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The transition regIan betaeen two parts of a p i l e  
which have different compositions is investigated. 
ciise Tihero the moderator is  the same in both parts of the 
pile, it is found that the diffusion constcant times thermal 
neutron density plus diffusion constant times fast neutron 
density satisfies the usual p i l e  equations everywhere,, right 
t o  the boundary. More complicated formulae apply in a more 
general case. 
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ON THE BOUNDARY CONDITION BED\W Tho XULTIPLYING MEDIA 

F. L. Friedman and E. P. Ybigner 

1. The pile equations of Fermi, as w e l l  as all the simirlar 

equations which describe the densities of neutrons with different energies 

in chain reacting Units have m y  solutions. All the solutions can be 

written as superpositions of exponential functions of the positfon. 

relaxation distances of these exponentials w e  different. 

The 

Ordinarily, 

one relaxation distance is imaginary and only exponentials with t h i s  re- 

laxation distance OCCUT in the actual solution. Y:e sha l l  c a l l  these 

solutions the rtregulartt solutions. 

the equations with real relaxation diatances. 

tances are a l l  much smaller than the absolute value of the imaginary relax- 

ation distance, they Will be called transient solutions. .In these, the 

r a t io  of the densities of neutrons with different energies is different 

from the i r  r s t i o  in the  regular solution. Such solutions play a role  i f  

t he  r a t io  of the densities of neutrons with different energies cannot be 

However, there are other solutions of 

Since these relaxation dis- 

constant throughout the pile. T h i s  is the case i n  the neighborhood of 

disturbing centers, such as e.g. control rods HNch absorb only thermal 

natrons. 

with different compositions. 

Another ample is tha t  of a p i l e  which contains two parts, 

In the l a t t e r  case, e.g. the ra t io  of fast 

and thermdl neutrons at the boundary between the two p i les  w i l l  be inter- 

mediate between the ratios in the "regular1* solutions fo r  both sides and 

go over in to  the regular ratio further away fromthe boundary. These facts 

have been brought out before on various occasions, most completely by Ibser 

and k'heeler i n  C-88. 
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2. PJe shall first t r ea t  a case in which the moderator is  the same 

82.l over the pile so that  the  diffusion constant for both fast and thermal 

neutrons remains constant throughout the whole system. It has been stated 

In CP-455 that, for such a system, Fermi's equations can be solved and this 

solution w i l l  be given next. The same problem then w i l l  be solved with the 

two group theory as described in CP-U&l and CP-1554. It will be shown that  

in this case, the two methods of calculation give the same result. The 

. *  

general case of different moderators in t h e  two parts of the  p i l e  dll be 

treated finally by means of the'two group theory. 

We s h a l l  use Fezmi's equations i n  t h e  form 

-cI 1 has a somewhat different definition from the  Here, C = cEfithermal 
usual one: it i s  zero for neutrons, the energy E of which is thermal, 

c( r )  is the transport cross section which nay depend on t h e  energy but 

does not depend on the position; q , t h e  value of this quantity for  T= 0, 

i- e. for thermal neutrons; , the  average logarithmic energy loss (independent 

of positicrm); q , t h e  absorption cross section for  thermal neutrons which 

depeader on the position. q ( 7 )  is the  density of fast neutrons per unit 

(it i s  not Fermi's slowing down density Q), multiplied or.ith the velocity, n 

the density of the& neutrons/ f( T )dL is the  number of fission neutrons 

f 

times th@ velocity. 

per slow neutron eaptura in tr, for which c i s  between and c".t d r .  

Finally p l  i s  the chance of escaping resonance absorption and p2 the thermal 

utflization. The multiplication constant is, hence 

k p1pzrP( r)dr 
0 
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The advantage of the above way of writing the ordinary pile equations i s  

t h a t  it does not a s m e  that  t h e  fission neutrons are monochromatic. 

If ra depends on the position, the ratio of n and q(?) will not 

be constant over the p i l e  and no simple equation will hold for  e i ther  of 

than separately. This is natural, since %ransientstf occur both in n and 

i n  Q which &e their behavior quite complicated. 

t o  be given consists of finding a quantity Yin which t h e  transients just 

cancel so tha t  a simple equation shall hold for it. 

The method of solution 

One can solve the first of the  above equations by writing 

fs F e d ' s  age for  neutrons OF 811 energy E characterized by .&(E;/Ethe- )= z 
The A is an operator, t o  operate on p p t a  and the exponential of an opere- 

t o r  is, as usual, the infinite series of operators obtained by expanding it. 

[f(r> and t(%) are iadependent of position ' One can convince bese l f  

e a s i l y t h a t  the above r q  indeed gives a t  least a formal solution of the 

first p i l e  equtiun. 

- 
J. 

