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.r-\. 1. Introduction o /’

The structure of weak interactions discovered so far éuggests
very sironglf the existence of charged, end poésibly also neutral vector
mesons, First of all, there is the current X current form of leptonic
end semi-leptonic weak interactions, end possitly also the non-lepionic
week interactions; secondly there is the structure of the hadron currents,

» very similar to the structure of the electromagnetic currents in the sense
that they may be thought of as to be construgted with the help of some

gauge principle. DMore precisely, GelléMann15 suggested current commu?ation

rules for vector and-axial;vector currents that can be understood as a

simple extension of the commutation rules known for e.m. currents; as is

vell known these commtation rules have led to & large number of successes,

in particular the so-called low-energy theorems.

These very same low gnergy theorcms have been derived also by
means of some gauge principlezs. One is led them to divergence equations

for the currents of week interactions of the form

53 =-—€T.X.3 1
Tt LA TR | o ‘ )

& very natural extension of the equation

3F =-ei x3J 2
. : e T T R T (2)
obtained if one introdsces e.m. corrections in & "minimal" fashion to the
equation au 3; =0 o Again, in e neotural way a vector boson enters
into the theory, but egein merely as a matter of technique, since the

results do not depend on the mass of the boson im questioh.

_ One is very much tempted to ask: why does nature choose currents
in such e way that equation (1) holds ? Vhat is so special about these
~ .. currents ? The outstanding fact about these currents is that they ore

related to some gauge invarisnce in the strong interaction Lagrengien,
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and in fect to lowest order in the weak end e.m. coupling constants they
are the currents thaet by virtue of that invariance ar; conserved. And

'the structure of the right hand side‘of (1) merely reflects the particular
symmetry involved (mote that ﬁ;‘x SL Ee Wﬁ J:, vhere the ¢ are

abc abe
the structure constents of SU(2)).

It turps out that, by introducing e trilinear end quadratilinear
interaction between the vector-bosons involving those same structure
¢onstants one can arrange things in such & way that the source current of
the V-field ié'exactly divergence free, If the W-mass is zero, one ob-

. tains just the Yang-Mills theory, wsich was constructed on the basis of

considerations of gauge inverience’

) One is thus led to the study of massive Yang-Mills fields,
vhich is the subject of the present paper, Here wve will not deal with
complications due to symmetry breaking resul%ing in the occurrence of
extre terms in the right hend side of (1); in our opinion the situation
without symmetry breaking has to be understood before one cen attack the
more general problem, Furthermore we will direct our attention to the
properties of the perturbation expansion, in pagjicular the éuestion of

renormalization,

In this‘direction very beautiful work kas been done, for the
mass-less Yang-Mills theory, by Feynman, De Witt, Fadeev and Popov, and
Mandelstams « These suthors have shown that for this case a unitary,
renormalizable perturbation expansion of the S-matrix exists with rather
peculiar Feynman rules. Here one must add that the zero mass theory
contains horrible infrared difergencies, vhich im fact prohibits the
study of en S-matrix with in- end outgoing particles of zero four-
momentum squared. Nevertheless, the basis of the followiqg discussion
is the belief that this zero-mess theory can be obtained in the limit of
gero mass from the non-zero mass S-matrix, with in- and oﬁtgoing particles

" on the mass~shell,

The motivetion for our investigation iz essentially the following
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remark., The propagator for e massive vector-boson is of the form

{

e
§ +kk /M
py Ty )

If the limit M - 0 exists, then somehow the facto?s M—z mst be
cencelled by other factors M? arising from the integration over closed
loops end application of the relation p2 = -M2 for in- and outgoing‘
bosons, But because of dimensional reasons any faector M decreases by -
one the possiﬁié degree of divergence of a particular diagram, or sets

