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AlEmRACT 

llze possibility of generalizing the Yang-pllills‘tr 

exsmined. Thus we seek theories of 

continuous groups of coordinate-dependent linear transformations. 

A l l  such theories be expresse s superpositions of certain 

gsimple’” theories; we show that each asimpha theory ie associated 
r 

with a simple U e  aebr80  We magr introduce mass terms fo r  the vec- 

t o r  bosons at the price of destroying the gauge-invariance f o r  

coordinate-dependent gauge functionsa 

The theories corresponding t o  three particular simple Lie 

algebras -- those which adnit precisely two commuting & n t u m  nun- 

bers -- are examined in some detai l  as exsmples. 

play a role in the physics of the strong bteract ions if  there is 

an underlying super-synnnetry, transc 

t h a t  is badly broken, 

One of %hem night 

The intermediate vector boson theory of weak interactions is  

discussed also. The so- 

conform to the requirenents of par t ia l  gauge-invariance. It is  

possible, however, t o  find 8 formal theory of four intermediate 

bosons t hL t are partially gauge-invariant and gives an approximste 

\AI[ = 1/2 d e .  
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tr 
1 

associated w i t h  a principle o 

w i t h  the idea of invariance under gauge transformations with coor- 

dinate - dependent gauge functions, one can deduce the existence of 

a massless vector f i e ld  coupled t o  a conserved current. 

charged f ie lds  are subjected t o  the sane gauge transformation, then 

the electr ic  charges of a l l  particles are the same. 

If a l l  

The fact  that the weak intertxtions are vectorial i n  character 

(apart from nonconservation of parity) and nearly universal i n  strength 

has suggested t o  manjr physicists that they may be nediated by vec%or 

f ie lds  (1,2) - -  and that there may be a useful paral le l  between them md 

electrornagnetism, perhaps even extending t o  the notion of gauge 

% 

w 

c 

invariance (2,4,2,6). 
The strong interactions, too, seen to  e,xhibit sane degree of 

universality. Moreover, the approximate conservation l a w s  of isotopic 

spin and of strangeness, as well its the exact l a w  of conservation of 

baryons, present an analogy w i t h  the conservation of charge and suggest 

that some principles of gauge invariance may be at  work. 

it seemed that the strong couplings were not vectorial, but there is 

mounting evidence that there are objects ( l ike the I = 1, J = 1, RA 

resonance) that can be interpreted as vector mesons and that may play 

Until recently, 

1. 

- 
$ 

a very significant role i n  the strong interactions (7,8) - -  
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mere o great diff icul t  in the way of constructhg 

theories of weak and strong interactions by analogy with electrodynamics. 

One is that sow of the relevant c 

topic spin and strangeness currents that may enter in-to a vectorial 

theory of the strong couplings fa i l  t o  be conserved on account of elec- 

tromgnetic and weak interactions, vhile the conservation o f  the weak 

current is broken not only- by electromagnetism but, in the case of the 

axial vector and strangeness-changing parts, by mass =a .perhaps by strong - 

interactions as well. 

The other diff icul ty  is that whereas photons are massless (as the  

quanta must be in e theory that i s  fully gauge invariant with a coordinate- 

dependent gauge function) the vector particles that media-be the strong 

and weak interactions they exist a t  all. 

Thus the notion has arisen (3,4,5,6,7,8) of a theory that i s  

partially @%e-invariant. In  each case 

electmnagnetic one, fully invariant under coordinate-dependent gauge 

transformations, plus other terms, The remaining terms are of two kinds: 

a) those which break the filU gauge invariance, w h i l e  leaving 

intact  the conservation law the i n m i  r constant g 

trainsf ormations ; 

b) those which destroy the gauge invariance altogether, along 

with the conservation 

I n  the case (cons 

of baryons) the terns of tJrpe b) are, of course, absent. 
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Now the idea of partial gauge-invari poses a number of ques- 

tias, t o  which we shall return br ief ly  i n  Section VII. For the moment, 

let  us concentrate on the straightforward part of the problem, the con- 

struction of the fully gauge-invariant part of the theory. 

The coupling of a vector meson f ie ld  t o  a single quantity l ike 

baryon nuniber follows exactly the pattern of electromagnetic 

coupling to the charge, as long as the complete gauge-invariance is  

maintained, 

quantities l ike the components of the isotopic spin current, the 

si tuation becomes different and a more sophisticated theory becones 

necessary. 

spin 1 and i ts  own isotopic spin current contributes a source term. 

3ut, when we go over t o  the case of three non-commuting 

The intermediary vector meson f ie ld  now carries isotopic 

Thus the theory of the vector meson f ie ld  becomes non-linear. The 

problem of constructing the theory i n  question has been solved by 

Yang and Mills (2) and by Shzw (10) _. 

In  the next two sections, we review the simple case of charge 

or  baryon number and the more complicated case of isotopic spin. Then, 

in Section N, we go on t o  the main point of this a r t ic le  -- the des- 

cription of a l l  possible straightforward generalizations of the 

Yang-Mills trick. We axe interested i n  such generalizations 

because we do not know, for ei ther  the strong or  the weak interactions, 

exactly how many intermediate vector f ie lds  may be involved (if any) . 
To give just one e q l e ,  it has been suggested (ll,l2,13) c-- that there 

may be four such (hermitian) f ie lds  f o r  the weak interactions -- the 
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f o r  the nonleptonic weak interactions of baryons and mesonsB W e  shall 

show i n  Section VI1 that the ideas of partial gauge-invariance lead t o  

severe restrictions on four-field models; i n  fact ,  the restrictions are 

so strong as t o  make it impossible t o  construct the schizon mdel 

according t o  the gauge principles of this ar t ic le .  

The classificatiop of generaJ-ized Yang-Mills theories discussed 

i n  Section Tv is described further in  Section V; some examples are given 

in Section VI;  and sone possible physical applications are touched on 

briefly in Section VII, 

3 2 .  The One-Parameter Gauge Theory 

The gauge formalism of electromagnetism is, of course, w e l l -  

lmown. 

by Yang md b e  (14) j it i s  clear from the i r  work that the generalization 

The generalization from charge t o  baqyon nmber was discussed 

contradicts excriment unless either the coilpling constant is  ridi-  

cUTous1-y- small or  the gawe invariance is broken, say by a mass term 

f o r  the vector field. Let us review the method. 

