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1.. The following represents a solu'cion OS B o I t m a 8 s  eqwtion 

for zsu-L-rons xhich do nul: change t h e h  energy during their diffusion in 

a niaterizl. 

P3-aczek's work, which is also reprodw-ced in A - 2 1 .  

first part of the followjag note vare also published b~ Bathe in t h e  

23. f. Physik, 

The solixtio;~ c z i ~  be easily o b t a e d  on t h e  basis of 

The contents of t h e '  

Ke first consider 8 p l a o  source of neutrons at x = 0. 
BxLden-b?;y, the angular dist&.bution of neutrons w i l l  be independent of 

y a i d  "Y m3 have at  every paint axial symetry  with respect to the,X 

a x i s .  The rmn'ber of neutrons per wit volme f o r  which t h e  velocity 

cimgoaen-t, i n  the  X dj.reclion Y lies between /c" v and (,A + dpc)v 

-dL1 be denoted by 
x 

(1) f(x;r-) d p  . 
The density of neutrons ai :: is obbained. by integration over the direction 

cosine /19 1 
/ ,La) 

.L 

where f i s  %he average value of f over a l l  direct ions of i,he velociky, 

The Soltzman equation for s$-ierically syiinetric scaktering is 

a 
d* 

It+ transniiusior. 
B in any manner tQ 
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This  t+qmcIisioXt, ai srfd.2 as (sa), show that the  second parit of the 



of ra/e (cwve a). 

An alkeraztive pracoduke is to choose r' such a way that 

t.he Inte,-ral. of ( Z f  over all space have the  rig.% .stslue. . Since the 

production of neutrons is 1 per un5.L t h e ,  the absorp$ior! of neutrms 

2iSG f ,  3. 

@a 
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Is' = (1 + can be obtained iron (10.0) by partial. integretion. This / 

gives 

1 .  

* . -  

thus show t h e  behavior of N (r) fo r  smaJ.1 r. 

functions e- 'f r/l, n r% with f 2 Q . 
integrable) for f = Q , drops hence and goes t o  zero as '( -3 for lmge 7 -  
Z-t stays positive for all. y if sS/c > 8/?f?-, otherwise it becoms 

It gives N,(r) as a sum of 2 
Thc coefficient is inf inits (but 

negative and approaches 0 for large 

factor tias a relat ively sharp rnzximurn i n  t he  neighborhood of f = e ,  XG 

seem reasonable to replace (llc) by a single e- pfr/4Vr2v curve, the ' 

from below.. Since the second 
. ,  

7 

2 .  

coefficient of which is equal t o  the integral  of t he  second fac tor  (i.e. 

equal t o  1) and the 

of the .same factor, L e .  is equal t o  

of which corresponds t o  the center of rmss 

. -  

One obtains from this a r t  ra-ther s in i l a r  t o  that of (lla). 
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It may be, i n  man- cases ,  just a8 simple t o  use t h e  BO- 

curat-o formula (lob) than any approximate exprss E ion * The funot ions 
.% 

= e' 7 hpaL-,beg a simplo d i f f e r e n t i a l  equa t ion  bgf f'$w-hich 

rrakes it often p o s s i b l e  t o  o b t a i n  t h e  aombinbd e f f e c t  of t\ d i s t r i b u -  

tion of SouTCes 

f 

TI" ths so'urc0 densi ty  is p z  the equation A-f: - F z J r  -t. 1 
0 /.v- t. o gives f This integrated over $' with t h e  weight  factor  I P -  

appciarirg i n  (IOb] g i v e s  Lhe'lsscond part" of t h e  neutron density c r e a t e d  

by source6 of' -the d e n s i t y  p Similarly, t he  "first pert" of t h e  

neutron density is i n  most cases most easi ly  obta ined  by solving t h e  

squation . f % $ - X 2 ~ * ~ ~ ~ ' / ~  v '+ ) /3=P0  On t h e  whole,  ooe O ~ R  say t h a t  

the assunption of a s i n g l e  energy va lue  makes it almost as easy t o  

o b t a i n  the neut ron  d e n s i t y  i n  an infinite konlogeneous medium as it is 

t o  obtain the e l e o t r i c  p o t e n t i a l  if the  charges arc given.  I-i; is 

miloh nmre difficult, however, t o  %ake into aocount t h e  v a r i a t i o n  of  

energy 8 s  is d s o  t o  cons idor  8 problem w i t h  ~ J O  media. 

3 .  EIS approximte expressions given above for the  neutron 
, 

dens i ty  tenpi; one to t r y  th0 fo l lowing  procedure: 

bafors  %he first o o l l i x i o n  i n t o  oocount r i go rous ly  and take the place 

Take t he  pakh 

w11si-a the first a o l l i s i o r ,  occurz t o  be %he Souroe of nerttrons which 

of the  l a t t e r  are nore oxtsrded than  the or ig ina l .  souroes and it appsars 

m r o  justifiable t o  treat  +hem by means of the d i f f u s i o n  equation. 