of diagrams,

In the following we will with the help of the Bell-Treiman
transformation¥* bring the theory into & form which permits the direct
comparison of the messive and mass-less case. In particular, we will be
eble to split off a set of diegrams vhose limit for M= 0 (M = boson
mass) can easily be seen 1o correspond to the set of Feynman diagrams
as given by Feynman et al., having also the same infrared divergencies,
Moreover, our theory is unitary and causa16 for any nonzero M end for
thé lowest order terms in the coupling constant the limit M = 0 exists
and corresponds to the zero mass case. Since the requirements of uni-
tarity and causality essentially determine the higher order S;matrtx-
elementg, end since the zero-mass S-matrix is unitary end causal it
eppears very plausible that also the higher order non zero mass S-matrix
elements go over into‘the higher order zero mass S-matrix elements, It
must be emphasized that this is plausible, but not & must; in the sense
of Bogoliubov7§ the so~called counter terms are just such that they can
be edded to the S-matrix without spoiling unitérity end ceusality. Or,
stated differently, the non~zero mass Lagrangien may be changed by in-
troduéing counter terms proportional to the W-mass withogt affecting

the limit M = O, Rowever, it is very difficult to construct .

* . .
The author is indebted to Profs. Bell apnd Treiman for discussions on
this point. ' ‘
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such counter terms in a perturbation expansion simply because of
dimensional reesons., For instence, consider a counter term introduced
in order to make the process 3V = 3W finite in Gth order, Such &

term must have the form:

-
. e e (Wﬁﬂ#)3
vhere g is the dimensionless coupliné constant, and C must haie the
dimensions gf (mass)-z. Suppose we have a cut-off mass A in the
theo:y, ever&fhing being finite for finite A ., There are two para-
meters on ﬁhich‘ C can depend, namely M , +the boson mass, and A,
Ve aere not interested in constants C that go to zero as A - o ; the

only serious terms are those proportional to some pover of A, i,e,

I

C = ¢:;§%§ ' m>0.,

Hovever, if we know that in the limit M = 0 no such counter term exists
then obviously ¢ must be zero. Here we want to stress that we do not
consider this argument a probf, but rather e flausibility ergument.
M#inly we may learn from these arguments that one should investigate the
‘deﬁendencé on M rather than what happens for lérge momenta; moreover
by formulating the theory in & manner that exhibits clearly the desired
propexties and the known infrered divergehcies in the limit M - 0 +this

investigation might be facilitated.

Our technique is roughly as follows, The W-field propagator
contains & term kuka/Mz. As is well known this term is modified if
one performs & gauge transformation of the second kind. It is elso well
known that the mass-term breaks the local geuge invariance of the
Lagrangian; nevertheless vwe perform a transformation vhereby then the
Lagrangien changes (essentially a power series in ,g,/ﬁ is added)

while the W-propagator takes the form
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By Tuwv /
kz + Mz - ic

The Feynman rules stemming from the new Lagrangian are then used to
investigate the perturbation expansion of the S-matrix. Ve emphasize

that the on-mass shell S-matrix is not effected by these manipuletions,

deseribed below,

2, Equations of motions)

In the folloving we will limit ourselves to & world without
strange particles, end with exact conservation of isospin. Suppose there
exists a triplet of vector boson fields, Wa(x), & =1,2,3, coupled to &

triplet of hadrons J (x) such that

b ¢

The equations of motion for the W-field will contain the hadron currents,
By introducing interactions of the W: with themselves the V-source
current cen be made to be divergence free, &s we will show by writing

down»equatidns of motion with the desired properties:

2 a a
v 3 v® v = 5 4
3,00, w = oY) - MW n | (4)
i = —ge 2, (w w)+w (3, w -3 ¥°) -
b abe TRV
ot
Chet u L Wv }-¢g Jﬁ (5)

Everyvhere we suppréssed the dependence on space—time, writing for inst-

ance Wi instead of Wa(x) . g

i
Teking now the divergence of (5), using (3), (4) and (5) one

ecasily establishes

23i% = o o : (6)

68/28




Since for our purposes the occurrence of hadrons end hadron currents

'J: is & trivial complication we will drop them from now on.