We start w i t h  an adaitive quantity l ike  charge or baryon nmber; 

c a l l  it Q. Ikt the fields $,(XI destroy particles of charge Qa a;nd 

create their  antiparticles. W e  then discuss invariance under the 

infinitesim.2. gauge transformations 

07 289 
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Whenever the coordinate derivative 

t ransfomt ion  

da a c t s  on qa, it undergoes the 

(on *a) 

In order to cancel t'nis change, ire introduce a vector field Aa(x) 

that suf'rers the gauge transformation 

and a field kgra.ngian density LA invariant under t h i s  transformation, 

say. 

L, = - 1/4 ( $ , A p  - (3 A )2 
P a  

0 (2.4) 

.3r 
I n  the absence of the f ie ld  Aa and its couplings, l e t  the 

Lagrangian be L0(qa) and let it conserve Q. 

invariant hgrangian including Aa is  

Then the "minimal" gauge- 

L = co + LA I 

, 
N 

where Lo is  obtained from Lo by the replacement 

aa --3 da - P Q8 AJX) (on (2.6) 

It i s  evident that (2.5) gives us a gauge-invariant Lagrangian 

and certainly the procedure described by (2.5) i s  the usual one. But 

t w h a t  do we mean by umLninaLm? The point is  that we could add to 

c 
-&,e Iagrangian (2.5) further gauge-invariant terms involving t'ne field 

289 013 
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L 

strength b$LB - A However, m t w e 2  in the case of electromagnetism, 
B ar' 

e a r t o  make. use of such 

Consider, for example, a Dirac particle of charge e, f o r  which d, 

i s  a spjnor and the free Lagra3lgia density is 

 he s7,ibstitwLion (2,6) gzves the usual c o q u g  

i e % yaAa  Ilr 

but no Fauli 

moments of nucleons 

the meson clo 

electrical jnteraction of 

term in the Lagrangian: 

i p 'J, ( a a ~ B  - AJ . (2-91 

Bence the attenpt (15) - to state a principle of m31im.J. electromagnetic 

interaction, that the electrcxnagnetic field interacts only with electric 

charges in the normal way (as in (2.6)) and not throw special field- 

dependent tern (2.9) in the basic LEtgrangim. 

The difficulty (I-6,17) -c with a v  at%eqt to put the idea of minimal 

+ electromagnetic interaction in definite a1 f 

vergences of four- 

vectors) can lead to the sane equations of motion. Buk if we 

Lo, the resulting electromagnetic coupling (aad the 

equations of motion electromagnetism) may become radically 
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different. Thus we cavl obtain the Paul i  moment term (2.9) by the 

(2.10) 

We see tbt the procedure (2.6) defines the "minimsl" interaction 

only if  the original w a n g i a n  density Lo i s  chosen i n  a xxminirnal* 

my. We must assign a phys al meaning to Lo and say that (2.7) des- 

i rac  particle properly,while if the term (2.10) is  added we 

wrong Lagrangian density for a Dirac particle, even though 

the equation of motion without electromagnetism i s  just the Dirac 

eq&tion i n  both cases. 

O f  course we have s t i l l  not specified in a clear-cut way how 

t o  find tine m m i n i m a l m  Lo in a l l  cases 

restricted t o  the problem of e lect  

electromagnetic interactions and withou$ strong and weak interactions, 

ve must still assign a physical significance t o  Lo because it deter- 

mines the gravitational coupling. 

and follow the us& procedure for constructing %he stress-enera- 

momentum tensor, ire w i l l  get a different answer. 

gravitational interactions are const 

closely analogous t o  the method given in (2.6) for electromagnetism. 

But that diff  i c  

If we add a term l ike (2.10) t o  Lo 

In fact ,  the 

rom Lo in a way that is  

Now l e t  us return t the theory described by the Lagrangian 

The equation of motion is  



,*”” 

c 
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rJ 

D2Aa - b  a a f3 A f3 = - D L ( ~ ) / D A ~ = - ~ ~  o a  , (2,111 

where D/DAa i s  the kgrangian derivative abAa - a/a(da Ad, 1 

The formula f o r  the current can be re-expressed as follows. Consider 

a gauge transfoxmation in which the 4f f ie lds  are affected as i n  (2,l) 

but Aa is  transformed. Denote partial derivatives w i t h  respect t o  

sA=o’ A and da A under this condition by [J/aA] 

Then we remark that since 5 is tot- gauge-invariant, the derivative 

p / a ( a a  A)] 6AIo has the effect of the negative of a derivative with 

6qa = 0 and only Aa affected by the gauge transf 

negative derivative is exactly -D/DAyc Thus ve have the r e s u l t  

and P/&(aa  A)] 

ion. But such a 

r ’1 * 

S 

3, = [ J ~ ~ / o ~ A I J  

N 

The current i s  calculated frorn the kqgrangiaul (either Lo or L) by a 

gauge transformation involving only the lfa f ie lds  and not Aa. 

Next we note (6) - t h a t  i n  any local gauge transformation, the 

Ner-Iagrange equation applies t o  the gauge function, even though it 

is  not a f ie ld  variable, as a consequence of the Ner-Lagrange equa- 

tions for the f i e ld  variables themselves, Tnus we have 

(2.13) 

But the Irzgrangian is invariant under gauge transformations with con- 

* stant gauge function, Therefore the current is conserved: 

289 1‘1 
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& (2.14) 

1 hoking back a t  the equation of motion (2.24 , we see that the supple- 

mentary condition J a  Aa = 0 maiy be imposed. 