It a h a  gives 

and this introduced into the second p i le  equation gives 
00 
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This is  the generdizatian of the usual equation connecting the multiplic- 

ation constant and the Laplacian. tn the present casg it is  useful only if 

one can neglect the second and higher powers of 4 i n  the expansion of the 

* eqonential. 

i s  the average age of fission neutrons multiplied by their  number. It i s  in- 

dependent of position. If the same holds for b, we can put it behind the 

operator A and obtain 

where 

In this, 

shows that 

i s  the average age of fission neutrons as follows from (2). This 

Y= ntr# 

satisfies the usual pUe equation 

and has no transients. 
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consequence of which 

second assumption if 

stant throughout the 

The above derivation presupposes that not only r(T) but also 9 
It further assumes t h a t  I k - 11 (< 1, as a be constant throughout the pile. 

one can assume t ha t  t ( Z  ')A << 1. 
one is N i l l i n g  t o  assume that the Laplacian, 4 is can- 

me ~ 8 1 3 ~  d i s c m i  the 

pile. 

* P y  

In this case 

and the calculation i s  quite elementary giving for  B t h e  implicit equation 

The equation for vis 

However, the last assumptions are so specialized that  they apply in the best 

case, if the two parts of the p i le  differ only i n  temperature which does not 

affect t h e  Lsplacian. The assumptions first made apply reasonably well for 

a p i l e  which has t he  sane moderator throughout although the amount of m e t a l  

is different in different parts of it. 

3. lhie now turn to the same problem, except that we shall  assume 

a sharp boundary (at x = 0) between the trii parts of the pile and use the 

two group theory described i n  reports CP-u61 and CP-1554. The notation ~511 

be the  same as that  adopted i n  CP-461. 

As in CP-l&61nt is the sun of the velocities of all t h e  thennal 

neutrons which are present in a cubic centimeter and nf i s  the  sum of the 
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velocities of the fast neutrons present i n  a cubic centimeter. The pile 

equations then are 

Dnf - HfGf i % W a ) n t  = Q . (u-b) 

These equations already were used in the above mentioned ME3 by Ibser and 

Weeler. 

in the p i le  ( that  takes into account the presence of the metal), Xf2 is the 

reciprocal age, k is the multiplication constant, and 

In  it, Ht i s  the reciprocal diffusion length of t h e d  neutrons 

Herein Cat is  the absorption cross section for thexmal neutrons per cubic 

centimeter, 9 is the probability for a neutron t o  escape resonance sbsorp- 

tfon, and 

Herein again C. is t he  to t a l  cross section for a fast neutron per cubic 

centimeter, is the average logarithmic ener@;y loss of a neutron upon col- 

l i s ion  with an atom of the moderator, E and Et are the energies of fission 

and thermal neutrons respectively. 
f 

The above notation holds for x (0, L e . ,  on the left side of the 

boundary. 

From equation (16) on, except t h a t  every small letter w i l l  be replaced b.Jr a 

capital .. 

On the right side of the boundary a similar notation w i l l  be used 

On the l e f t  side of the p i le  the neutron densities are linear 

combinations of the four expressions 
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t 

It should be remarked tha t  M 

reacting, it i s  t h e  Laplacian of the neutron density far from the boundary. 

For the part of the neutron density vihich is camposed of the first two expon- 

ent ia ls  of (12) the ra t io  of thermal and fast neutron densities i s  

i s  smaller than 0 i f  the p i le  is t o  be chain 1 

The last  part  of t h e  equation with the  e sign holds i f  Ik - 11 << 1 i n  which 

case x 2<< %2. 1 
For the part of the density proportional to the last two exponen- 

t ials  of (12) t he  ra t io  is 

Re have 

4. Let us first consider a specid. case in which the ra t io  of t h e  

fast diffusion constants rdMf2 of the two sides is  the same as the r a t i o  of 

the slow diffusion constants Gtht2 of t h e  two sides. In  this case pl times 

t h e  ra t io  of the two diffusion coefficients, bCdaf‘t2/g&&f2 = a&ft2/aff2, 

i s  also approximately the same on both sides, and this also holds i f ,  

k - 1<<1, for t he  ra t io  of the coefficients of the second two exponentials 

of (12) in the  slow and f a s t  densities: 

The equality of t h i s  l a s t  quantity for both sides--whether o r  not it is a 

consequence of the first assumption-will be assuqed i n  t h o  following, 
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The second two exponentials of (=) drop out of t h e  expression 

so that  this sa t i s f i e s  the equationb)/.= %2V'and has, therefore, ne tran- 

sients. 

also for  T. 

Since nf and % are both continuous at the boundary, t h i s  holds 

Rurthemore, the condition for the equality of the f l m s  

means that the r a t io  of the derivativesof nf shall be inversely proportional 

t o  the r a t io  of the fast diffusion coefficients and t h i s  holds, according to 

. 
* 

i 

1 

the second assumption, also fo r  nt. Hence 

fiat d v  - baf d P  

&tt2 dx 

fs also continuow. 