*  The equé.tions of motion (4),(5) may be derived from the
Legrangian density -

£ = ‘-:- Gw G:v ; 1 w: v: | (7)
with
_G:vgauw ..au-;.ge&d w‘zw‘;. (8)
© In detail the Lagrengien isi : - .
A A AR MR TS W -Zee, (3,¥% - 3 1) w:: v
- % gz €abe ade Wz wi Vs Wi * ’ | -

Note that g is e dimensionless coupling constamt. For M = 0 this is
Just the theory introduced by Yang end Mills. We write:

gmm ) -1 v Vv (10)

The Feynman rules corresponding 'bo this Lagrangien involve e vector meson
propagator of the form

2
bw + k“kv /M

v 4 M - e (1)

Furthermore there is a vertex with three bosons end a vertex with four
bosons. Simple pbwer counting of the diagrams indicates that an infinite
number of subtraction terms has to be added to ## in order to make the
S-matrix finite, This would not be so if the kp‘k / M Eterm in the V-
propagator were not present. The fact now that the divergence of V-
source current is zero implies that probably a good many of the kIJ-k

terms may be dropped, or at least behave effectively much less than

quadratic in the limit of large momenta, In order to investigate this
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point we perform the Bell-Treiman transformatlon uhlch leeds to & new
get of Feynman rules vhere the kuk /Dd texrm in the»V—propagator has
been replaced by -k k /it at the possible expemse of having to intro-
duce nev vertices, The Bell-Treiman transformation may be described in

various ways j; we will'give two identicel prescriptions,

i Consider the following Lograngian

4, . & 1..,2 &aa e, Ay 8 “ v
£ e - 5‘3u‘9~)(3p,‘?) - 3 M g% +£m(“’,,,+ﬁau‘”"‘§“ ‘v L

‘+R(Mp,W) . o | o (12)

It differs from (10) by the addition of e scaler triplet of fields qﬁ o

The replacement Wﬁ by Wﬁ + 5 A B ¢ implicates that ¢ interacts with
the W and the ¢-fields themselves. The unspecified extra texrm R(\g,W)
must be chosen in such a way that q? satisfies the free field equation
of motion |

C-1w?) & = 0. _ (13)

0f course, there is always the trivial end uninteresting solution whe?e
B is such that ell terms containing ¢ in the rest of the interactionv
Lagrengian are explicitly cencelled; but if the Lagrangian obeys some
symmetry or partial symmetry one can often find, by using the equation of
motion of the W (end eventual other fields if present), another non-
triviel R . In this case after some work one cenvinces oneself that

there exists an R' of the form |

_ & . = b _ab /g) g g\ )
ROY) = h () +52,6% 36" ff (8 o) + =, (& o 53, 0) (14)
)
vhere fl and fz are power series in gA/M. Of interest is the first
term of f1 H
, eb gk

, 2.2 '
c g X .
fy = 2 Sabe ¢ .+°(';_;z-) . (15)
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It moy be verified that with the inclusion of this term alone the o-field
satisfies (13) up to terms of order gz . Here one must use the W=

equation of motion, in order to obtsin some expression for BuWi .

" By this method it is very difficult to obtain - R completely;
the equations determining R ere in this case rather complicated., Any-
vay, if now ¢ satisfies (13) we cen be sure thot the Lagrangian (12)
gives rise to the same S-metrix for vector-boson processes as the orl-
ginel Lagranglan (10).

ii . Alternatively to determine R in closed form one may proceed
" as follows. The TM part of the Lograngisn (10) is invarisnt under the'

infinitesinnl transformetion
Plx) =~ Vo) + ¢ ¥i(x) e%(x) = 13 ¢%(x)
1] W abc 1 . g B

vhere €%(x) is en aerbitrary triplet of infinitesimal functlons of x,
One derives to first order in e(x) :
L e
oo I G, (%) +e !-LV(X) e“(x) .
This is an infinitesimel rotation in I—spin space; because of the anti-
symmetry of ¢ ebe the product G:v G:v is invariant up to first order
in ¢°(x) .