Finally, we’w identif‘y the cons t a t  of the motion -i 54 d3x 

So far we have looked at  the equations classically; w i t h  the charge Q. 

but i n  quantum mechanics, of course, Q is  an operator and has the 

commutation relations 

[qa,Q] = Qa (2.15) 

Now that we have sketched the gauge-hvxriant theory, we 

may discuss w h a t  happens when a term is added t o  L t h a t  breaks the f u l l  
p 

P 

gauge invariance but leaves the invariance under gauge transformations 

of the first kind, that is, with constank A, We shall take the swpk 

case of a mass term for the vector meson 

Evidently all that happens i s  that the equation of motion (2.U) 

becones 

Y (2.16) 

while the expression (2+12) for the current a d  the conservation l a w  

(2.14) remain unchanged. W e  have a vector  son coupled t o  a conserved 

current in a npartially gauge-invariantn theory. 

u‘ 

6”.I 
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W e  now t l e  case of charge o r  baryon nlrmber t o  

the case of the isotopic spin 2) obeying the comubation relations 

pi, Ijf = i .eijk I k  . (3.1) 

This time o w  fields If carry isotopic spin; l e t  us consiaer for  simpli- 

c i ty  a f ie ld  E of isotopic spin 1/2 (the nucleon) aSa a f i e ld  g of 

isotopic spin I (the pion) (9) - The relations gous t o  (2.15) are 

bjy IJ = - i e i j k  % 

The infinitesimal gauge transformations analogous t o  (2.1) are then 

~ ( x )  -M(x) - i yo z * $(XI ~ ( x )  t 

. (3.3) la X(X) + w s(X) f 2yG &(XI X z ( X )  

(We have denoted by yo the bare coupling pramter . )  Thus the coordinate 

derivative d a acting on the fields N and * x suff 

corresponaing t o  (2.2). 

To form a gauge-kmriaslt theory., we must introduce a vector 

field&&) with isotopic spin one; i t s  gauge tmsfonnation is 

I 



essentially different from (2.3) because ’,* Aa carries isotopic spin, 

whereas the photon carries no charge. Thus the field. i s  not only dis- 

*. placed by 

n(x) does 
w 

the gm&ient of A but also 

i n  (3.3) . 
rgoes isotopic rotation as 

The gauge transformation is  thus 

For the f ie ld  

invariant under this 

- - - 
$* 

transforms according 

(3-5) 

Iagrangian density, we mst choose an expression 

gauge transformationo W e  note that 

A A - a A +2yo,,Aa!X,Ap (3.6) 
Q! -B B w”Cx 

to the rule 

The simplest gauge-invariant Lagrangian is  thus 

(3.7) 

which is, of course, nonlinear, unlike (2dt) . 
notion deducib 

isotopic spin eurren%. 

I n  the equation of 

om (3.8), the source of ti A field is i ts  own 

Nuw, given a L 3 g r Z n g i E t r a  Lo(W,~> not involving the A f ie ld  but 

conserving isotopic spin, we can h-kroduce the nminimaln gauge-invariant 

zlzgrangian density including A: 

N 

with Lo obtained frc3a Lo by the substitutions 
v 

289 14 
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(3.10) 

analogous t o  (2.6). - 

The current, source of the field,Aol, is given, exactly as in 

(2.12) , by the f0mn.h 

and is  conserved, while the analog of the charge i s  just 

(3.12) 

If we now add a c o m n  mass term fo r  the three kinds of vector ? 

I 

the gauge invariance is  broken (except for  constant A) but the isotopic 

spin current i s  st i l l  conserved. Unfo l y  the renormalizability of 

the theory, at  leas t  i n  the conventio 

a e d  (18,lg). -- 
sense, is  lo s t  when a mss i s  

IV. Generalizations 

W e  now come t o  grips with out problem, that of classifying-the 

straightforward generalizations of the Yang-Mills t r ick,  We imagine 

kinas 0 three kinds of 
I. 

6% on which a gauge operation performs a linear 



* 

1 

3.3). We may write 

for  our generalization. 

taken real, while the M .  are, f o r  the moment, arbitrary complex N x N 

matrices. 

The n indepenclent gauge functions A.(x) may be 
3 

3 

The kgrangian density Lo($,) is  presumed invariant under (4.1) 

Then (4.1) m u s t  be an WinitesimaJ. for  constant gauge f'unctions A 5' 
unitary operation; the matrices E t .  must be hermitian. 

derivative acting on $ changes according t o  the rule 
J 

n 

3 a 3  j =1 
aa:-+aa! - 2iy0 C M (a A )  . . 

The coordinate 

To cancel th i s  change, we introduce n hermitian fields Aai t o  

take up the gauges Ai. In place of (3.5) we have 

n 

where a l l  the indices i n  cijk run from 1 to no 

to preserve the hermiticity of the A fields. We m u s t  determine the 

properties of a i jk tha t  w i l l  pennit the Y a n g - M i l l s  t r i ck  t o  go through. 

The CIS must be r ea l  

F i r s t  of all, we must be able t o  find a gauge-invariant f i e ld  

Iagrangian for t M  Aai. W e  seek a f i e ld  strength that transforms 

simply, like G in (3.7): -@ 
n n 

z a A - 2 A . f 2y0 Iz: b i j k A a j  ABk . (4.4) Gapi a p i  B Q1. j ,k=l 

.L* 

z a A - 2 A . f 2y0 Iz: b i j k A a j  ABk . (4.4) Gapi a p i  B Q1. j ,k=l 

289 16 
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> 
Fa 

8 The transformation is, in general, very conplica=ted, kt us use the 

summation convention. We obtain 
* 

I n  order t o  ob tah  a l a w  analogorts t o  (3.7) we must put 

Gmi+ Gmi + ‘@k ? 

vith 

= a  A Gmi a f3i 
- & A  + 

f3 ai 

(4,s) i k j  C - - -  
i j k  C 

C ijm c j e 3  CQj C j h  4- Cikj C j d  = o  

Buw the Lagrangian density 
.I 

(4.10) 

? 

WiFI indeed be gauge-invariat provided we have 

289 17 
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- 

necessary and sufficient conditions f o r  the construct 

the generalized Yang-Mills f i e ld  are thus: 

c tot&* antisymmetric and real, i j k  ( 4 2 4  

C i j m  ‘kpj ’ ‘kjm ‘li j “Yjm ‘ikj = o  (k12b) 

The Y x g - M i l l s  theory i t se l f  i s  the special case i n  which n = 3 and 

C i j k  = e i j p  which obviously sat isf ies  (4.12) 

Now we must couple the f ie ld  Aai t o  the current gene 

gauge transformation (4.1) of the 4fi* Ire have t o  construct frm Lo(4fi) 

a completely gauge-invariant quantity 
N 

I n  order t o  make the 

transf o m t  ( 4 2 )  and (4.3) compensate each other, ve use the 

prescription analogous to (3.10) 

n 

i=I. 
d a 4  da - 2 i  yo L: Mi Aai (on $1 (4.13) 

N 

t o  construct Lo from L. 

we may rewrite in  the form 

Under the unitsry transformation (4.1), vhich 

4f-q - 2 i  yo (Z M. A . )  , J J  3 

the &Its transform according t o  the rule 

Mi+ Mi - 21 yo Z pi, Idj] Aj > 
3 

(4.14) 

while aa and Aai transform as i n  (4.2) and (4.3) respectively. Thus 
cc/ 

the prescription (4.13) yields a gauge-invariant Legrangian densiQ- Lo 

if andonly if wehave 

289 18 
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3 

I 

with the sumnation convention understooa. Evident2y t h i s  i s  the 

generalization of the c o x n ~ a t i o n  r u ~ e  (3.1) for  the isotopic spin, 

In  order that the cijk define the conmatation relation (4,15), 

it must obey just two conditions, Firs t ,  the rule 

(4.16) 

t e l l s  us that cijk must 

know that from (4.32a). 

mtiqmnetric i n  i asld 3; but we a3y.eady 

Second, the Jacobi identity 

gives us just (4.~213). 

