5; o) (ar?)iwhere p is the magnitude of
A

P. On noting that the kinetic energy is given by the first term in
(7) and on introdué:ing the above values for the p,'s, the kinetic

energy is found to equal g’ p2/2a”". Hence, we have

: m# _ arr/grr

(34)
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Integration over External Coordinates

In a dilute gas an activated complex may be regarded =s
an isolated particle. In a liquid or dense gas its motions may be
strongly coupled to those of the surrounding molecules. In the
latter case it will be useful to consider as the activated complex
a macroscopic - subsystem, near the center of which is the actual
reacfant or pair of reactants and on the boundary of which the cor-

relation of the ﬁotion of the solvent molecules with those of the
reactants is negligible. This 8ubsystem is regarded =2s imbedded

in the remainder of the infinite (or opractically infinite) system.
For homogenecus reactions rigid translations or rotations will later
be performed on the subsjstem)and the solvent molecules of the re-
maining part will be permitted to continuously sdjust themselves.
For heterogeneous systems rigid translations of the macroscopic
activated complex parallel to the interface will be performed.
with a similar adaptation of the remaining molecules occurring.

The activated complex of a homogeneous reaction in a
gas or liquid, defined above, has as coordinates three translations
(x, ¥, z), two rotations of an axis fixed in the complex (€, £), and n-5 other
coordinates, which will be called:the internal coordinates of the complex,
though one of them (rotation about the body-fixed axis) has a prop-
erty analogous to the five "extérnal"'ones: The potential energy

of the entire system is invariant to changes in the five external

coordinates,
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In the case of a heterogeneous reaction on a uniform interface
the potential energy function for the activated complex is invariant
to the two Cartesian coordinates, x and y, parallel to the interface
of the two phases.l4 Presumably, such a case occurs in electrochemical
electron transfers to a good approximation when the reactant is not
adsorbed. In reactions involving localized adsorption on perfect
crystals the potential energy is a periodic function of x and y. For
any heterogeneous reaction the remaining n-2 wiil be called the internal
ones of the activated complex,though in the particular case if a nonuniform

U# and qr below'depend on all n coordinates.

surface,

The integral appearing in the denominator of (33) is evaluated
- for a system where the reactants are far apart, when there is more than
one of them, or far from the interface in the heterogeneous reasction.
The function U in this integral is independent of the three translations
of the center of mass of each reactant, which will be called the

. externsal coordinates for the denominator of (33). (However, U is also

independent of some of the other coordinates, of course.)

Since the properties of the reaction hypersurface
depend only on the internal coordinates they can be selected so
that the coordinate qr is ohe of them.
The reduced mass m* is shown in Appendix I to be in-
dependent of the values of the éxternal coordinates. It normally is a function
of = the internal coordinates,though it is a constant in special
cases, as discussed later. The area element dS is shown in Appendix
II to be a product of a function of the externsl coordinates elone
and of a function of the internal coordinates alone, the latter
denoted by deSin for bimolecular reactions =nd by dSi for

t nt

homogeneous unimolecular reactions or for heterogencous reactions,

as discussed in the Appendix.



-16-

i

homogeneous)
( i

bimolecular, = sin ©€d € d 4 dx dy dz R? dSint (35)
(homogeneous o 3¢
unimolecular] dS = sin 6 d 6 d 4 dx dy dz ds, . (36/
- _ 277)
(heterogeneous) dS = dx dy dS, . (37,

where 6 and 4 define a body-fixed axis of the complex,R is the dis-

tance of two atomsor eny two pointsof the complex on this axis, and

X, ¥, z have been defined earlier. In the computation of dsint in

(35) the two atoms or points are constrained so that one is fixed

on the cited body-fixed axis and the other can move only along that

axis. The two points can be the centers of mass of each reactant, for example
(Appendix II). In the compution of the dS, . of (37) one noint of

the complex is constrained to move along any fixed line normal to the »y p&uu'f»nuﬂi
to

abhe solid-liquid interface. This point can be the center of mass

of the reactant.

Similarly, the volume element dV in (33) can be shown to
be the product of volume elements 1:. dxa dya dzd for the external co-
ordinates of all reactants a and of dvint’ the volume element of all re-
maing coordinates. (There is only one term in'N; when the reaction is
unimolecular, of course.) These remaining coordinatds are cordinates in
a space where the center of mass of each reactant is fixed and where

the reactants are far opart.

