PPPL--1917

NUMERICAL STU |
DIES OF IMPURITIES IN FUSION PLAsMas® DE82 022279

R. A. Hulsge
Pl
asma Physics Laboratory, Princeton University

Princeton, New Jersey 08544

ABSTRACT

The coupled partial differential equations used to describe the behavio
of impurity ions in magnetically confined controlled fusion plasmas requi r
numerical solution for cases of practical interest. = Computer codes deve:u r:
for impurity modeling at the Princeton Plasma Physics Laboratory are use:pe
as

examples of the types of codes employed for this purpose. These codes solv
for the impurity ionization state densities and associated radiation r e
using atomic physics appropriate for these low-density, high—temper :tes
. atur

plasmas. The simpler codes solve local equafions in zero spatial dimerisione
?hile more complex cases require codes which explicitly include transport o:
the i@purity ions simultaneously with the atomic processes of ionization and
recombination. Typical applications are discussed and computational results

a
re presented fur selected cases of interest
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I. INTRODUCTION

The range of ilnpurity elements found in the high—-temperature piasmas of
controlled fusion devices is quite broad, ranging from helium &Z = 2) up
through tungsten (Z = 74) depending on the device in question. The
understanding of impurities in these plasmas involves both atomic physics as
well as plasma physics and 1is a critical component in the achievement of
controlled fusion power. Detailed calculation of the behavior of impurity
ions in fusion plasmas requireé numerical solution of systems of coupled
partial diffe;ential equations which describe the evolution of the: impurity
density in time, space, and ionization state. Several computer codes
developed for impurity modeling at the Princeton Plasma iPhysics Laboratory
will be discussed. These codes model impurity behavior in the low-density,
high-temperature hydrogenic plasmas typical of magnetically confined fusion
devices, such as tokamaks.

TImpurity modeling codes are used in various ways in fusion research. One
fundamental aéplication involves the measurement of .basic plasma parameters,
such as the derivation of electron temperatures from impurity line .radiatiom.
Another important experimental application arises from the fact that much of
the detailed physics of impurity behavior is still poorly understood. For
example, one can use the codes to empirically determine particle transport
coefficients by comparing code results with spectroscopic observation of
impurity ion densities and time behavior. As our knowledge of impurity
behavior improves, aided by suc.h studies and theoretical work, then the codes
can be employed with increasing confidence to model and aid in the “;'design of
future experiments, up to and including fusion power reactors.

The. theoretical and experimental study of impurities in fusion plasmas 1is

an area of active interest in the fusion community, and a wide \fériety of




techniques and codes have been developed. We will not attempt here a
comprehensive review of these various impurity studies, or of the many
computer codes currently employed in such work. Rather the physics and
numerical methods 1involved 1in ceftain specific codes developed at the
Princeton Plasma Physics Laboratory will be discussed, and examples will be
presented of typical applications and results. To begin, a brief review is
presented of the various roles impurities play in magnetic fusion plasmas
(Section II), and the relevant atomic procesées occurring in these plasmas are
outlined (Section III). Local codes.with zero spatial dimensions (0-D) are
relatively simple and are described in Sections IV and V. A full 1-D radial
transport code which treats the atomic and tramsport processes simultaneously
for each impurity dionization state is invaluable for the more complete
description of realistic plasmas and is discussed in Section VI. A summary

and comments on future development directions appear in Section VII.

ITI. TIMPURITY EFFECTS AND DIAGNOSTIC APPLICATIONS

Some level of 1impurity concentration occurs naturally 1in all plasma
devices as a result of the inevitable presence of material walls somewhere on
the plasma periphery. In addition to the vacuum vessel 1itself, there are
usually various structures within the vacuum vessel associated with coils and
diagnostics. Many devices also operate with limiters specifically intended to
constrain the hot plasma to some safe distance from the walls. A host of
processes, such as arcing and sputtering, release impurity atoms from these
material surfaces. These atoms include both those of the underlying material
itself (carbon, 1iron, tungsten, etc.), as well as those of other elements,
such as oxygen, which are bound to thelr surfaces. Elimination (or at least

control) of these impurity sources is desirable, but difficult to achieve. 1In



contrast, impurity elements are sometimes deliberately introduced into the
plasma. This may be done by gas puffing or by iaser ablation of a thin film
of material off a sample slide (l). The purpose may be to encourage certain
desirable impurity effects (such as enhanced ohmic heating), or it may be
related to specific diagnostics which require thé controlled presence of
certain impurity ilomns. Once an {impurity 1s introduced, deliberately or
otherwise, into the plasma periphery, its subsequent behavior and effects are
governed by the atomic physics and transport phenomena it encounters, first in
the scrapeoff region between the wall and limiter radius and then in the hot
‘plasma core itself .