There remains the condition thak cijlr be antisymmetric not only 

We shall ret- in i a d  j but in the other pairs of indices as w e l l .  

t o  the consequences of this further condition shortljr, 

Suppose we caa divide the indices k into two sets  such that 

= 0 vhenever i belongs t o  one se t  and j t o  the other, Then the i jk  C 

f ie lds  Aia: of one set and those of the other se t  are completely uncon- 

nected to each other by any of the gauge transfoxmations we have 

discussed. Likewise, the operators Mi belonging t o  one se t  of indices 

c o n t e  w i t h  those belonging t o  the other set. We axe then dealing 

with a linear superpositioqof two compLetely independent Yang-Mills 

theories which may have ly different covjplw no 

direct  physical connection, We night as well r e s t r i c t  our attention 

P 

a. 

0 

289 19 
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t simplif iable as 

j u s t  discussed. We may apply a q r  real rotation i n  the n-dimensional 

space of the Ais, rotating at  the sane tFme the Mi and the gauges Ai. 

The properties (4.12) of c . .  are  unaffected by such 
1Jk 

ma;y turn out then that theorf is siqiLifia5"le. B that case, l e t  

us res t r ic t  our attention to one of the parts.  We continue th i s  pro- 

cess un t i l  we reach an irreducible Yang-Mi l l s  theory, one for w h i  

we cannot, no matter hov we rot;ate i n  the n-dimensional space, find 

two sets of indices that are unconnected by the ciSk. From now on, 

we shall deal. with these unsimplifiable o r  "simpleN theories, f r o m  

which the most general theory can be built  up by ordimrf superposition 

and rotation. 

S-impLe theories with more than one vector meson have an. impor- 

tant proprty -- they are characterized by a single universal coupling 

constant. To see this, sqpose there are two distinct multiplets of 

fermions 9") and d2),  both coupled t o  the Aai by means of the pre- 

' y(l)  scription (4.13) but possibly with different coupling strengths 

and y(21e The sc& of the matrices, 

$(l) and $(2) is fixed by (4.15) 

and M(2), acting upon 

For the interaction t o  be invariant 

it is clear that either: (a) the Aai may be separated into two sets, 

1 one of wlzich s only with , the other w t t h  $(*I -- such a 

theory cannot be simple; (b) C i j k  E o --- this IS possible onw ir the 
I 



t 

, 

4 

theory is a supe ories; 

--- the non-triv%al simple theory must also be a univer- - 
~(1) = ~ ( 2 )  

2 sal theory .I 

Row the condition that c . .  be totally mtisymmetric is easily 
2 

X J k  
shawn t o  be equivalent t o  the conaitionJ, 

TI? Mi Mj = (const.) 8ij # (4,181 

for a wsimplew theory. For &he o r  

Mi ( i  = 1,2,3) are isotopic spin matricesy Eq. (4.18) i s  evidently ful- 

fi3led. 

We nay now summarize the necessary and sufficient conditions for 

a s m l e  generalized gauge theory. We must find an algebraic systen, 

say of quantities si (i = ~~...,n), &fined by a coIlDllutsLtor Pi.sj] 
obeying the antisymnetry aSa Jacobi laws (4.16 and 4.37) as w e U  as the 

relation 

pi, sj] = i cijk sk 

with real, total ly  antisylmnetric cijk0 Furthemre, no real rotation 

of the Si result in  a system that cas? be sp l i t  i n to  two c o m t i a g  

m s .  

Such arn algebraic system cas? always be represented try various 

sets  of hemitian matrices Mi obeying the sane r u l e s  as w e l l  as the 

c o a t i o n  (4,~). The construction of a ~ a a g - ~ i ~ s  theory then foUows 

289 21 



-22- 

the mathemaeicians. 

are called sbrple Lie algebras ( s t r ic t ly  i jk’ case with n = 3, c.ijk = e 

spea,?sing, simple Iiie algebras of rea l  form). As 

such, they have been completely classified, All possible ones are 

horn,  and their representations by bemitian matrices Mi ham been 

studied, I n  the next Section, we shall discuss the classification a& 

some of the siurpler cases. 

utiyama (gg t r e  Y a n g - M i U s  t r i ck  

with Lie algebras, but he did not rention the severe restrictions of 

the Iiie algebra that are necessary t o  obtain a vector meson theory 
4 

0 with positive probabilfties , 

V, On Simple Lie Algebras 

&t us mention f i r s t  the listing of all the shple ILe algebras 

by CEurtan (g) E Each one, of course, may be regarded as the algebra 

of the infinitesinial. generators of a continuous group, which is caUed 

a) F i rs t  of all ,  there is the inf ini te  sequence of unitary 

minodular groups SU(v)(v = 2,3,4,....). The group m(v) is made up 

of all unitary transformations with unit determinant i n  an v-dimensional 

complex space. The infinitesFma1 generators are then isomorphic t o  the 

traceless hermitian v x v matrices; evidently there are v2 - 1 indepen- 

n t  matrices of that kbd and algebra has v2 - 1 elements 
sr”z: 
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si. We ha~e n = v2 - 1. 3 

We have, bcidentauy,  constructed the smallest representation 

of the Si by matrices Mi; we simpLy use the v2 - 1 traceless hermitian 

Y x v matrices. 

over, t h i s  representation is  irre&ucible. 