Here we ere not interested in infinitesimal gauge transformations,
but in finite tjansformations obtainéd by integration of the sbove one.
Yang and Mills4 give as result for e finite transformation:

W) -2 () W) - ke (£ (£ (x)) (16)
N eb B 2g "abe ‘Tp cd i db
T

vhere fab(x) is a rotation in I-spin space depending on x . The

general form of the 3 X 3 matrix £ is:

£x) = of ¥ (x) | | (17)
68/28 f
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vhere _ pa is e triplet of 3 X 3 ma ces:

(e = €, (18)

ebe

and va(xj is & triplet of arbitrary functions of x ., Indeed, inserting

. . -1 '
(16) into the formule ( 8) for GP: » one finds, using fa.b = £, end
B f (3 f)f: .
¢ - £ @
[T ab pv
and G:v G:v is invariant. However,
- - : 2 ) 3
1,2 .8. .8 1.2 .a.a M -1
AR METEE Tk vl o R w: 3,8, £
2
M -1
- 8g2 ebe ade (ap.f)cf fb(apf)eg gd
2
1,2.8._8 M d -1
= -3 M Wp' Wp‘ + Za € ep W‘_b ffc (apf)ce
}12 1 1
- 8g2 (eafh fhc aufcf) (eagi f:ie apfeg) _' (19)
Suppose now we find an f such that
) 22
~1 _ 2_4). g d A g »d
€ieh Tho ap Lo = TR ancp + —}—42 Rp' . (20)

R‘1 shall be some power series in g . There is a lerge class of £ such
that this holds, but we have not been able to exploit this freedon to our

- edvantage. Vith such an £ we heve:

2 _@a_4a 1

1 2 w2 _ A X 8
-z H W W = 5N (u Btp)(W - 3,00
| 3 42 | '
Yg, da.a A a.a
+—-—5wdn RS~ L& p%p% ., 21
W@ au‘p b T g2 kow (21)

. Note thet this is different to zeroth order in g ! To restore at least
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the zeroth order part of R +to its originel form f{:e replace everywhere

wﬁ by w: +-§ Bng . Vith this ve obtain finally:
1 e 8 1,142 88 | A & 1,2 .8 .8
2 =_§(%wﬂ%¢)—§m ¢¢+£mwz+ﬁ%¢)“ﬁmwu%
2 3 42
R AR LY R CE N I (22)

g poo24 B 8,m2 bW

One verifies that to zeroth order in g the W-part of this £ is the
seme es in (10), implying the propagator (11) for the W~field., Choosing
A =.1, en indefinite metric end mass Ma = 0 for the ¢~field one, has

however the propagé.tor

6 +kk /M Kk 6§ -kk /K

[IAY SRRV - By - gy IR (23)
2 2 . 2, 2 . o 2 2 .

K +M - ie M (k™ - ie) - kK +M -ie

for the combinetion Qp. = Wlb +]}1 Bp‘q) that enters in the interaction.

v It is worthwhile to note again that ¢ obeys the free field
equation (13). This we know for sure, because with the replecement

B p M

¥V -V - 1 Bucp folloved by a gauge transformation we can climinate the
@~—field from the interaction. - . -

Let us now evaluate Rd to lowest order. In all generality
ve take
o® wta,
£f(x) = e (24)

where ¢ is some as yet unspecified function of the dimensionless

quantity ¢/H. One has:

, sin g ¢ 1-cos § ,ab |2 .
£, = b, + T Sabe o+ ”"‘;i‘"f (V¢ ,-iv 5&b) (25)

1
'

vith ¢ =/ 4% . Farther
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»~1 - " {1 -cos ¢ C g'-sin\';'/je.b 2 - b
Bt Ne fie = Cane { 3 Cape ¥ 3 (V9 - 8,) Gab} S,

v
(26)
end ‘
-1 1 - cos § ¢ Y-sin ¢  4.b 2 b
€ach The Spfee = 2 { T2 abe ¥ - e (W3 - ¢ 85) - 8y, K
(27)
Series expansion givés '
-1 . b {1 1 .2 1t 4 c
€3¢h The 3;.r.fce = 2 B”v {(5 -V te v .ee) €abe ¥

1 1 .2 1 4 ,,ab .2
T RO [T S WO R MY ¢

Choosing vb = ""i)\% cpb one obtains the desired result (20), with

Ag 4 b (1 - cos ¢ .~ sin ¢, ab .2
i 'ZBM‘P{, Z €abe *c’LTW vy 6¢b)}f (29)

To lowest oxrder:

d b c
Rl—‘ = €ibe Butp ) | (30)

and the lowest order extrs term in £ is:

142 a bec '
5 M 8 €5, Qp' ap'qup (31)

i
es given before. .
!