Integration may now be performed over the external coordinates
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G;; in the numerator and denominator of (33). One obtains
(bimolecular Kt = (8nkT)* / R? (ﬁtr e dSint/Q (38)
homogeneous ) a ' ¥
eyt O
(unimolecular homogeneous, K pte = (kT/2n)< / (m")"" e dsint/Q (39)

or uniform heterogeneocus)

where constraints on the numerator integration have just been described

and where Q is given by (40),

-U/T
Q =_/e av (40)

int

It is the configurational integral of the reactants when they are far
apart. Integration in Q is subject to the constraint that a point on
each reactant (e.g., its center of mass) is held fixed, and thus is
over the volume vint°f some n-3N dimensional internal coordinate space
where N is the number of reactants. For a heterogeneous reaction on a
nonuniform interface, dsint in (39) should be replaced by dx dy dSint;
x and y vary over a unit area of interface. In either case, krate is

the reaction rate per unit area of interface per unit concentration of

the reactant. It has units of cm sec-l, for example.
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Some Special Cases of Egs. (38) and (39)

In the simple collision theory the qr'-reaction hypersurface
ie taken to be one of constant separation distance between the centers
of mass of each reactant in the bimolecular reaction, which will be

the collision diamete

denoted by R, ATl:le quantity m , it can shown, is then a constant, and
in fact equal to p, the reduced mass for the two reactants. Since
R is now constﬁnt over S it too can be extracted from the integral in
(38). Integration then leads to the simple collision theory expression
(’BwkT/n)§¥fbxp(-Aﬂ/kT), since the area element in the numerator is
now the same as the volume elenanﬁ in the denominator.

In an analogous simple collision theory for unimolecular
heterogeneous reactions,-the ¢i¥L reaction hypersurface is taken to
be a plane parallel to the interface of the two phases. In that case m# can
again be shown to be a constant, the mass of the reactant, m, and the
simple heterogeneous collisionbtheory expression is obtained,
(kT/Zhi#%xp(-»ﬁU/kT), since the asrea element in the numerator and

the volume element in the denominator are equal.

Another special case of (38) =«

(;25_159).obtainé-when the qy- reaction hypersurface can he chosen to
be a hyberplané in the internal coordinate space of the activated
complex. (This hyperplane passes through the saddle-point, when

the latter exists, and is normal to the tangent of a line of steepest



-19-

ascent to the saddle-point drawn in internal coordinate space.)

The hyperplane approximation has been used by Vineyardiin his calcu-
lation of the rate of diffusion of an atom from one site to a neigh-
boring ome in a crystal. His results are derivable from (39).

This hyperplanar ap?roximation is often made in the usual activated

complex theory, by using normal coordinate analyis and neglecting

vibration-rotation interaction.



=-20-

Case where Reaction Hypersurface Depends on Rotational Constants of

the Motion

In some reactions, the equation of the reaction hypersurface
may depend on constants of the motion, in particular on the angular
momentum. Several gxamples - are some unimplecular dissociations,
radical recombinationstaand ion-molecule reactions.l7 For example,
the reactants in the two latter reactions have been treated as two
particles which, in the éctivated complex, have their mutually

- attractive force balanced by their centrifugal force. The attraction
was attributed to induced dipole-induced dipole forces in the recom-
bination and to ion-induced dipole forces in the ion-molecule system.
The centrifugal force was calculated by treating the pair of reactants
as a "diatomic" activated complex.

The above treatments were based on the assumption that the
reactién hybersurface»is the set of coofdinates for which the attractive
force equals in magnitude the repulsive centrifugal force between the
twa particles. This set depends on the angular momentum. In these ané
other reactions this "diatomic" approximation is readily imnosed on the

treatment of the previous section, when a»n angular momentum denendence

of the reaction hypersurface is to be considered: For a given angul;r

momentum of the complex in any infinitesimal range the contribution to the
overall reaction rate can be calculated. One may then integrate cver all
angular momenta. The result will emerge as & special case of the

"symmetric top" aporoximation treated below, and its derivation will be

omitted for that resson. (The derivastion narallels the cne below, but the

angle ¢ and the conjugate momentum pw are omitted, and the "bar" subsnace is

one dimension larger.)
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If the "diatomic“app;oximation is inadequate, in that
the value of a third principal moment of inertia of the complex
changes during reaction, a somewhat better approximation can be
obtained by treating the complex as a symmetric top and including
thé dependence of the reaction hypersurface on the magnitude of the
angular momentum Prot, 28 before, and on the component of prot’along
the symmetry axis, pw. If the vibrational angular momentum is
ignored the kinetic energy of the complex is the sum of terms from
the three translations of the center of mass, from the rotations,
and from the remaining 3 n-6 internal coordinates. The rotational
energy of a symmetric top complex is given by (4|):8 The three principal

moment.s of inertia of the complex are A, A and C.