rema;rk t h a t  the algebra of the Si i s  already simple; no real  rotation 

5.n the n-dbensional space of the Aia! can divide it into two par ts  

t h a t  are uncolvlectea by the cijke 

algebra bjr the N x M matrices Mi may be reducible, I1z other words, 

there nay be a unitary transformation i n  the If-dimensional space of 

the 9 ' s  that reduces all the Ki simultaneously t o  block form and allows 

us t o  pick out a smaller representation of the algebra. 

reduction is impssible, the representatLon i s  irreducible,) 

They .can, of course, be chosen to obey (4.18) e More- 

(To avoid confiiion, l e t  us 

Hot7ever, the representation of the 

If such a 

3 The isotopic spin algebra is that of SLT(2); ve krave 

n = 2* - 1 = 3 and Si = Ii (i = 1,2,3). The irreducible representation 

by traceless hernitian 2 x 2 matrices Ti/2 satisfying (4.18) is just 

the fisniliar spin 1/2 representation, Tle know, too, all the other 

irreducible representations , 
of the matrix It$ , which 

entation (I = 0,l,2,.=..) is 

3 

i =1 

has dimension 21 + 1. 
b) Next, we have the 

real v-dimensio 

classified according t o  the value 1(1 + 1) 
c o m t e s  w i t h  a l l  the Ii. The Ith repres- 

said t o  correspond t o  isotopic spin I and 

inf ini te  sequence of rotation groups ~ ( v )  

( v  = 7,8$9,*....). We have omitted O(2) 

because it is just the one-parameter ~ T O U ~  of electronagnetisn 2nd that 
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i s  not included among the simple Gie groups by the 

O(3) is  just the 3-diclensional rotation group and we 

know "ht is  essentially the same as the isotopic spin group SUP. 

The four-dinensional rotation group O(4) is  not simple; it is equiva- 

lent t o  the direct product O(3)  x O(3). The groups O(5) and o(6)  are 

omitted because they are essentially the same as Sp(2) (see belov) 

and SU(4) respective%-. The diinension n of 

the algebra of O(v)  is just the number of infinitesimal. rotations 
v v l  J-$ . In fact ,  tlie infinitesimal v x v rotation mt r i ces  (imaginary 

and mtispa&ric) form an irreducible matrix representation of the 

Thus ve begin with O(7)  

algebra of the group. 

c) The third inf ini te  sequence of s h p l e  Lie g ro~ps  i s  that 

of' the sjmplectic groups Sp(v/2) Tdth v = 4,6,8,10,12,. .... 
of the Winitesinal elewnts  of Sp(v/2) is  just  the algebra of the 

v x v slew-qyrmplectic mt r i ces  . 
ducible matrix representation of the algebra. 'iJe note that Sp(1) is  

ontitted because it is  the same as S'ii(2) ., 

T'ne algebra 

5 Again we have a natural v x v irre- 

d) Final&-, there are five more simple Lie groups and t'le cor- 

responding Lie algebrase 

and their names and dimensions are as follows: 

mese are called exceptionzl Lie algebras 

G2 -- 14, F4 -- 52, 

In our l is t ing,  we have really defined each of the simple Lie 

algebras (except the exceptional ones, for which the same ca.n be done) 

by exhibiting one of i t s  mztrix representations. In each case, we 
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understand that the n 

are to  be taken hermitian and satisfying (4,18), We then have the 

simple Lie algebra i n  "real  form" w i t h  real ,  to ta l ly  antisymmetric 

v x v matrices of the defining representation 

In each case, we f i x  the value of the constant i n  (k l8 )  fo r  'i jk' 
the defining representation; that f ixes  the scale of the M's and of 

the C'S. 

For any given Lie algebra the matrix Z M:, which commutes with 
4 
.L 

a l l  the Mi (as we can see from &.E)), equals some ntrmber for  each 

irreducible representation. 

topic spin algebra, as mentioned above.) kt the value of Z M: for  

(This situation is  familiar for  the iso- 

i 
representation R be VR. Then for  that representation the constant i n  

(4,18) is  VR %/n, where i$ i s  the dimension of the representation. 

In our generalized Yang-Mills theory, the various f ie lds  $ that  

are coupled t o  the Aia f a l l  into multiplets, with each multiplet cor- 

responding t o  irreducible representation of the algebra. A s  long 

as the symmetry i s  maintained under gauge transformations w i t h  constant 

gauge function, the members of a multiplet w e  degenerate. The number 

of pazticles i n  the mul t iph t  is, of course, the dimension of the 

representation. 

Now the n vector f ie lds  Aia represent n vector particles that 

also form a degenerate multiplet. 

representation of the algebra, called tbe adjoint representation, with 

the stme n as algebra itself. (For example, i n  the case of 

isotopic spin, for which n = 3, the adjoint representation is  that with 

They too correspond to  ag irreducible 
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isotopic spin one, and the vector mesons 

The matrices of the adjoint representation are easy t o  construct. 

an isotopic t r i p l e t  ) 

They 

are s m l y  

for ad joint representation (5.1) 

That this is so is ob s from the transfoxmation properties of the 

i n  (4.3), with the gauge function taken constant, compared t o  those 

In the adjoint representation, l e t  of the $i i n  (4.1). 

T r M  M = A  (aii joint  representation) ; ( 5 4  i 3  

Then A defines the ebra. It i s  an arbitrary positive 

constant; from the 

C M i 2  for the adjoint representation. For any linear combinations S 
i 
and T of the Si, we can define a scalar product 

l y  equal t o  the value of 

(S,T) = Tr M(S)  M(T) (adjoint representation). (5.3) 

Then we have (Si$ J .) = A Sij, fici j k  

F7e m i g h t  now characterize each simple Lie algebra by the con- 

stants Cijk, but they are subject t o  arbitrary orthogonal transformations 

on the n-diTnensiona1 space of the Ais, An invariant and physically use- 

N characterization i s  tructed as follows. (We quote without proof 

the usual mathematical results (E).) 
Each simple algebra has a certain maxirmrm n-er 4 of elements 

that all commute w i t h  one another; l e t  us c a l l  f the rank of 
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We may then enumerate the elenents Si of the algebra in this  way: C1, 

E1 + E-1 $2 + E 4  E + E- El - E_1 
8; T’ *.*** CgI .*.... cf; a=-$--; *Jz$ 0 0 . .  a 

Here g = (n-f)/2. 