The most usual case in which the  above conditions are sat isf ied 

is tha t  of a CCIOIPPMI. moderator for  both regions. In this case t h e  thermal 

diffusion coefficient Gt/+* is also the same on both sides so that not 

only v w  

is  also continuous. Furthemore, since with o w  first assumption the fast 

diffusion coefficients are also the same on both sides, the derivative of 

the above expression is also continuous. The present nt was denoted bgn 

in section 1 and nf = d a ,  so t h a t  i f  one neglects .Hl2 compared with 

xf , this becomes 2 
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The expression i n  the bracket i s  t he  migration area denoted by M2. 

that  (15a) i s  the same as (8) .  In (7a) ?d2 = .7 1 t .xf~ but lk = l I C ( 1  

is assumed in both derivations and (158) i s  obtained f r o m  (15) by replacing 

k lq L 

Re see 

w t  

The physical interpretation of (15) is cpite simple. If the  neutrons 

did not diffuse while i n  the thermal region but all the diffusion b o k  place 

in t h e  fast neutron region evidently nf would be continuous ead likewise the 

product of the derimtive of nf with the diffbsion constant. On t he  other 

hand, if all t he  neutron diffusion took place while the  neutrons w e  thermal, 

n t  would be continuous and so would the then& diffusion constant times the 

derivative of n t .  

neutrons one must expect that  a linear Combination of the  above quantities 

will be continuous with coefficients which are proportional t o  the amount of 

diffision i n  the corrssponding regions;. 

equations show. 

If the  diffusion takes place for both thernxal and fast  

This is exactly what tha above 

5.  We now go over t o  the general case. It will be asmed, how- 

ever, that  Ik - 11 << l, L e .  1 %2\ << d(2, I KC1<< K2*. In the neighborhood 

of the boundary we shall use for the neutron density the following expressions 
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The first two of these refer t o . x  < 0; the la t ter  two t o  x > 0, Le.  to  the 

right side of the boundary. It would rtppss~ tha t  replacing the first two ex- 

ponmtials of (12) by linear functions involves an approximation, This, how- 

ever, i s  not the  case as we sha l l  use equations (13) only i n  the  immediate 

neighborhood of x = 0. The reason for onitt ing the  ea%x for x < 0 and 

eKZX' i n  (13) 4s tha t  the transient solutions m u s t  drop to  zero far away from 

the boundary. 

sities at the le f t  and right side of the bbundary if m e  neglects the tran- 

'sients when making the  extrapolations, Le., uses the equation An = X1%. at 

The quantities Po and Bo are the  exbrapolate$ neutron den- 

the  left side and AN = E,% at  the r ight  side of the boundary. ,4,. and % 
are the values of the derivatives of the extrapolated neutron densities. 

The boundary conditions which are valid fo r  the actual densities 

%(o) = N t i a  n f ( a  = Nf(0) (17a) 

(1%) 

are 

dt %'(a = D t  N t ' W  df nfv(0) = Df N f t ( 0 )  

In this we have introduced the notation 

= bt Taf/8f2 = df (W 
f o r  the diffusion constant for thermal and fast neutrons in t h e  l e f t  side 

of the p i l e  a d  the  notation Dt and Df fo r  the same quantities i n  t h e  right 

side of the  pile.  Equations (17) expressed in terms of t he  p and '$ are 
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If one wants the conditions for the axtrapolinted density one must write down 

the condition that  these four equations for fl and 17 have a solution. The 

condition for this is thet  all three rowed determinants of 

shall vanish. This condition is  then the solution of our pmblem in the  

general case. It i s  contained, implicitly# already in C-88. 

It may be worthwhile t o  calculate t h e  magnitude of the transient 

The sum of the two transients must be equai of solutions at  t h e  boundary. 

course t o  the Jump i n  the extrapolated neutron density. 

gives for  t h e  fast and thermal n at  the  boundary (x = 0 )  

An easy calculation 

These equations are quite symmetric. One must remember t h a t  Po and Bo are 

t h e  extrapolated fast neutron densities, ap0 and ABo the extrapolated 

thermal neutron densities, and the si@.ficance of ,&l and 5 is similar. 

Except i f  the boundary between t h e  two regions is quite close t o  the surface 

of the pile, the terms with /Q1 and 4 in (21) can be neglected because 

P#o is of the order of magnitude d,. If  0p.e does this, the interpreta- 

t ion of (21) is very simple. It shows t h a t  the neutron densities at the 
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boundary are weighted mean8 between the extrapolated densities Po and Bo for 

fast and aB0 and ABo for thermal neutrons. 

and Df K2 in case of fast, %M2 tind Dt KP in  case of thermal neutrons. 

4 The-weighting factor is dfX2 

The 

r;ei&ting factors for fast and thermal noutrona become equal i n  the special 

case treated in the fourth section. 
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