The presence of impurities has certain important effects on the bulk
plasma parameters. First, because of their high charge, impurity ions
contribute significantly to the plasma resistivity. This resistivity in turn
affects boﬁh the ohmic heating rate and current profile in devices, such as
tokamaks, which rely on large circulating internal plasma currents.

Radiative cooling by impurities is an effect which can range from
devastating to beneficial, depending on the location and rate at which power
is lost due to‘this process. Severe cooling of the central plasma core via
line radiation from heavy metals can have catastrophic consequences (2) and
has led to the removal of such materials as molydenum and tungsten from many
machines. On the other hand, radiative cooling at the plasma edge offeré a
relatively benign channel for heat transport from the plasma core to the
walls. In principle, the plasma edge can be tailored to a desired temperature
via properly controlled impurity radiation from this region.

Other impurity effects include their influence on the deposition of
neutral heating beams (via beam~impurity ion collisons which ionize the beam

atoms) and the dilution of a reacting plasma. Since a principal plasma




constraint is the electron density, one impurity ion effectively replaces a
number of hydrogen fuel ions equal to its total charge.

Impurities can also act as valuable diagnostic tools, in part because
they are a plasma constituent which 1is wuniquely identifiable via its
characteristic line radiation. Since the plasma 1is optically thin to this
radiation, dimpurity ioms can be studied throughout £he plasma volume by
spectrometry from the outside. This line radiation is often detectable from
impurity concentrations sufficiently small that they are essentially non-
perturbing to the bulk plasma. Most plasma devices have at least one
spectrometer, and on larger machines several spectrometers covering a wide
range of wavelengths are typically available.

The ionization state reached by an impurity is a strong function of the
plasma electron temperature; hence, the presence or absence of line radiation
from various charge states 1is a measure of the electron temperature. While on
larger machines more accurate data is commonly available via Thompson
scattering and other methods, on small devices this technique is stilliquite
important. The electron temperature and density can also be determined from
line ratios.

The doppler width of certain selected impurity 1on transitions can be
measured to sufficient accuracy that ion temperatures can be obtained (3). 1In
other cases, plasma flow velocities (such as toroidal rotation in tokamaks)
can be measured by the doppler shift of impurity ions moving with the bulk
plasma lons.

Finally, the ability to measure 1n detail the spatial distribution and
time evolution of impurity i{ion densities throughout the plasma via
spectroscopy provides a unique tool for the determination of plasma particle

transport and confinement. These observations can either rely on naturally



occurring impurity elements, or selected impurities can be introduced in a

controlled manner in order to observe their subsequent behavior.

III. ATOMIC PROCESSES
The high electron temperature (1 eV < Te < 100 keV) and low density
(ng 5 1015cm—3) of magnetically confined fusion plasmas allows certain

(coronal) approximations to be taken as a starting point when treating the

atomic physics.of the impurity lons. First, the plasmas are optically thin to
atomic ’line radiation, and hence all photoabsorption processes may be
neglected. We also have collision times at these low densities much longer
than the decay times of most excited atomic states, with the result that each
ion may be taken to be in its ground state at the start of any collisional
process. Working at or near this coronal limit greatly simplifies both the
atomic processes which need to be considered, as well as the formulation of
the associated transport models for the impurity ions.

In the following, we will briefly note the atomic processes which must be
considéred in the impurity calculations. Various additional processes and
considerations peculiar to the scrapeoff region of the plasma, such as
molecules, will not be considered. Data on the cross sections and rate
coefficients for these processes 1is fundamental to any impurity modeling
calculations. Therefore, the calculation and measurement of such data on the
part of the atomic physics community 1is a critical part of our increasing
understanding of fusion plasma impurities. This research presents challenging
problems in its own right.

Ionization of ions of an impurity element with atomic number Z and charge

q 1s primarily due to direct electron impact ionization:
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For some ions, excitation to autoionizing states may also be an important
process. Here, the electron impact removes an electron indirectly by exciting
the ion to a state which subsequently decays by the ejection of an electron
rather than by radiation. Combining these two processes, we can define a

total ionization rate per ion as
I =nk(T), (2)

where T, is the electron temperature, ne(cm_3) is the electron deunsity, and
the ionization rate coefficient kq(cmSS-l) is essentially independent of ng .
Rate coefficients such as kq result from ‘the average over a maxwellian
velocity distribution of the cross section - velocity product, <ov>.