E ’ s  are not real and are represented by non-hemitian matrices, but E, 

and E-, are represented by hermitian conJugate matrices. The corres- 

ponding vector fields 

The C’s are a msxfm&l set  of commuting elements. The 

complex, The E’s may be chosen t o  have these . 
propertiesb: 

, 
L 

(5.5) 

Tfie Ci are analogous t o  Iz Ln the isotopic spin algebra, while 

the E- are analogous t o  the raising and lowering operators I+. The - - -. 

A: are the possible eigenvalue differences of the operators Ci i n  any 

representation. 

non-zero vectors in 

Thgy are res1 and can be regarded a s  n-f dist inct  

rea l  €‘-dimensional space. 

The (n-f)/2 conplex vector fields corresponding t o  the Ea give 

- n-g vector particles carrying specific values of the quantities Ci, 

namely Aye Thus i n  the Yang-Mills theory the two charged mesons carry 
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ip”z - 

I, = 4 I, 
a The vectors hi in the r ea l  f-dimensional space of the Ci are 

called roots, 

t i e s  of the algebra (except f o r  the overall  scale of length, propor- 

Their lengths and relative angles are invariant proper- 

t ional t o  6 ) , We may define a scalar product for  the roots: 

c 

<a, B) = z: hi a @  hi 
i 

B When we add t o  one root hi integral multiples k hy of another, 

we may find further roots, When this 

for  a sequence of successive integers k = pm, I....e QBC~ Eviaently 

* p ,  0 a d  g 2 0. When q - > 1, then h! e hy is  a root. This s i tuat ion 

is important fo r  the corntat ion properties of the Ea: 

a B  pa, EJ = o unless 

pa, E d  = i Nw E,, when 

= -at or hi + hi is a root; 

+ hB i = hi ; 

I 

(5.9) 

(5.10) 

Even with the sign condition (5.12), the various relative signs of the 

E’s  must still  be adjusted and a sign convention established f o r  the 

But apart f ron tha t  the algebra is  now completely and invariant* No43* 
4 described by its rank and the scalar products of its roots w i t h  one 

another. The c f a  

construe ted. 
6”.\ 
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-Mills theory ass 

Lie algebra, we have gone over t o  a new particle representation. 

Instead of the 2 real fields A,, we have - f rea3 fields coupled to  the 

currents of comnuting quantities and then(n-f)/2 complex f ie lds  coupled 

t o  the currents of raising ana lowering operators f o r  these commuting 

we have the quantities hy and N quantities. Instea2 of the cijk, 

describe the commutation rules ayld the amplitudes of the trilinear 

couplings amng the vector mesons. (By going back t o  the rea l  and 

imaginary parts of the carnplex fields,  we c a  imolediately recover the 

t o  @ 

c in  a partic- form.) ~ l z e  particles of the complex f ie lds  carry i jk 
the values of the qwti t ies  Ci and, since the Ci are conserved, the 

emission of the vector particle changes the value of Ci for the rest of 

the system by hy; the hi are indeed the possible eigenvalue differences 

of the Ci, w h a t e v e r  the representation. 

a 

I n  the next section, we shall give sone examples of simple Lie 

algebras analyzed by the method of roots. 

VI8 Examples of Sjmple Liie Algebras 

The s3npI.e Lie algebras of smallest dimension are those of the 

groups SU(2) , with n = 3; SU(3) , w i t h  n = 8; Sp(2) , with n 

with n = 14; SU(4), with n = l5; Sp(3), with n = 21; O(?), 

SU(5), with n = 24; 0(8), w i t h  n = 28; SU(6), with n = 35; 

n = 36; and 0(9), with n = 36, It is hard t o  imagine that 

Lie algebras w i l l .  be of phpical  Interest, 

= 10; G2, 

w i t h  n = 21; 

Sp(4) , w i t h  

a,ny higher 
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p”. 

of S U ( ~ )  or 0 ) or sp(1) is just the isotopic spin 

The next t h e e  algebras are ’the algebra and has, of course, radx one. 

only ones of rank two, ana we shall use them as examples. 

mention, however, that the next algebra a f te r  these, that  of sV(4) or 

0 (6) , w i t h  

the traceless D i r a c  matrices and is  also the algebra of Wigner*s old 

theory of nuclear supenmikiplets (23).) - 
two, the roots axe two-dimsnsional vectors, which are plotted i n  Figs. 

1 - 3.. The orientation and overall scale of length are arbitrary, as 

has been mentioned. 

- 
(We might 

three, is  familiar t o  pwsicists.  It is the algebra of 

For the three algebras of rank 

For a y  algebra, it is convenient t o  take one of the roots  wing 

along the first ax is  and normalize i t s  length t o  unity by proper choice 

of the constant A. 

For each of the other two cases, there are two inequivalent choices; we 

can take either a long or a short vector, 

For SU(3) , it doesn’t matter which root is chosen. 

With the =first” root taken along the f irst  axis w i t h  length one, 

the elements El, E,L, and CI form the components J+/G , J-/@ , and 

Jz of an angular mmentum, as we can see f ronthe  commutation rules 

(5.5 and 5.6), &foreover, the second c o m t i n g  quantity C2 commutes 

with all three components of 2. 
Let us consider the algebra of SU(3) + We may, using our conven- 

tion, read off the values of the six roots 5n Fig, 1: 

The commuting elements C1, C2, can be thought of as belonging t o  a 
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"root" (0,O). 

eight vector mesons 

with C2 = 0, a doublet with C2 = F / 2 ,  and a doublet w i t h  C2 = - p / 2 .  

The t r ip l e t  i s  coupled t o  the 2-spin current, the singlet t o  the C2 

current, and the two doublets t o  

With respect t o  im 3 spin and C2, then, we have f o r  the 

: a t r i p l e t  with C2 = 0, a singlet 

f ra.i,s.ng and lowering 

operators that change w J by 1 /2  aud C2 by ,+ p / 2 .  