3, The Feynman rules

, Our starting point is the Lagrangien {22)., From this £ we
68/28 : | '
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infer the following Feynman ruless

-8 €. {qu(k - q)a + SSY(q - p},+-6as(p

Propagetors:
’ Qe"=we'+1atpa' e
# U 7o *
a
Q ) v W w ol
Vertices:
8,0,k
b, B,p Y4
P+k+qg=0
a0,k b, B,p
2
~& [egdc égba {2i
€,Ysq d,6,r

N -t

p-!;k-l-q:o

-

- k)Y] (34)

oy %6 ™ %s Soy ™ fap Syo!

+ egdb egca {2 60'9 676 - 6«5 6y,r3 -

8¢, (» - ),

Further vertices involving one {1 end 3 or more ¢-lines, end vertices

involving four or more mu-lines. These vertices have factors g <§)n
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vhere n + 2 is the number of tp~- lines:

e /'/ * 2N I" ‘
," o7 ‘\ /, ‘\ 4
— s ——e? ete, 3 » Vemew- ete.  (37)
. v e 7N 7 N
. \\ ’) \\ '/ \
\

Finelly there ere vertices resulting frz‘am & contraction of a
@-line with the Butp part in ﬂ'; in the vertices (34) and (35). This
type of vertices will be denoted by & circle, and they are obtained from
the vertices (34), (35) by multiplicetion with the eppropriate four

momentum

c,q

g 2 2 '
/9\ ~ § Sebe Lp™ - x7) adﬁ = PPp ¥ kﬂkﬁ] ) (28)
2,0,k b, B,p o :

k+p+qg=0

- Mo w» S wm

In view of the form of the Q -propagator (32) one may in fact
drop the terms containing kcv or P, e |

8,0,k
€ 1 1.2
PN ;‘E e&bc [ 2 (Qk = Pk) ka - '2' k (P - Q)a] . (39)
.rl‘ \\
b,p c,q
k+pt+tqg=0

Here the 'k“ term may be dropped, Further the‘re are vertices
|

— ~ Py - \\ I, :
N “ » \ V4
\‘ 4 V4 .
. ’ b Y 't
A \ ” / \\
N\ e \

by Bsp
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The first one is obtained from (35) by multiplicatign wvith ka. Simi-

larly for the others, Care rust be teken thet symmetry or entisymmetry

properties under exchange of two lines ere as indicated in the interaction
. Lagrengien, |

Four important remarks must be mades

i Yo p~-1line connects two circled vertices;

ii The rules given by Feynman et al. are: (32)-(36) with M~0 and a
factor ~1 for every closed loop of an even nr, of ¢-propagators;

-3ii If one counts every occurrence of & factor }‘f'1 as & (foursmpmentum)-?

one moy convince oneself that the theory is renormalizable. Every
primitive diegram containing five or more external Q- lines is con-
vergent, Conversely, if we cen show that for e certain set of dia-
grams the limit M - 0 exists then those diagrems behave for large

momentum es in & renormalizable theory;

iv  In the zero-masslfang—Mills theory one has a number of identities
connecting W-wave function renormalization, 3-vertex and 4-vertex

renormalization, Essentially one counter term, of the form

a o
LA A

~ should make the S-matrix finite (apert from infrared troubles).

4, Some special cases

The ¢-particle is & free particle, and eny S-matrix element
conteining one or more outgoing @~particles (on or off the mass shell)
is zero. It must be stressed that this holds only provided the in- end
outgoing V¥ are on the ﬁéss shell (an@ their polarization vectors °u
satisfy kue“ = 0). This fact may be used to estsblish a large amount

of relations between disgrams,

68/28




16

In order g 1

. "
’
"
Fd
+ +
’
V4
’ \\\/
Vd
]
e ——— + |

Note that there exist elready relations. in certain subclasses

of these diagrems by virtue of the results in order g .