For recombination of an ion, radiative, dielectronic, and charge exchange
rates typically must be considered. Radiative recombination proceeds by
direct capture of an electron from the continuum with the emission of one or

more photons:

+q—-1 *
q_‘)

2t e > (2 + hv,

%
(25 szl hhy 4 hy, + o (3)

2 3
The second step involving decay of an excited state via line radiation occurs
only if the electron was not directly captured into the ground state of the

ion.



Dielectronic recombination 1s a complex process whereby a free electron
is captured into a highly excited level of an ion during the excitation of a
bound electron. This doubly excited state 1is unstable against autoionization,
but will sométimes stabilize before this occurs by radiative decay of the
inner excited electron. Cascade of the captured electron to the ground state

follows, resulting in the recombined ion:

*k *
7t + o +~(Z+q‘1) > (Z+q-1) + hv1

*
(zfaty L, gfl gy hv, + hvy + .... , (4)

Both radiative and dielectronic recombination occur due to electron

- impact and, hence, can be combined into a total recombination rate per ion:

R =na (T), : (5)
q eq e
where the total recombination rate coefficient aq (cmss'l) includes both the

radiative and dielectronic processes. While aq does have an intrinsic density

dependence via the dielectronic process, in many cases this dependence is weak

over the density range of interest in a particular problem. For present
purposes, a will therefore be written as independent of density. In general,
q

however, this effect cannot be neglected. This 1s particularly true at the
high density and/or low temperature extremes of the parameter ranges mentioned
in the introduction to thils section.

Neutral hydrogen atoms present in the plasma (produced either by charge- |
exchange transport of recycling plasma from the cool edge region or by neutral

beam 1injection) can charge exchange with impurity i1ons and produce a



significant net recombination rate:

*
7t 4+ g0 5 (zY) 4 gt

*
(zf7ly 5 gtetl hv, + hy, + ... (6)

2
This rate depends on the neutral hydrogen density instead of the electron
density. In order to simplify the following discussions, charge-exchange
recombination will be neglected, but it is important to note that it can be an
imﬁortant process in cerﬁain plasmas (4).

The prime radiation mechanism for impurity ions 1is line radiation due to
electron impact excitation followed by prompt radiative decay. Other
processes of Importance include line and continuum radiation associated with
the recombination processes and bremsstrahlung. Neglecting éharge-exchange
recombination, all these processes: are the result of electron impact, and,
therefore, one can write a total radiation rate coefficient for each charge

state £ (T ) (watts—cm3) which is a function of the electron temperature.
q' e

The radiative cooling for a given ion Pgq (watts) is simply given by
P =a2 (T). (7)

Rate coefficients for these processes have been obtained from those
originally used in the average ion code of Post et al. (5) by reformulating
them in terms of individual charge states. 1In addition, detailed spectral
line excitation rates are calculated separately as required for each specific

modeling application.
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IV. CORONAL EQUILIBRIUM

Given thevpecessary rate coefficients from the preceding section, it is a
simple matter to obtain the loéal (zero-dimensional), time-independent
solution for the ionization balance of an impurity in equilibrium with its
surrounding plasma. Since the total flow between adjacent ionization states
must be zero, the densities of the individual charge states nq(cm"3) are
simply given by

nq+1 ) Iq _ kq(Te)

= (8)
]
nq Rq 1 aq l(Te)

taken together with the constraint that the total impurity density nz(cm"3) is

given by

n =%in . 9)

Note that the resulting lonization balance is primarily a function of the

electron temperature, T with the only density dependence occuring via the

e’
dielectronic recombination rate as previously discussed. This "coronal
equilibrium” result is often used as a starting point for. understanding

impurity effects in plasmas. The associated total radiated power P(watts

cm™3) can be simply calculated from

= | = CE (10)
P =2z nenqlq(Te) nenzlZ (Te) . .
q
The coronal equilibrium radiation rate (cooling rate) coefficient RSE(TG) and

charge state fractions fsE(Te)




~11~

CE . .CE
2, (T.) = z £, (Te) 2. (T.)
CE _q
fq (Te) "~ n, ‘CE ’ an

are tabulated in the literature for various elements (5,6).
Figure 1 shows the coronal equilibrium ionization balance and radiation
rate coefficient for diron as a function of electron temperature for

24

16 and Fe’ , which

10 eV < Tg < 10 keV. Note the persistence of ret
correspond to the relatively stable closed-shell neon—-like and helium-like
states. This sort of shell structure is evident in corresponding curves for
all elements. In particular, the helium-like, hydrogen-like, and fully-
stripped ions radiate relatively poorly, and hence it is possible to "burn
out” impurities to reduce their cooling effect.

The inclusion of charge—exchange recombination introduces a dependence on
the neutral hydrogen density into these calculations and thereby complicates
the corresponding results. A given neutral hydrogen velocity spectrum results
in a family of ionization balance and total radiation curves which are
parameterized by the neutral fraction, (nH/ne) (4).