Any representation of the rn may be analyzed in terms of 

w J and C2, 

sion 3. In  order t o  acc operators 

it must contain a singlet and a dodle t ,  with values of C2 differing 

For exanple, consider the defining repre 

quantities 8 characteristic of the conmutators w 

other roots. Evi Is, the o d y  case is .of two roots  at E O Q  

t o  each other; when adaed, they give the root i n  be 

inspection tbat the nmbers p and q of Eq, (5.11) are zero 

respectively y lf& = 1/2 <a,a> 0 

Next, l e t  us look a t  the 10-dimensional algebra, w i t h  roots as 

the 1,0), then the in  Fig, 2- If 

root system is 

P Including the two vector mesons coupled to CL and C2, both treated as 

(O,O), ve have a t r i p l e t  with C2 = 0, a t r i p l e t  w i t h  C2 = +I, a t r i p l e t  

with C2 = -1, and a sjnglet' w i t h  C2 = 0. 
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If we treat the algebra as belonging t o  

a four-dimensional defining representati 

the above anal;jtsis, t o  a doublet w i t h  C2 = c 1/2 and another w i t h  

Ce = - 1/2. 
the defining representation is  the 5-dimensional one, which con 

i n  our present language, of two singlets with C2 = +1 and a 

If we. consider the algebra i n  coqnection w i t h  O(5) , then 

- 
with C2 = O D  

N a r  we may consider the other possibility, taking one of the 

long vectors t o  be (1,O). The ten-dimensional adjoint representation 

then corresponds t o  two doublets with C2 = + 1/2, three singlets with - 
C2 = l , O  , and a t r ip l e t  with C2 = 0, The four-dimensional repres- 

entation yields a do.Liblet with C2 = 0 and two singlets w i t h  C2 = + 1/2, 
w h i l e  the five-dimensional one gives two do.Liblets with C2 = + 1/2 and 

a singlet with C2 = 0 

situation is mentioned i n  the next section, 

- 
- 

conceivable physical application of this 

The evaluation of 8 for  the ten-dislensional algebra involves * 
two different situations i n  which adding two roots gives a third. 

we see from Fig. 2, we can add a long vector t o  a short one a t  135' 

f'rom it, obtaining the short one at  45'. 

t o r s  at  right angles, obtaining the long one in  between. 

8 comes out t o  equal the norm of the short vector. 

As 

Or we can add two short vec- 

In  each case, 

7 Finally, we look a t  Fig. 3, showing the root system of G2. 

re are four different case 

For three of these cases, 8 is  3/2 times the norm of the short 

The fourth case is  that of adding two long vectors at 120' to 

ding two roots gives a 

third. 

vector. 
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each other, obtaining the long one i n  the middle; 8 is  twice the norm 

* " 

Again, the 2-spin may be chosen i n  'cwo ways. If a short vector 

is used, the adjoint representation corresponds t o  a singlet a d  a 

t r ip l e t  with C2 = 0, two quartets with C2 

with C2 = - + p. 
four d o a l e t s  with C2 = 5 , 2 

- + &/2, m a  two singlets 

If a long vector is taken t o  be (1,O) , then we get 

, a singlet and a t r i p l e t  with 1 

C2 = 0, and two singlets with C2 = - + $? . 
- For each of the three algebras we have taken as exaanples, one 

m y  work out a l l  the representations of l o w  dimension, analyze them 

according t o  2 and C2, and calculate the matrix elements of the various 

operators. 

t ion of what we do i n  the case of isotopic spin. 

The whole procedure i s  a f a i r ly  straightforward generaliza- 

VII. Possible Applications t o  Physics 

Sakurai ( 7 )  - has discussed a vector meson pictwe of the strong 

interactions i n  which three sinple gauge theories are superposed. We 

have a one-parameter theory of a =son Wo coupled t o  the hypercharge 

current, a three-parasleter theory of a meson 4 coupled t o  the isotopic 

spin current, and another one-parameter theory of a meson Bo coupled t o  

the baryon current. I n  a31 three cases, gauge inmiance  with variable 

gauge function is  broken by some kind of meson mass term. 

two cases, the conserva'cion of the current itself, corresponding t o  

I n  the f irst  

ion, i s  broken by weak and 
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FIG. I .  

Root vectors 

* 

of su(3). 
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+m 

FIG. 2. 

Root -fectors of sp(2) = 0 ( 5 ) ,  
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FIG. 3. 

2' Eoot vectors of G 
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If we a m  willing t o  l e t  some large effect, s 

mass difference or  whatever causes it, break the gauge invsrZsnee wtth 

constant gauge function, then we may consider theories in which higher 

syrmnetries than isotopic spin play a role, and strangeness-changing 

currents are conserved t o  begin with.  

nesons in the gauge theory, and we may be dealing with generalized 

There are then strange vector 

Yang-Kills theories such as fiave discussed, 

It has been suggested (8) that the eight-dimensional algebra of - 
SU(3) msy be used for such a theory. The 2 spin of the last section 

is taken t o  be the isotopic spin I and C2 is  taken t o  be $372 times the 

bypercharge. Then if the b 

and parity they can form an irreducible representation of the algebra. 

So can the pseudoscalar mesons K, E, R, and X ,  where X is a -the- 

t i c a l  isotopic singlet of zero strangeness. 

w 

‘the 

gauge theory then follow the same pattern, and consist of SEtkurai’s 

4 and Wo and a pair of strange doublets M and 2. The sources of the 

strange mesons are then strangeness-changing currents, the conservation 

of which is  broken by such things as the baryon -6s d i  

Alternatively, we may imagine that the baryon supemultiplet does 

not consist of B, E, A, and C. 

take the three-dimensional irreducib representation 

correspond t o  N and (25) .  

Using the algebra of  SU(3), we could 

- 
i We might even use the ten-dimensional algebra of Sp(2), taking 

* - ne of the long vectors t o  correspond t o  the root (1,O) , as discussed 



-38- 

i n  the previous section. 

hyprcharge, then the baryons H, A, and 2 could correspnd t o  the five- 

If we interpret J as I and Cg as half' the 
w -  

epresentation. 

Besides the strong interactions, we m y  consider the possible 

application of vector gauge theories t o  the weak couplings. 

Since there is no sign of charge-retention weak couplings among 

the leptons, one might t r y  t o  describe all weak couplings by a Ji Ja 

model in which just two intermediate vector particles Xz are l w d  

Since the operators t o  which X+ and X- are coupled cannot commute, the 

algebraic system involved is not closed and the theory cannot be of 

our type. 