Consider now in second order the so-called tree diagrems (no

closed loops) having two outgoing ¢-—particles§

o § L
+\I/+'%yfy+\é +
R 3‘ : :
NN : :

i ) ! r:l//
S

|
(

-/.-@\.-

+ +

-@i-.(. --
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Ve note & very important fect: the collec'tlon of diagrams
containing en internal ¢-1line and & circled vertex are equal to e multlple
" of the collection of diegrams with en internal :p-line but no circled
vertex, on account of the results in order g « Therefore also the col~
lection of diagrems conteining internal boson lines end circled vertices
equals & multiple of the diagrams without internal boson lines and without

circled vertices,

This property remains true also for trees of arbitrary lengtﬁ
vith tvo outgoing ¢~ lines (all W ‘being on the mass shell)., This may
be proved by induction., Let a circle with a T denote a general tree,

having in eddition to the lines drawn an arbitrary number of external W-

lines, One has:
:
3 .
H
. TG T, - .

1
L]

TSV

..e -

Ty
';g -ﬁ(-@--.\.-
- \®%
2 -

Ve did not explicitly indicate vertices

...%f--.

On eccount of results in lower orders one has

therefore T6 proportional to T 4’

68/28
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Similarly T, o T,. .

7 4 : ) N
Thergfore T5¢>( T4.

In this wvay vwe see, by induction, that eny collection of tree
~_ disgrams baving two ¢-lines end an erbitrery number of on-mess-shell

“bosons equals & collection of tree diagrams having no eircled vertices,

From thd we infer the foilowing result: consider in a given
order of perturbation theory all diagrams having at most one closed loop,
end no external w-élines. That excludes occurrence of vertices (37),
having factors 1/M. Then the collection of these disgrams behaves as
diagrams containing'no circled vertices (but containing internal € and
¢-lines 1), Since such diagrems contain no factors 1/M we conclude
9

that diagrams with.onj closed loop are finite if there ere more than four

external boson lines

5. Conclusions

, From the foregoing it is clear that many diagrams of the mass-
fve Yang-Mills theory are convergent in the sensé of & renormelizable
field theory, Ve have not been able to treat diagrams that involve vertices
with more than 2 ¢~ particles end factors 1/M. These result from the

perturbation expansion of expressions like

sin (%%)

end one may suspect that these vertices are summable in some sense, because
the limit M —~ O seems to exist. However, we have not found any way to

understand the details of the theory involved.

 Finelly wve wish to note that the above methods should, if they

work in this case, also be applicable tq the case where one takes the
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limit of the mass of the W3 field to be zero end ¢bnsiders that field

¢
as the photon field‘o). In this way perhaps also symmetry breaking mey

be introduced,
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Appendix

It eppears to us that in the further study of the massive
"Yang-Mills fields expressions of the form

E(xy) = <0 | () &)° (&) ) | o>

will play an important role. Evaluating this expression amounts to

counting combinotions, One finds, with

pHx-y) = <0 | ¢*x) o'(y) J 0>,

the result
-1
5201 o2n-2 n
2n 2
Fn(x)Y) = (A (x“‘y)) (n l) {3 —— + 3 s‘ :C'-(ﬁ“:*z:—) +
4, =1
1.
2n- 1 1 o
1
* [ XN J + 3
2;: 2 L 2*1 ‘1442 ses ‘Ln_1 (n—{c‘ "lazooo«"'{vn_d)
1 2 n-1 . e
n . 2n-m n~-e+1 n-{ﬁnﬂﬁz
2
e @ - ™ () {2 2z Yy ¥ .
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Of interest ere series of the form

E Fk(x’_y) (M€)4k

and ultraviolet properties are studied by considering the behavior for x

((2k+3) z)
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in the neighbourhood of ¥ , where the A-functions become singuler.
Agein, the supposedly decent behaviour for M = 0 inspires confidence

concerning the ultraviclet problem,
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