Assuming local cofonal equilibrium is an adequate approximation éhen the
plasma is stable in time, and the impurity particle transport across
inhomogenities 1in the plasma 1s slow compared with the i{ionization and

recombination times.

V. ZERO-DIMENSIONAL TIME—~DEPENDENT MODEL
When coronal equilibrium is a poor approximation, one may introduce a

time—-dependent, =zero—dimensional calculation. Here we need to solve the



-12-

coupled rate equations:

on
q _ - - .9
-t Iq_lnq_l (1q + Rq] n, + Rq+1nq+1 Tq + 5 (12)

=]

The 1lonization and recombination rates Iq and Rq now may vary with time in
response to the changing electron temperature and density of the impurity
ion's environment. The T decay times and Sq source/sink terms can also be
arbitrary functions of time.

The set of coupled equations (12) of such va,zero-dimensional impurity
model are readily transformed into an implicit finite-difference scheme for
numerical solution (7). Here "zero-dimensional" refers to the zero spatial
dimensions of the model; the multi-species (e.g., multi-ionization state)
codes described here always have the additional charge state dimension to
solve in beyond the number of spatial dimensions considered. Since the
charge-state dimension 1is already intrinsically discrete, however, finité

differences need only be taken in the time and spatial coordinates (if any).

Equation (12) becomes in vector form

—)' _ -»> ~
L t-d(a-a+ed)+d (13)
where

o) So
n S

> nl Sl i

n = 2 and g ={ ®2 . (14)
By / S,

The (zZ + 1) x (Z + 1) matrix A contains the ionization and recombination

rates and the ©. term. The implicitness factor g may be adjusted from
q
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6 =0 (fully explicit) to 6 =1 (fully dimplicit) although 6 > 0.5 is
dictated for stability. This equation advances the system to a new state n' a
timestep of length At advanced from the state a.

Equation (13) is trivially put in the form
X;':;, : . (15)

where ¥ and § are known. %X is tri-diagonal (as is X ) since the atomic
processes connect only adjacent ionization states. The solution is thus

easily obtained (7) by elimination on & by assuming solutions of the form

L 1 -+ . »
nq Eq_lnq_1 Fq_1 (16)

When (16) 1s substituted into (15), one obtains recursive relations for Eq and

Fq which involve Eq+1 and Fq+1 plus the known elements of ¥ and ;. .One
then starts by evaluating these recursion relations at q = Z and sweeps downr
to Eg and F,. The né are then extracted from (16) on a return sweep from gq =
0 toq = Z. The boundéry conditions are invoked at the endpoints, and simply
reflect »the absence of n_y and Nyyqe This procedure 1is quickly carried
fhrough on even a small computer, which makes such codes of great practical
utility.

Beyond the algorithm described above, one must supply a choice of At for
each timestep. This is done dynamically in the code by establishing some

index of how rapidly the system 1s changing in time. A useful particular

choice is

) /(n) R a7)
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where (Anq')max is the largest change in any ionization state density during

the last timestep and (nq) is the largest density. This choice discounts

max

fast changes in ionization states which have negligible densities. This

change parameter & 1s compared after each timestep with a specified € , which
is the target change per timestep. The code then adjusts the next timestep
length in such a way (either longer or shorter) as to try to approach this
target. This system works quite well for most applications.

With fixed plasma parameters and no source/sink terms, thesetequations,
of course, yileld ionization balances and radiative cooling rates which
converge towards coronal equilibrium from any given initial state. But in
many cases, the finite rate at which the impurity can respond to rapid changes
in its environment lead to important departures from coronal equilibrium. In
the case shown in Fig. 2, a cold plasma containing an initially neutral oxygen
impurity has been instantaneously heated to an electron temperature of 50
ev. The electron density 1is taken to be n, = 2 X 1014cm-3. This is a
representative situation for many small plasma devices, such as spheromaks,
which heat on time scales fast compared with characteristic fonization times
for their intrinsic impurities. 1In Fig. 2(a), the fractional distribution of
the oxygen  impurity amoﬁg ‘1ts different ionization states is shown as a
function of  time. The ‘final coronal equilibrium distribution is not
approached for several hundfed microseconds, which is often much longer than
the plasma lifetimes in such machines. One result of this is that the use of
ionization balances observed spectroscopically in such situations &111 yield
incorrect estimates for the electron temperature if simple coronal equilibrium
is assumed.