The psooedu~o  cap bo l u r k h e r  g e n e r a l i z s d  by trsat;ing not only the f i rs t  
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hut  the f i r s t  4x0 co l l . i s i cns  r i g o r o u s l y  @ t o ,  Eviden t ly  %he above 

nethod will give mora accu ra t e  results i n  tha  neighborhood of t h e  

source  khan the s t r a i g h t  a p p l i c a t i o n  os" t h e  d i f f u s i o n  theory, It 

m i l l  be seen, however, t h a t  no matter how uany c o l l i s i o n s  one takes 

into account  r igo rous ly ,  t h e  asymptot ic  behavior remains t h e  same as 

i n  t h e  s t re . igh t  d i f f u s i o n  theory, i . e e  does not c o n t a i n  t h e  f a c t o r  I 

or" 110). Of course, ona cGn ob ta in  a very good expres s ion  f o r  t h e  

3ecsit;y at eny po in t  by takirg into socount s u f f i c i e n t l y  many c o l l i s i o n s  

rigorously, bu% PO rnattx-). hop: many c o l l i s i o n s  one t rea t s  t h i s  way, 

there i.6 A ~ E E A ~ S  a d i s t a n c e  :-!here %he r e s u l t  becornas i n a c c u r a t e ,  

cons ide r  t h e  m s e  of a p o i n t  souroe of uni% s t r s r g t h .  The d e n s i t y  

before the  first co1l ic ; ion is ,  evidently 

Let us 

The aensi ty ,  aft:or the  f i r s t  o o l l i s i o n  N w Z 1 1  be assumsd t o  obey 
&I 

the e qua t  t on  

One nay be tempted t o  inkroducc a f a c t o r  I i n t o  t h e  1as.t term of (14) 

(wtiihh would g i v e  the correci; asymptot ic  behavior t o  Na,) but th i s  is 

cot j u s l i f i n b l e  siaut), evidently, the i n i a g r a l  of hl,, must be equal  

to the in-iiogral of the  produc-kivn ((r&/c)Ii 

easily by u s i q  f o r  N&, the  l a s t  expression i n  (13) and w r i t i l l g  for N,, 

One can  solve (14) most &/' I .  

- .  
. *  

I .  

. *  
, .  
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Qm obtains i n  this way 
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The c o e f f i c i e n t  of (Ira) is  determined so  t h a t  t h e  Laplacian of 

W,, 
l oga r i thmic  s i r G u l a r i t y  a-t & =  0 

shs.11. oon-tain no d - f u n c t i o n  at & =  0. IIence, N,, has only a 

The s o l u t i o n  of the problem i n  t h e  p r e s e n t  approxination is 

the  si19 of  (13) and (14b). 

from t h o  s t e r t ,  the 6 0 l I i % i O n  would have been only t h e  l a s t  term of' 

(14bj, 

correct  resul t ;  at sna l l  d i s t a n c e s .  

N . 1 / ~ p b 2 ~ n e a r  the  o r i g i n ,  a8 it is i n  the a a c u r a t e  s o l u t i o n .  

a t  l a r g e  d i s t a n c e s  -Lhe behavior  of t h e  sun of (13) and (14b) is t h e  

C F ~ S  as thwk of the  s o l u t i o n  of t h e  d i f f u s i o n  eqna t ion .  Comparison 

vit-h (10) shows t h a t  ita is t o o  I.clrgs by the factor l /I0 E3eiCher w i l l  

Ead we used the di f fus ion  equation right 

One sees *!.,at the p resen t  procedure gives a muah more nea r ly  

I n  p a r t i c u l a r ,  t h e  d e n s i t y  is 

However, 

.L1. L Z ~ I . S  b e h v i o r  oharge if one takes Curther c o l l i ~ i o n s  rjgorously i n t o  

aocouir!'i beforo goirg 0~81' t o  t h e  d i f fus io r i  equation: the neutrons 

rth5.ch s u f f e r e d  t h e i r  f i r s t  c o l l i s i o n  st a po in t  P w i l l ,  even if another  

collision is taken in-to account rigorousl.y,  give t h e  same density at 

large d i s t a m e s  as in t he  foregG5.X treatment i n  w'iioh t hey  were treated,  

from I? on, by %he d i f f u s i o n  equa t ion ,  This holds  f o r  d l  p o i n t s  P snd 

thus f o r  t h e  whole d i s t r i b u t i o n .  ?:he re~ i son  for % h i s  surprisirg; be- 

hEvi.or is t h a t  the d i f f u s i o n  eqvatinii a s s u m s  B b i a s  i l l  t h e  veloc i ty  

d i - s t r i b u t t o n  of %a neutrons i n  UIC d l i ' s c t i o n  o f  decreasipg d e n s i t y  

r i g h t  from the s t m t .  

d i d k a m e  of atout  oae m a n  free pa-th. 

In r ea l i t y ,  this bias develops only after a 
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It nay be worthwhile t o  remark thet  the oalculat ion of the 

f i r s t  -ha0 motions  aould be c m r i a d  out also i n  0868 of 8 not spherf- 

oally s y m e t r i o  scattering.  

keen oalculated i n  A-21 for the cese Ihet the d i f ferent ia l  m o s s  seot ion 

The exponent i n  N1, i . e ,  )cy has already 

C O n t a i i 1 s ,  in d d i t i o n  t o  8 constant term, a t e r m  proportional to the 

cosine of the sca-ttoring apGle, 

Ye had ooonsion to derive and use the above resul ts  for the 

calaulat ion o f  tho multiplication constant of a water Gooled p i l e .  

In this case,  sou16 of the cewhrons 8Te made thermal in the wa-ter and a 

sor ta in  l o s s  by i n i t i a l  absorption was t o  be expected, 

this o m 8  e.bout -01, and thus much greater than it i s  i n  graphite, 

Bowever, figure 2 ahow that the i n i t i a l  absorption remains quifie small 

E.nd amaunts tG only .@$ causing a Loss i n  the t o t a l  multiplication 

constant of less  than .U%. 

ra/r i s  i n  
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