X ,
U= S Sy T (41
rot 28 2 c A

Since Prot and p¢ are constants of the motion, and since A and C depend
on the internal coordinates Trot acts as a centrifugal potentisl,
thereby affecting the reaction hypersurface by an amount depending on

and p,.
P Py

rot

The reactions of present interest for which the hypersurfece
may depend significantly on the angular momentum are gas reactions. In this
case, it is convenient to transform the Csrtesian coordinates of the
atoms in the complex x'k into generalized coordinates qi, three of
which are the translétions of the center of mass of the activated
complex. Another three are selected to be the Zulerian angles

(€, 4 and ¥) defining the orientation of the princinel
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axes, and the remaining n-6 will be called the internal coordinates of the
activated complex. The line-element in mass-weighted space is given by (1).

The internal coordinates rﬁay;be chosen so as to satisfy
the Eckart conditions, i;ssening thereby the vibrational angular
momentum. The residual vibrational angular mbmentum will be neglected, however,
an apbroximation which corresponds to setting gij equal to zero when
i is one of the internal coordinates and j is one of the Eulerian
angles. Correspondingly, one can show, gij also vanishes then for these
__choices ¢f 1 and j. Independently of this spproximation the usual
expression for the kinetic energy in terms of the Qi's or pi's shows
that gij and gij also vanish when i1 is a translation of the center
of mass and j is an orienfational or an interﬁal coordinate.

It will be convenient to choose the internal coordinates

in such a way that one of the cbordinates, qr, is constant on the

reaction hypersurface. If the internal coordinates are denoted by

n-6

ql to q their choice may depend on pp,¢ and p¢, since the hypersurface

and jthereby, qr depend on prét and Py, - Thus, we have:

_ i, 1 n .
g = g (x,...x") i

n-5 ton (+2)

1 to n-b (43

(e
H

qi(x1 x",p .p ) i

This definition of ql.tq qn'-6 would not necessarily be a consistent one

if the definitions of Piot aﬁd'pm theméelves depended on the q1 to

n-6 '

q or on the dl to dn-é

. vThq?do not so depend, it can be shown,

since the vibrational angular momenta were neglected.
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The argument leading to Eq. (23) is again appolicable,
provided the integration in (24) is first performed at
fixed Plot and pw, reserving for the last two integrations those OVer Puot

—and p . The glj appearing in TF (Eq.28 are again conjugate to the

gij on an n-1 dimensional subspace. Tndeed, because of the neglect

. . .F
of certain gij's and giJ's the glJ

are conjugate to the gij on the
subspace of coordinates of the activated complex for which the
orientation of the complex is fixed (d6=dg = d¥=0). (Because cf

s L ¥
the vanishing of certain other gij's and glJ's the glJ are even

conjugate to the gij on the internal coordinate subspace of the
complex. )

Restriction of an operation to an n-3 dimensional sub-
space in which the orientation of the comvlex is fixed (i.e. df=dg=d=0)
will be designated by a bar, e.g. in Zi’ -c;e-g, ge: and TT . In all

i,j i,j#r ifr
cases 1 = 1 to n-3 and, where indicated, i % r.
Integration over all momenta but Py: Py and o, in (24)

and over all momenta in (25) may be performed. By arguments similar

to those given previously one obtains (32) and (44).

FA , n= SV T /KT L
e = (Z“kT)T/i/e dc'/hn"l] o Tot T ) (L)

rot
where
- — LA i (w £
aF = (det g; ¥ do )
i,i#r igr
and
_  Tra.l {4k
dq}ot a dq dna )
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with @ =8, 4 and ¢. The integrand in the integral over ilz dql in
(44 depends on the angular momenta but only via Prot and D, - If

Ps py and p, are the components of Prot along the body-fixed principal
axes, the symmetry axis being the z-axis and P, thereby being

K0
equal to p,, then dp, dp equals 8in © dp dp dp, and p
b pg dry 1 Py € ! ot

equals p; + 3; + pg. Eq. (43) may be integrated in part,z; yielding

7) wh t . -
(47) where the limits on p¢ are prot to + Prot.
* nL * T ot /KT
e T /AT o (2 2 f(g eV /AT d;/h“‘l) e ot X=