Figure 2b 1llustrates another consequence of the non-equilibrium nature

of the oxygen distribution. The effective radiative cooling coefficient of
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the oxygen is well above that which would obtain in coronal equilibrium at 50
eV as a consequence of the finite time required for the oxygen to burn out to
the relatively non-radiative helium—like state. Until this occurs, the oxygen
radiates quite strongly, with an integrated energy loss which can be many keV
per oxygen lon. This radiative energy loss often cannot be sustained by the
heating in small devices and produces the phenomenon often referred to as the
"oxygen barrier.” Other elements (such as carbon) can produce similar
effects.

Zero—dimensional time-dependent codes can also be used to obtain initial
approximations to situations where transport of the impurity is the important
process keeping the ions away from coronal equilibrium. For example, one may
consider a homogeneous volume which is kept from coronal equiliyrium by finite
gsource and sink terms. The particular situation where impurities recycle as
neutrals back into the plasma after being transported out as ions  can be
modeled by setting up a finite source of neutral atoms in the Sp term of
equation (12), and then setting a finite confinement time Tq for all the other
charge states.

One can also attempt to mock up one—dimensional spatial transport using a
zer&-dimensional code by choosing some velocity with which a test packet of
impurity is'moved through a fixed plasma profile, such as that shown in Fig.
3. The time varying T, and n, seen by the impurity thus reflect its changing
position in the plasma. An approximate departure from coronal equilibrium to
be expected from impurities transporting through a plasma can be quickly
calculated using this approach. However, the uniform coanvective motion
assumed for the impurity ions in this model cannot directly include a
diffusive "random walk” component in the impurity transport. Since diffusion

is likely to be important in most situations, some uncertainty arises in the
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interpretation of results from such models.

VI. ONE-DIMENSIONAL RADIAL TRANSPORT
VI.A. Equations and Numerical Solution

Computer models which treat impurity transport and the atomic processes
of ionization and recombinétion simultaneously and self-consistently are
necessary to. treat accurately the many situations 1in which these processes
occur on comparable time scales. Full three-dimensional solutions f;r
impurity behavior are ﬁnnecessary as most plasmas have some degree of symmetry
which can be exploited. The 1-D model to be presented here was written
primarily for application to tokamak plasmas. In a tokamak, particle motion
in the poloidal and toroidal directions occurs along field lines and, thus, is
typically quite fast compared with cross=field radial motion. Assuming
symmetry in all but the radial coordinate (cylindrical geometry) is thus a
physically reasonable choice for a model, resulting in a onefdimensionél
impurity transport code.

The expression governing the time evolution of a given impurity charge
state density in space and time now has the form

on 3

n
~4--1 - . S 18
ot 7 or (T Fq) T Ig-1%-1 (Iq * Rq) oyt Rt T 5, (18

where we have introduced a particle flux density Pq . This flux is taken to

be of the general form

on : ' "
= = -9 ’
Fq Dq(r) St + vq(r) nq , | (19)
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where Dq(r) is the particle diffusion coefficient, and vq(r) is a convective

velocity. These transport coefficlents may, as indicated, be functions of the

ionic charge as well as space and time. Similarly, the I

Tq’ and Sq are

q’ RQ’
functions of charge state, radius, and time. As will be described later, the

nq/tq and S_ terms are primarily used to model impurity ion loss, recycling,

q
and deposition in the plasma scrapeoff region near the wall.

For tokamaks, neoclassical transport theory provides expressions for
Dq(r) and Vq(r). These neoclassical transport coeffiéients depend on the
temperature and density profiles of the background hydrogenic ions (8). There
are also contributions from ions of other impuritybelements and ions of the
same element in different charge states. In most tokamak plasmas, however, it
appears that anomalous processes either add to or completely dominate
neoclassical transport. In order to handle such cases, the code allows for
arbitrary values of the transport coefficients to be specified. These may be
chosen either to correspond to some alternative transport model, or they may
be adjusted to yleld a match between the code results and experimental data.

Numerical solution of the set of coupled equations (18) 1is undertaken
using an implicit scheme similar to that used for the 0-D code. A radial mesh
is specified and the finite differences are taken in r and t. The charge-
state dimension 1is, as before, already iIn a discrete form. Conservative
differencing 1is wused in the radial coordinate to ensure particle
conservation to within the machine accuracy. In each radial zone

1<3i< N we have a vector Ej containing the Z + 1 charge-state

zones?

densities nq . The 1implicit finite differencing yilelds a result similar in

overall form to that of the 0-D equation:
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N =y . (20)

>
The n' vector here has the dimension of the number of radial zones N,ones and

has, as 1its elements, the charge—state vectors ﬁ. each (Z + 1) 1long.
J

Correspondingly, X is now a (N, ones) * (Nzoneg) matrix whose elements are (Z +
1) x (Z + 1) matrices. The-i matrix is tri-diagonal, this time because the
second order difference operator only connects a given radial zome to its
adjacent zones . Therefore, one can straightforwardly apply the same tri-

diagonal elimination scheme as before except now the sweeps are in radial zone

space. The substitution,

. ~ > >

o _ '
n} Ej_lnj_l + Fj_l . : (21)

results 1in recursion relations for the Ej and Fj which involve (Z + 1) x
(Z + 1) matrices. These matrix equations are solved using a standard Gaussian
elimination technique with pivoting (9).

