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The transition region between two parts of a pile
which have different compositions is investigated. In the
case where the moderator is the same in both parts of the
pile, it is found that the diffusion constant times thermal
neutron density plus diffusion constant times fast neutron
density satisfies the usual pile equations everywhere, right
to the boundary. [ore complicated formulae apply in a more
general case.. :
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ON THE BOUNDARY CONDITION BETWEEN TwO MULTIPLYING MEDIA
F. L. Friedman and E. P. Wigner

1. The pilelequations of Fermi, as well as all the similar
equationé which describe the densities of neutrons with different energies
in chain reacting units have many sblutions; All the solutions can be.
written as superpositions of exponential functions of the position. The
relaxation distances of these exponentials are different. Ordinarily,
one relaxation distance is imaginary and only exponentials with this re-
laxation distance occur‘in the actual solﬁtion. Vie shall call these
solutions the “regular" ;olﬁtiﬁns. However, there are other solutions of
the eqnatioﬁs with real relaxation distances. Since these relaxation dis-
tances are all much smaller then the absolute value of the imaginary relax-
ation distance, they will be ca}led transient solutions. In these, the
-ratio of the densities of neutrons with different energies is different
from their ratio in the regular soluiion. Such solutions play a role if
the ratio of the densifies of neutrons with different energies cannot be
constant throughout thevpile.. This is the case in the neighborhood of
disturﬁing centers, such as e.g. control rods which absorb only thermal
neutrons. Another example is that of a pile'which contains two pafts,
with different compositions. In the latter case, e.g. the ratio of fast
and thermal neutrons aﬁ the boundary between the two piles ﬁill be inter-
mediate between the ratios in the “fegﬁlar“ solutions for both sides and
go over into the regular ratio further away from the boundary. These facts
have been brought out before on various pccasions, most completely by Ibser
and Vheeler in C-88. |

‘ . | ;
e —



-3~

2. We shall first treat a case in which the moderator is the same
all over the pilé so that the diffusion constént for both fast and thermal
neutrons remains constant throughout the whole system. It has been stated
in CP-455 that, for vsuch a system, Fermi's equations can be solved and this
solution will be given next. The samé problem then will be solved with the
two group theoryi as described in CP-1461 and CP-1554. It m,ll be shown that
in this case, the two methods of calculation give ihe same result. The
general case of different moderafors‘ in the two parhs. of the pile will be
treated finally by means of the ;t.wo group theory. |
We shall use Fermi's equations in ihe form

—33;: éq .1-5 Bét (dfq) + paf(CT) =0 "

1 -
5P AR Gt jro pya(0) = 0

Here, C = In (E/Ethermal) has a soxﬁewﬁat different definition from the
usual one: it is gero for neutrons, the energy E of which is thermal,

a(T) is the transport cross section vhich may depend on thé energy but
does not depend on the position; a;,the value of this quantity for = _0,.
i.e. for thermal neutrons; 5 , the average logarithmic energy loss (independent
of position); 'o'; ,the absorption cross section for thermal neutrons which
depends on the position. q(T) is the density of fast neutrons per wnit ¢~
(it is not Fermi's slowing down demsity Q), multiplied with the velocity, n

' . times their velocity. A

the density of thermal neutrons/ f(T )dC is the number of fission neutrons
per slow neutron captureg in Y;Y, for which T is between ¢ and ¢ ¢ dZ.
F:'uially— Py is the chance of escaping resonance absorption and P, the thermal
utilization. The multiplication constant is, hence ’

m .
k = pyp, oj £(7)aT - (2)
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The advantage of the above way of writing the ordinary pilé equations is
- that it does not assume that the fission neutrons are monochromatic. _
~If ¢, depends on the position, the ratio of n and "q(?) will not
be constant ,over the pile and no éimple equation will hold for either of
them separately. This is natural, since "transients" occur both in n and
in q which mske oheir behavior quife complicated. The method oi‘ solution.
to be given consists of finding a quantity Vv~ in which the transients Just
cancei so th_at a simple equation shall hold for it.