(47)

nt sin @ '” dqcc dp‘P dpiot
a

" The masses can be extracted from 47 .
The quantlty conjugate to gr on’ the n-3 dimensional subsvace,
denoted by grr’ equals det gi /g, where g is det. gij However, since the determinant

i,i#r
of the g, j‘s of the three rotations equals A2051n2€ and since certain 8

cross-terms were neglected, g equals g/AzcsinZE From g one may
: p!
now extract IZ; mi, as in (1)),

A reduced mass®l for motion normal to S can again be
defined, but now only on the n-3 dimensicnal subspace. Otherwise an inconsistency
would occur. If the quantity conjugate to aij on this subpace is denoted by

iij then the argument which led to (34) leads to (48!, when applied to this

subspace.




at = 3T | (48)

The area element dS of the hypersurface of constant qr in n-dimensional
: i
space, for any given p_ and Pys 18 ( aa™")Z ‘gr-dq . It also equals

d7 sin 6 (71; dq®). On introducing these results one finds:

R o

+ -U /kT

-F /T 2nk‘1’)+ 7T"( )‘5 “Trot /T dp, dp2

e = 1 t o IT /3TT 3 ¢ il T
R (Azc /' )

(49)

rot

On introducing Eq. (35) for dS and performing several integrations one

obtains (50),

:*
o ~U" /T -T_ {kT
o AT = (2n kT/h’") 7‘.}' i){[ﬁae 4, le T auy du (50)
(m* rr/-rr);J(Azc)%

where

uro = prot/2kT

uy = p‘,,/(znkw)%

(When the integral over Si t 18 independenf of p_, and Py one may inter-
change the order of integration of dSi 4 and du¢ du_ i One then finds thal
q/;xp(-Trot/kT du¢ du (AZC) o equals unity, since p, is integrated from

=Pt PO * Py and'prot is. integrated from 0 to w.)

The relation of a to arr,'can be»deduced from determinant

rr

theory, and fhe results are given 1n Append;x III. Conditions under which a and

a’’ are equal are also deacribedathere, namely when the cross terms ari

vanish if i is a rotation.
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From (23), (32) and (5°) one obtains:

-oF it -1 /AT
rot .
du ,du (gii
(bimolecular) k_ .o =(8 kT) / _,_dsint] ° ‘ Q!d Tot (5
| F A (r1c)%
wvhere Q isa configurational integral for the reactants, - defined
by (40).
—of At 'Trot/deu . B
(unimolecular) ¥ ate —(kT/erz 2__—.--§mt] e L“rot. (§2)

(u* rr/-rr)?- (nzc)z

The "diatomic" approximation is readily derived from (5 I} or (52).
Inspection of the derivation reveals that these equations apply, with
Y2 2 2 = p2 2
du (c) omitted, with T, equal to p? ./2h, vith p} = p7 + py, and
with the bar on a°F and g'* indicating that they are conjugate to a

and g - on an n-2 dimensional subspace. One obtains:
rT

—u* /et -T /KT

rot N
(bimolecular)k = (8nkT)2fUR2 (Am al’l‘/gn‘) ]e au__, /q (5=
+ |
| (70 /T N -t 1o ~T_ /KT e
(unimolecular)krate‘—' (x1/2n) f[ e Wn'a™F/ATT) & as, du_ . /Q {

A special case of this diatomic approximation in

which the coordinsate qr was teken to beR,the separation distance of
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17
the reactants in the ion-molecule system or in the recombining

e
radical systenbcan be derived from (53) ss follows:

In the rotation plus reaction coordinate subspace

the line element is
ds? = dR? + R2sin?6 dg~ + R2d62,

from which the corresponding aij's are given immediately. In this

orthogonal coordinate system the aia’s also vanish for i#j. It the follows

from Appendix-II (A9) that Er? equals‘a#?

+

easilv verifies that m' equals p, the reduced mass of the two

16,17
reactants. The approximation was slso made that U#

is the sum of
a term depending solely on R, U(R), and of the potentisl energy of
the internal coordinates, where Ris nowthe velue of R which

meximizes the integrand at the given Prot® Thereby, one obtains:

L/ SU(R)AT  ,  -p2_ /2BR*%T _ )
krate = (8ﬂkT)i//;2 e | rot dprot/vaR\"kT

# o

where R is a function of proi’ being the solution of

2
‘rot = O

o/
=

&
=+ ]
[}

» Again, in this system ore

(55)

(s6)
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Geodesic Normal Coordinates

For any reaction hypersurface 5 a coordinate system may
 be defined for which gri vanishes for i¥r and for which & is a con-
stant:zaA coordinate system q1(1=1 to n, i3r) is first defined on the
surface in mass-ﬁeighted space. The coordinates of any point off
this surface are then defined by drawing the geodesic through the
éoint,v such that the geodesic cuts the hypersurface orthogonally.