The radial boundary conditions are applied at the inner and outer limits
of the radial mesh during the tri-diagonal matrix sweeps. Flux or density
conditions may be imposed at each boundary, with the usual choices being a
zero flux on axis (r=0) and a zero density at the plasma edge. The latter
boundary condiéion is somewhat unphysical, but the scrapeoff model discussed
below naturally produces small densities in the edge zones so the boundary
condition there is not critical. |

Since the  impurity transport coefficients are explicitly rather than
implicitly defined functions of the plasma parameters, the code also contains

a predictor-corrector loop to improve stability in situations where these
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transport coefficlents are sensitive functions of the changing impurity
densities. For example, this can occur when the impurity ion—impurity ion
transport terms in neoclassical theory become important.

In addition to the numerical algorithm just described, the 1-D code also
carries out various auxiliary calculations as part of the .physical model .
Several of these concern physics associated with the wall and scrapeoff region
of the plasma. The detailed physics of impurity behavior 1in the scrapeoff
region of a plasma is a complex toplc in itself. Since the main applications
of this code are currently associated wifh impurity transport and effects in
the central plasma core region, a fully detailed scrapeoff model has not been
incorporated. However, some of the essential features are modeled in order to
provide suitable source and sink‘terms in this region.

Beyond a specified radius in the model, the finite confinement time
term (_nq/Tq) is employed to simulate loss of impurity ions along the field
lines which either strike the limiter or connect to a divertor region (10).
The appropriate parallel loss time is either calculated using a ratio of a
toroidal connection 1length to the ion sound speed, or may be specified
externally 1f desired. Impurities lost via this parallel loss term and by
cross—field transport to the wall can be recycled into the plasma in various
ways. One of these is to return the lost impurity ions as neutral atoms of
some given energy launched from the wall. The deposition profile of these
neutrals is calculated to yield a radially dependent source of singly charged;
impurity i1ons which typically peaks 1in the scrapeoff region. The ratio;
between the instantaneous magnitude of the entering neutral particle source:
and the total scrapeoff and wall loss rate is the recycling coefficient. This
quantity is specified as somewhere between zero and one-hundred percent;

depending on the element and problem in question. For injection experiments;
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where an instantaneous puff of impurity 1s introduced into the plasma
periphery, thg same type of deposition calculation is used to initialize the
problem with a given initial distribution, rather than continuous source, of
singly ionized impurity ions.

Despite the (Z + 1) x (Z + 1) matrices which must be handled by this
algorithm, total computing time for typlcal problems is reésonable on a fast
scientific computer such as the CRAY-1. This is partly because the matrix
manipulations vectorize quite efficiently on a machine such as this. A factor
of ~ 10 improvement in speed was achieved on the CRAY-1 relative to the (DC-
7600 without resorting to any special coding techniques. Exact execution
times depend strongly on the particular element (Z) and problem being run.
Typical rums on the CRAY-1 take anywhere from seconds for low-Z, transport
" equilibrium cases up to tens of minutes for detailed, high-Z, impurity
injection wodels. Equation (18) is particularly stiff in the edge region
where the iImpurity neutrals are typically 1ntroduced, and special solution
techniques may be needed in the future to yield efficient execution times when
this region is considered in more detail.

Real tokamaks are, of course, never perfectly symmetric in the poloidal
and toroidal coordinates, and there are certain circumstances in which these
asymmetries may becone important. An Interesting example of this involves
neutral beam ;njection, which produces toroidally asymmetric charge—exchange
recombination of the impurity ions. A one-dimensional transport code which
considers toroidal rather than radial transport was written in order to handle
this situation (11). Poloidal asymmetry due to the localized nature of
impurity sources (such as limiters) and other causes 1s also  frequently
observed in the outer regions of tokamak plasmas, but it usually decreases as

one proceeds further into the\plasma core.
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Despite these last caveats, one—~dimensional radial impurity transport
models handle most problems of current interest and can be calculated with a

reasonable expenditure of computer effort.