One can solve the first of the above equations by writing

§0(T)(T) = U 27y M)A df'e'“?)’"] Py no, (3)

In this
o
o~

is Fermi's age for neutrons of an energy E characterized by .en(E/ the ]) <.

35 0_2 (3a)

The A is an operator, to operate on pon 6, and the exponential of an opera-
tor is, as usual, the infinite series of operators obtained by expanding it.
[f('Lv) and t(Z) are independent of position :: One can convince oneself
eagily that the above g q indeed gives at least a formal solution of the
 first pilo equation.

It also gives

(T

§r q(O)-[jnf(L*)e - at PR, (%)

and this introduced into the second pile equation gives
o0

A(—éz-;:;- - ran¢pl[;ff(2') et(L')Adf']pznd‘a':O (5)
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This is the generalization of the usual equation connecting the multiplic~
ation constant and the Laplacian. In the present case it is useful only if

one can neglect the second and higher powers of A in the expansion of the

exponential.
2( 3?_0 ) + pSA(pE) = a'an[l - P { f(Z')dZ—'p,_] | (6)
= agn(l - k)
where ‘ | -
s= [0Z) «THT (62)

is the average age of fission neutrons multiplied by theii' number. It is in-
dependent of position. If the same holds for p;, we can put it behind the ‘

operator AA and obtain

; n l1-k 1 '
S = et o
A ,3% t PyPS80,) = ranl e t+ pyp2S ’ (7)

where

~ 4 kt (7a)

¥? = .1_ + plpzs =
36009 36, %
In this, t is the average age of fission neutrons as follows from (2). This
shows that
Vv-z g, ¥ [ON
satisfies the usual pile equation

and has no transients.
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The above derivation presupposes that not only ¢~('C) but also p;
be constant throughout the pile. It further assumes that |k - 1) «<a, as a
consequence of which one can assume that (7 A LKL 1. One can discard the
second assumption if one is willing to assume that the Laplacian, A is con-

stant throughout the pile. In this case

-
_.n ~ B(T) T
v- = + P]_ ‘O‘{Q(L) e ___._....d_(?) (10)

and the calculation is quite elementary giving for B the implicit equation
| <0 ~ _ | |
B = 30,0, [l -p fi‘(() Bt(C )dZ] , | (10a)
. : o] )

The equation for V-'is'

AYy=BvV~ - (10b)

However, the last assumptions are so specialized that they apply in the best
case, if the two parts of the pile differ only in temperature which does not
affect the Laplacian. The assumptions first made apply reasonably well for

a pile which has the same moderator throughout although the amount of metal
is different in different parts of it.

3. We now turn to the same problem, except that we shall assume
a sharp boundary (at x = 0) between the two parts of the pile and use the
two group theory descﬁbed in reports CP-146) and CP-1554. The notation will
be the same as that adopted in CP-1461.

As in CP-1461 is the sum of the velocities of all the thermal

B,
neutrons which are present in a cubic centimeter and ne is the sum of the

witsn ~ &
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‘velocities of the fast neutrons present in a cubic centimeter. The pile

equations then are

Ang - Re?np ¢+ Ae2(kfa)ny =0 (11v)
These equations already were used in the above mentioned C-83 by Ibser and
Wheeler. In it, }(t is the reciprocal diffusion length of ‘thermal ;zeutrons
in thé pﬂe (that takes into account the presence of the metal), Kfz is the

reciprocal age, k is the multiplication constant, and

2T P e/l | (1ic)
Herein ¢, is the absorption cross section for thermal neutrons per cubic

centimeter, 2 is the probability for a neutron to escape resonance absorp-

- _ %%

= = SRS A (114)
In(Ey/E, ).

Caf

Herein again @ is the total cross section for a fast neutron per cubic
centimeter, ; is the average logarithmic energy loss of a neutron upon col-
lisjon with an atom of the moderat.or; Ef and Et are the energies of fission
and thermal neutrons respectively.