" The qi

for i#r are then assigned the same values as those occurring

at the intersection of the geodesic and the hypersurface. The value

for qF is set equal to the arc length aléng this geodesic from the hyper-
surface to the point.  Hence, ds? = grr(dqr)2 = (dq¥)? along

this geodesic in maas-weighted space. The line element in this space

is:

2. Z 1g,d 2
ds< = i,j#}“gij dg-dq®* + (dq7) (57)

Correspondingly, it can be shown, gri vanishes for ifr, and gff

equals unity. The kinetic energy then has the following simple form.

=+ = gl v B (58)
T = % {54r 87 Py P; 5:_._

(p, equals 2[ls/at)?/2] /34Y). If the definition of qF 1is
modified so that ds? equals‘ p (dq¥ )2 along the geodesic where |

15 some constant then the coefficient of pi would be 1/2 p instead.
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After having made & choice of geodesic normal coordinates one may use
~ (58) and derive the activated cbmplex theory rate equation in the usual
way, obtaining an expression analogous to (23). Upon introducing a
canonical coordinate transformation to any other coordinates qi and to
their conjugate momenta, p,, such as those occurﬂng in (24, Eq. (22)
is obtained becsuse of the invariance of the Hamiltonién and of the

/) phase space volume element to such canonical transformations.

\

It is clear, therefore, why (23) is the same as the usual activated complex
rate equation in the literature. »
It 1s of interest to comparéxa;;;bove derivation of (23) with
the usual one in the literature. In that case assumptions 4 is made, though
wve have seen tha? if one introduces geodesic normal coordinates no assump-
tion is made ii;ginztic energy expression of the form (58). Even without
the introduction of these coordinates, (58) can be used if a fifth assump-
tion,-often made in activated complex theory,is added. The potential energy
is expanded.about a saddle-point (when it occurs) and only the quadratic
powvers of the displacements are retaine@;}normal coordinates are then in-
troducgd and rotation-vibration interaction is heglected. In this case
gri is in fact zero and the kinetig‘energyvis of the form (58). However,
wheh the reaétion occurs in solution ahd many solvent molecules participate
in the complei, the retention of only qﬁadratic termé is presumably not vai d
for the many-coupled rotations of these solvent. molecules,'though it

presumably is valid fer  vibrations.
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One advantage of the derivation of Eq. (23) given in the
earlier section as compared with one based on geodesic normal coordinates
is that a more direct comparison with the step-by-step derivation of the
qﬁantum form of (23) is possible in the former case. We have seen else-
whereqihat certain coordinate systems are more useful than others in the

quantum derivation: they permit one to make a local approximation of the

_potential energy surface in the vicinity of a saddle-point by one which

permits separation of variables. Such coordinate systems do not involve

geodesic normal coordinates, except in a special case.
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Appendix I. Invariance of M-# -} _Q_g to Changes in External Coordinates

For notational convenience, the Cartesian coordinates x',...,

x" of the atoms in the activated complex will be written in this
n 1
appendix as x', y', 3',..., x3, y3, z?. When the Cartesian coordinates

are varied at any fixed values of the internal coordinates the value of
n : :
qg is unchanged. If the x',...,3> are so transformed to new values,

n
x! ,...i'5 by variation of one or more external coordinates we have,

therefore:
® qr(x‘,...,s%) = qf(® ,...,'53) AN
‘Any' new set 5:'1 ,'y'i R ’z'i is a function only of xi, yi, zi: Ifii:
and _1_'_1 afe column vectors with elements i‘i ’ 'ii ’ ii and xi, yi, zi,
~

respectively. They are related according to (AZ).

-1-_1

N

+ A rt (A2

—
AAeme

R

where B_i" a column vector whose elements are the x, y and z components
of the translational displacement and A is an orthogonal matrix describ-

P

ing the rotation.
By differentiation of (Al) Eq. (A3) is obtained.