VI.B. Applications and Examples

In order to demonstrate some of the typical applications of the 1-D
multi-species impurity transport code, the plasma profiles shown in Fig. 3
will be used. Such a plasma 1s representative of those which may be obtained
in present large tokamaks. The scrapeoff region extends from the r = 40 cnm
limiter radius out to the wall at r = 50 cm.

Perhaps the simplest calculation which can be performed using the 1-D
impurity transport code 1involves the effect of transport on the steady-
state (anqlbt = 0) distribution of a naturally occurring impurity. In the
absence of transport, this steady-state solution corresponds to achieving
local coronal equilibrium everywhere. No recycling 1s needed since the
impurity ions do not move and are not lost from the plasma. In Figure 4a,
such a solution is shown for an 1iron impurity with constant
density LI =.1 x 1011
cm"3 inrthé plasma of Fig. 3. The resulting distribution of charge states
with radius is simply a mapping of the coronal equilibrium curves of Fig. la
across radius according to the specified radial temperature profile.

In Figure 4b, a steady-state solution is shown where a radially constant
diffusion coefficient D = 1 x lol*cmzs"1 has been included. Diffusion
cbefficients of this order are inferred from various experiments (12). The
recycling coefficient is one hundred percent for this problem, as it must be

for a steady state to be reached in the presence of transport. The impurity

outflux is recycled as neutrals at 1 eV energy as previously described. The
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source and sink terms all occur in the scrapeoff outside of r = 40 cm, and, as
a result, the total iron density in the r < 40 cm region shown is radially
constant in steady state due to the purely diffusive transport. Including a

convective velocity term (vnq) in the transport flux would give rise to

radially peaked total impurity density profiles in steady state.

The total ;ron density in Fig. 4b has been adjusted to be the same as for
the coronal equilibrium case of Fig. 4a. However, note the change ;f vertical
scales between the two graphs necessary to show detall in the diffusive case
where the individual charge-state profiles are much broader, and henée smaller
in peak density. The comparison of these two cases 1llustrates how one can,
in principle, determine impurity transport tcoefficients via observation of the
radial profiles of impurity ions. Code calculations, such as those shown in
Fig. 4, are made and the transport coefficients are adjusted until a match is
achieved within the experimental uncertainties. In practice, however, often
these experimental and other uncertainties (such as in the assumed témperature
and density profiles, and. in the atomic rate coefficients) make accurate
transport assessment from this type of equilibrium data difficult.

In Figure 5, the fadiative cooling rates corresponding to the steady-
state solutlons of Fig. 4 are shown. The transport of relatively radiative
lower charge states to the plasma core in place of the less radiative helium-
like state dominant in coronal eqﬁilibrium has a marked effect. One‘may also
note here the tendency of the cooling rate to peak somewhere in the outer
regions of the plasma. As previously noted, such a radiative “shelldkis found
in various plasmas and can sometimes be beneficial by cooling the pl%sma edge
and, hence, reducing the severity of plasma/wall interaction effects.

In Figure 6, we show code calculations for the injection of 1ron‘into the

sdieé plasma considered in Figs. 3,4,5. Such experiments often allow
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measurement of impurity transport coefficients more straightforwardly and
accurately than can typically be achieved by wusing the steady-state
observations just discussed. While 1iron was chosen for this example for
consistency with the other cases shown, typically in an experiment of this
kind one chooses an element not naturally found in the device so that there
will be no confusion between the injected and background impurities. One also
typically chooses an impurity which will not recycle from the walls, and
hence, in this set of calculations, we have chosen the recycling coefficient
to be zero.

The transport here has again been chosen to be D =1 x 1o4cm25‘1, The
radial scale of Fig. 6 extends out to the r = 50 cm wall radius in order to
show the initial distribution profile and subsequent evolution in the
scrapeoff region. A fixed scrapeoff loss time of T = 0.5 ms has been taken
for the r > 40 cm scrapeoff region.

Note that the density axis has been rescaled for each of the four
selected times shown in Fig. 6. The total impurity content of the plasma is a
monotonically decreasing function of time as a result of scrapeoff and wall
losses with no recycling, and the dynamic range in densities is large. |

The initial distribution of singly charged iron from the injection is
seen in Fig. 6a, peaked at r ~ 45 cm. The total number of injected atoms is
1017, a typical number using the laser ablation technique.

By t = 3.2 ms (Fig. 6b), several scrapeoff confinement times have passed,
and the density in the scrapeoff region is nearly zero. However, in the éhort
period before this occurred, some of the ions have had time to diffuse into
the main plasma region 1inside of r = 40 cm. Some of these ions will diffuse
inward towards the center of the plasma column, while others will diffuse back

out into the scrapeoff and be lost. Note the evolution of the iron in charge
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state as particles flow into the hotter central region of the plaSﬁa;

By t = 16.6 ms (Fig. 6c), the impurity ions have reached the:center of
‘the plasma. At long times (t = 60.9 ms, Fig. 6d), the impurity has settled
down to a centrally peaked radial distribution which decays exponentially in
time.