The above notation holds for x {0, i.e., on the left side of the

boundary. On the right side of the boundary a similar notation will be used

from equation (16) on, except that every small letter will be replaced by a
capital. | |

On the left side of the pile‘ the neutx;on densities are linear
combinétions of the four expréssions '

le o g x : e aﬁzx

e , et (12)

3
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It should be remarked that Klz is smaller than O if the pile is to be chain
reacting, it is the Laplacian of the neutron density far from the boundary.
For the part of the neutron density which is composed of the first two expon-~

entials of (12) the ratio of thermal and fast neutron demsities is
n./ne = axt‘?/(attz - 3512)a9a; ' ’ (12a)

The last part of the equation with the =2 sign holds if |k - 1]<< 1 in which

case 3-(124( )-(tz.

For the part of the density proportional to the last two exponen-

tials of (12) the ratio is

~a 3, 2/(3¢ g% - ’ﬁf)w 3 ~ (12v)

/n
By/fg g2

Yie have

ISR Ly (e (12¢)

4. Let us first consider a special case in which the ratio of the
fast diffusion constants o /4% of the two sides is the same as the ratio of
the slow diffusion constants rat"é{tz of the two sides. In this case p, times
the ratio of the two diffusion coefficients, plraf'{tzlrataffz = axg, %/t fz,
is also appro:dmateiy the same on both sides, and this also holds if
k -‘l« 1, for the ratio of the coefficients of the second two exponentials
of (12) in the slow and fast densities:

X2 = p . Tar¥¢?

1 (13) -
2e° - x,° 2t0%5° - 94

a

The equality of this last quantity for both sides--whether or not it is a

consequence of the first assumption—will be assumed in the following.

LB ™



The second two e:q:onentiais-of (l:2) drop out of the expression

a Ktz

22 - 92

V=1t ng | (Lsa)
'so that this satisfies the equation AY'= )Clzv" and has, therefore, no tran-
sients. Since ny and n, are both continuous at the boundary, this holds
also for Y~ Furthermore, the condition for the equalit;y of the fluxes
means that the ratio of the derivativesof ngy shall be inversely proportional
to the ratio of the fast diffusion coefficients and this holds, according to
the se‘c.ond assumption, also for ni. Hence |
6o dv~ fat dv~

or

. 1L
X v ()

is also continuous.
The most usual case in which the above conditions are satisfied

is that of a common moderator for both regioné. In this case the thermal
diffusion coefficient f t/}(tz is also the same on both sides so that not

only v but

.- e ag~
st (15)
oy Ky i St

is also continuous. Furthermore, since with our first agsumption the fasf.
diffusion coefficients are .also the same on both sides, kthe derivative of
the above expression is also continuous. The present n, was denoted by n
in section 1 end ne . ny/a, so that if one neglects ’){12 compared with
Kfz, this becomés | '

1, 1

nie ( $ - -—)/. {(15a)
st R K2

ri6o = 7



The expression in the bracket is the migration area denoted by ¥2. Ve see
1l % k
th I
is assumed in both derivations and (15s) is obtained from (15) by replacing

k by L.

that (153) is the same as (8). In (7a) ue = but ’k - l’ <!

The physical .jnterpretation of (15) is quite simple. If the neutrons
did not diffuse while in the thermal region but all the diffusion took place
in the fast neutron region evidently ng would be continuous and likewise the
‘product of the derivative of ng with the diffusion constant. On the other
hand, if all the neutron diffusion took place jﬁhile the neutronsk are thermal,
ny would be continuous and so would the thermal diffusion constant times the
derivative of ny. If the diffusion takes place for both thermal and faét.
neutrons one must expect that a linear combination of the above quantities
will be continuous with coefficients which are proportional to the amount of
diffusion in the corresponding regions. This is exactly what the above

equations show.