—-‘1-+9—9:-+&-= >3 (—-Q-L2+i-%]} +§—35L2

a=X,¥, % 2 “xa
2%t byi 3’1 : 3% 1 by 3z 1

zdlqr 2 | Jl‘
+ i]'xnlya+2;-txilxul’ +_%'1]’ya]'

? xiéy

where the 1l's are the elements of the matrix _{. Because of the

PV
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orthogonal nature of this matrix it follows that the right hand side of

(A3) equals
ot =
dx ayi” ozt _

This invariance of Vizqi' holds for all 1 (1 to n). Recalling the
definition of g"* and 'a_rr in Egs. (3 ) and (9), it follows that they

are also invariant to changes in the values of the external coordinates.
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 On"recalling the value of dS in Eq. (19) and the fact that
8T was shown in Appendix I to depend on the internal coordinates alone,
it suffices to show that g can be factored in order to show that dS can
be factored inf.o two terms, one depending on the internal coordina‘tes,
the other depending on the external coordinates. Inasmuch as the

n
volume element dV equals a% 1N dq:1 and it has been shown that it can

i=1
be so factored, for example by a  serial methodz, sg can be factored and the
proof is complete. To show that the final result of the factoring is
of the form (35) to (37) we may proceed as follows:
In the serial method one puts one atom of the activated complex
any place in the system, specifying its coordinates as x, y, and z.
Another atém is then characterized by coordinates relative to the first
(e.g.,polar coordinates R, 6, ). A third atom is then characterized
by coordinates relative to the first two, and so on. The volume element
is found to be a product _ﬁ- Vi, of which Vi depends on the i'th set of
(relative) coordinates ali;i'.za For example, V, is dxdydz, V, is
R2gin 6 dé d¢ dR, etc. Hence:
n
a%- ;T:'; dq* % dV = dxdyds sin 6 d6d¢dR (R* dr ﬁ; av, ) (A5,
One may now transform the coordinates on the r.h.s. of (A5) to the coordinates
used in the body of this paper (ql,...qn) such that five of the ql's are x, vy, 2z,
© and ¢, the remaining ones being the“internal coordinates" of the activated

complex, It follows from (A5) that. _
(a equals “dxdydz sin 6 d6 d¢ multiplied by a function of the internal

coordinates alone » & function which contains f_actor R2,
exhibited in (35). In the case of heterogeneous reactions

o x and y are the "external coordinates" and Eq. (27) follows.
ol y , q. (27)
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Some reactions in solution, pure electron transfer reactions,
involve no bond ruptures and it is useful to factdr'dv in a slightly

different form: Let the coordinates of one reactant be transformed

to the translations of its center of mass, to the rotations about this

center and to the vibfntions. Let the coordinates of the other re-
actant be transformed to its own traﬁslations, rotations and vibra-
tions. Then from the six translations six new coordinates can be
introdﬁced: the three translations (x, y, z) of the center of these
two masses, the orientation of the line of centers (6, ¢#) and the
separation distance of the two centers (R). The coordinates of all
the molecules in the medium can be transformed to relative coordinates
with respect to this line of centers (and separation distance). The
element dV once again has the form (A5), but with the above interpre-
tation of x, ¥, 3, 6, ¢, R, and dS has the form (35). In computing

das one center of mass is to be held fixed and the other constrained

int’
to move along a fixed line, because of this factoring.

Appendix III. Relation of 2" to a’~.

- We shall use the following theorem.‘z_4 If M is a minor
in the determinant of the aij's, if m is the corresponding minor in

the determinant of a and if m is the algebraic complement of m in a then:

158

M = mal ‘ (46)

The minor in a formed by the a . 's from the rotational coordinates

i
and from q¥ will be demoted by a_while that formed by the aldrg for
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these coordinate in det atd i1l be denoted by a*X . From (A6) one

finds:

aer - a--1
rX

= asT o1 (A7)

since a a'~ is the algebraic complement of a,. in a and, inspection
shows, so is '&'rx . However, when M in (A6) is taken to be the minor
formed by the aij's of the rotational coordinates alone, it will be

called a ™ . Then;;; is simply a. From (A6) one then finds

ax = 3al ‘ , (A8)

From (A7) and (AB) one obtains, finally,

arr - arx(ax)-l (A9)

Inasmuch as ar)C and ax'

are minors with aij's as elements, and the
former contains arr’ a relation between a'T and a'* has been obtained.
When the cross-terms ari for 1 equal to a rotational co-

ordinate equal zero, ar)C factors into '~ ax. One then has:

art = ofF (A10)

These ari's vanish when the coordinate hypersurfaces of the rotations
are each orthogonal to the qr-coordinate hypersurface. The example
cited in the text is a special case of this situation in which all

coordinate hypersurfacesfor the coordinates are matually orthogonal.
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