As seen from study of Fig. 6, each individual charge state of the iron
impurity appears, peaks, and then diminishes wih time. The time of appearance
and decay of each charge state is a result of the detailed interaétion of the
transport of the impurity through the T, and n, profiles and the corresponding
changes in the ionization and recombination rates of the different charge
states. Since the temperature profile is peaked on axls and the impurity is
introduced on(the periphery of the plasma, successively higher cﬂarge states
appear in order as the ions move inward into the hotter central region of the
 plasma. One way of clearly presenting this effect is to look at the radially
integrated column densities of the charge states as functions of»time. This
is shown in Fig. 7. Experimentally, it is straightforward to obser&e the time
evolution of the spectral line brightness from different charge states, a
quantity which 1s closely related to these column densities.  ~ The code
calculates a quantitative spectral line brightness at a particular selected
wavelength for each charge state in addition to this column density in order
to allow direct comparison of code results with experimental ?data. Such
comparisons allbw the impurity transport to be deduced. ﬁespite the
recurrence of many of the same uncertainties (electron temperature, atomic
rate coefficients, etc.) associated with the steady-state radial profile
method, such modeling of injection data provides complimentary and sometimes

superior results.
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VII. SUMMARY AND FUTURE DIRECTIONS

Impurity physics 1is an important part of controlled fusion research, and
numerical wmodels of impurity behavior in realistic plasmas are an important
tool in the successful development of controlled fusion energy. Impurity
modeling computer codes are useful both in the diagnostic measurement of
plasma parameters and also in investigations of basic physics issues, such as
particle transport and confinement. The codes are also invaluable in their
ability to predict impurity effects, such as radiative cooling, and thereby
have an important role in the design of future plasma devices, including
reactors. Active research efforts concerning all these 1issues are in progress
at various fusion laboratories. A particularly important and complex problem
not treated here concerns the detailed physics of impurities in both limiter
and divertor scrapeoff plasmas. Reactor design calculations have investigated
the possibility of forming a radiatively cooled outer plasma region which will
actively help in the removal of heat and particles from a reacting plasma.

At the present time, the predictive modeling of impurity behavior in
reactor-size devices 1s Thampered by vremaining uncertainties 1in our
understanding of impurity transport and other fundamental physics issues.
Much of the current mogeling efforts are thus oriented towards obtaining
further data on the physics of impurities in realistic fusion plasmas. In the
next few years, improved understanding and modeling of impurity transport,
scrapeoff physics, and plasma/wall interactions may allow all these aspects of
the problem to be brought together in a comprehensive, self-consistent model
of impurity behavior. The known presence of toroidal and poloidal asymmetry,
particularly in the edge and scrapeoff regions of tokamak plasmas, will
probably require such a code to be extended beyond one spatial dimension.

This development, especially when taken together with the interest in higher 2
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elements as plasma temperatures increase, may dictate fundamental changes in
the numerical algorithms employed so as to keep the computational requirments

within reasonable bounds.
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FIGURE CAPTIONS

Fig. 1. The (a) charge—state distribution and (b) radiative cooling rate

coefficient for iron in coronal equilibrium from 10 eV < T, < 10 keV.

Fig. 2. Zero-dimensional time-dependent code solution for the behavior of an

oxygen impurity taken as neutral at t = 0 in a To = 50 eV, n, = 2 x 1014

e
em™3 plasma. The time evolution of (a) the charge-state distribution and (b)

the radiative cooling rate coefficient are shown.

Fig. 3. Typical tokamak electron temperature-(Te) and density (n,) radial

profiles.

Fig. 4. One—dimensional transport code steady-state radial charge state
density profiles for iron impurity in the plasma of Fig. (3) for (a) coronal
equilibrium and (b) D =1 X 10%cu2/s. The total irom density in both cases 1is
3

Npe = 1 x 1011cm_ Note that the density scales for the two cases are

different.

Fig. 5. The radiative cooling rate (watts/cm3) corresponding to the steady-

state results of Fig. 4.

Fig. 6. A sequence of four radial charge—-state distributions for 1017 neutral
iron impurity atoms injected into the plasma of Fig. 3 at t = O, The
scrapeoff region extends from r = 40 cm to r = 50 cm. Note that the density

axis 1is rescaled as time progresses.
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Fig. 7. Radially integrated column densities for selected charge states from
the Fig. 6 simulation. The peak for each charge state has been normalized to

unity.
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