5. We now go over to the general case. It will be assumed, how-
ever, that ‘k - <<, i-e. {aef[« 3(22, {Kfl{( Kzz. In the neighborhood

of the boundary we shall use for the neutron density the following expressions

1 .

e = ot rx 1 (0
ng = a-(ﬂo + ﬁlx) - J(abetz e’(zx ' . (16p)
Ne =By + Byx ¢ I"Kfz e'sz (16¢c)
Ny = ABo 4 Byx) - flaK,? &2 | (162)

FELr o )
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The first two of these refer to x < O; the latter two to x >0, 1.e. to the

right side ‘of the boundary. It would appear that replacing the first two ex- -

ponentials of (12) by linear functions involves an approximation. This, how-
ever, is not the case as we shall use equationé (13) only in the immediate
neighborhood of x = 0. The reason for omitting the e~ %2% for x ¢ 0 and
eK2X 4p (13) is that the transient solutions must drop to zero‘far away from
the boundary. The quantities ,00 and Bo are t.hé extrapolated neutron den-~
sities at the left. and right side of the boundary if one neglects the tran-
"sients when making the extrapolations, i.e., uses the equation An = Klzn' at
the left side and AN = K, at the right side of the boundary. A, and B
are the values of the derivatives of the extrapolated neutron densities.

The boundary conditions which are valid for the actual densities
are

nt(o) = Nt,i‘o) , ‘nf(O) = Nf(o) (17a)

dy ny'(0) = Dy N,'(0)  dgng'(0) =Dy Ng'(0) 0 (A7D)

In this we have introduced the notation
Tat/ K2 = 4 | e/ %° = 4p (18)
for the diffusion constant for thermal end fast neutrons in the left side

of the pile and the notation D; and Dg for the same quantities in the right
side of the pile. Equat.ions’ (17) expressed in terms of the ,8 and ¥ are

At 3987 = Byt Py | - (9a)
af, - a )y ¥ = A B, - APKZ | (19v)
ae( Ay + RASPRK,) = D(B, - PEK,) o (199)
dea( ) = R 20) = DACE) + PR ) (199) -

prote i
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1f one wants the conditions for the extrapolated density one must write down

the condition that these four equations for yt and " have a solution. The
condition for this is thet all three rowed determinants of

shall vanish. This condition is then the solution of our problem in the
general case. It 1s contained, implicitly, a.f.!.ready in C-88. _ |

It may be worthwhile to calculate the magnitude of thé transient
solutions at the boundary. The sum of the two transients must ‘be equal of

course to thé jump in the extrapolated neutron density. An easy calculation

gives for the fast and thermal n at the bomdafy (x = 0)

ap(€2 8, - A1) + Dg(Ky B, ¢ By)

| ‘np = (213)
| dp Xy & Dp Ky |
ay = dya(¥?, By = A1) 4 DMK, By ¢ 1§1>‘ (m)

These equations are quite symmetric. One must remember that < o and Bo are -

the extrapolated fast neutron densities, 883, and ABO the extrapolated
thermal neutron densities, and the significance of /31 and Bl is similar.
Except if the boundary between the two regions is quite close to the surface
of the pile, the temms with /3, and B, n (21) can be neglected because
ﬁl/ﬁo is of the order of magnitude o 1 If one does this, the interpreta-
tion of (21) ie very simple. It shows that the neutron densities at the

2 , ‘
K | K2 Ao - By
2 N .
a3, A2 af, - AB, -
, : ” - =0 (20)
af Ke“X D KK, ~ dgri) = DeBy
2 | 2 |
-dpady "X, ~Dy A, K, da/B) - DyhBy

[T LAY
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boundary are weighted means'betwegn the extrapolated densities ,60 and B§ for
fast and a B, and AB for thermal neutrons. The*weig‘mting factor is d A,
and Dp K, in case of i‘ast, dbxz and Dt. K, in case of thermal neutrons. The
weighting factors for fast and thermal neutrons become equal in the special
case treated in the fourth section.
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