The possibility has been discuased (4,s) - -  of correct- the 

situation by introducing the electromagnetic f i e l d  as the third member 

of a Yang-Mills t r ip le t  including X?, The introduction of a huge mass 

for the Xt WOUM to ta l ly  ruin the symmetry and account for the short 

range and feeble strength of the weak interactions. A major difficulty 

th i s  approach is that the generating operators of X+ and X- violate 

parity conservation and it is hard t o  make their  commutator equal the 

electr ic  charge operator which does conserve parity. For the leptons, 

the problem can be solved (26) - only with the introduction of a fourth 

neutral gauge field, In  the resulting %on-simple" 3 @ 1 t h e o r y ,  the 

photon must be identified as a linear combination of the singlet gauge 

field snd one member of the tr iplet .  
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P A further difficulty is that with just X? fo r  the inter- 

'c 
s, one cannot justify the \AI I = 1/2 rule, for  non-leptonic 

w 

strangeness-violatbg weak couplings of baryons and mesons* 

however, t r y  forgetting the leptons snd introducing, for  baryons ELnd 

mesons, ckwge-retention weak interactions mediated by neutral X's. 

One may, 

If just one Xo is  used, then the strangeness-changing part of 

the operator to which it 1s coupled t both AS = +1 S M  

A S  = -1 i n  order t o  'tie hermitian. In the resulting weak interaction, 

one cannot then avoid having IO I = 2, which brings trouble w i t h  the < - I$ mass difference, 

TIse "schizon" model (11,12,W) --- avoids ) A  S 1 = 2 by Using two - 
neutral X' s, Xo and Xo, along with Xz. Say X+ is coupled t o  an 

0 or B, X- t o  B+, x0 A, and Xo t o  A+. Then we take B = Bo + 5, 
where Bo conserves strangeness and changes isotopic spin by one unit, 

w h i l e  B1 lowers strangeness by one and changes isotopic spin by one-half 

unit. S i m i l a r l y ,  A = rves S and gives I A k f  = 0,L 

while % gives A S  = -1, 

chosen t o  be isotopic spin npartnersm; the same is true of Bo and the 

= 1/2, The operators B1 and A1 are 

I A Z l  = 1 part of Ao* I t  i s  then easy to -Just the relative values 

of BL and A1' Bo and A. t o  give /A:[ = 1/2, (AS1  = 1 for  the non- 

leptonic s t  ss-vfolating we& interaction. 

Unfortunately, it i s  impossible t o  apply the gauge principles 
V 

we hme discussed in  t h i s  a r t ic le  to the '"schizon" model, as we shall 

1 - now see. 

289 
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The only four-dimensional theories of our those made 

one three- of four one-d sed or else of 

dimensional and one one-dimensional theory superposed. I n  the first 

which is 4- case, the four operators A, B, A , and B'must all cammute, 

of charge clearly impossible. In the second case, if we take account 

conservation, we m u s t  have (with suitable normalizat 

choice of the arbitrary phase of A) the commutation rules: 

suitable 

[A + A+, A - A+] = 0 

characteristic of a *3 @ theory. Writing the last equation as 

b, A'] = 0 and taking the AS = 0 ps r t  of the equation, we have 

How, 5 is a strangeness-lowering operator. kt us suppose that 

a f in i t e  nuIliber of particles participate in  the interaction, 

those particles of lowest strangeness that are cou-d t o  any of higher 

strangeness. 

Consider 

For a l l  these particles (treated as states si), we have 
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~ On the other had ,  AI $i cannot be zero for all. the Ti, since some of - 

Q 
these particles are coupled t o  states of higher straageness. Thus 

3ut by (7.2) we then have 

J. 

' '- 
which is impossible, since the matrices A. and A: conserve strangeness 

and connect states 4, only t o  states of the sane set; the expression 

in (7.5) is thus the trace of the commutator of two f i n i t e  matrices 

and vanishes, 

' 

The algebraic system of the  "schizon" model, then, has no inter-  

esting representations, 

It is interesting that if we insist on trying t o  reconcile OUT 

gauge notions with the idea of a weak fnteraction w i t h  four X's t h a t  

explains the InLi = 112 rule and the $ - $ mass difference, we can 

construct a model that does a l l  of' those things. 

gloss over the leptons (with t h e i r  apparent lack of neutral currents) 

As usual, we nus t '  
r- 

and t r ea t  Just baryons and nesons. 

To start w i t h ,  we forget the - I$ mass difference and al low 

\AS\ = 2. Then we can use Just three vector fields: X', coupLed t o  B, 

X-, couplea t o  B+, ma x*, coupled t o  A. bter ,  we w i u  i n  8 fie= 

Yo coupled t o  an operator C. The X's are described by the original 



m 
I 3-parameter Y a n g - M i l l s  theory. As before, we have B = Bo + Bl, but 

+ A + A1 + Ale 
0 

t h i s  time 

The comutation rules of the Yang 

yield, for the whole system of Ao, AI, Bot 31, strangeness S, and 

charge Q, an algebra which ( i f  we introduce a simplification by making 

A. a linear function of S and Q) is equivalent t o  that of SU(3). 

that for the 

would make the algebra st i l l  more complicated.) 

theory, then, by using the smallest representation of SIJ(3), involving 

three particles, which we w i l l  take 

(Hote 

KLJ isotoTic spin rules; that  

We m y  describe the 

- 
be n, P, and A. 

I;et us introduce rotated mparticles* ($22) 

n' = n cosQ + A sine 

At = A cos8 - n sin@ (7.7) 

an& work only w i t h  the left-handed parts (1 + 7,..)/2 n' = nNL, etc. , of 

these fields. Then we couple pL and neL only, with B = 7' - , B+ = 1' + '  
A = T '  , where the 7' matrices are Just like ordinrtry T * s, but with 

2 

ntL as a bas5s. We get the currents PLY 

I 

csy. 
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P 

which lead t o  A 0, \AS\ = 1, and I A S ~  = 2 interactions. 

The \AS1 = 1 interaction contains both A& = 1/2 and I 1  
\A&\ = 3/2* However, if 9 is small, then the \A:] = 1/2 interaction 

is of order 0 w h i l e  the IA f I = 3/2 interaction is of order Q3. Then 

the strangeness-changing interaction is weahr than the strangeness- 

conserving one and the I A&l = 3/2 interaction is  weaker than 

\ A Z l  = 1/2, but not zero. 

w- 

8 

We must stiU. cancel out the A S  - 2 contribution t o  the 

- 
i l  4 - $ mass 8ffference. That can be! done (28) by cancelling just  the 

scalar wrt of the I S 1 = 2 interaction. If' we couple the fourth 

boson Y" with appropriate strength to the current 

(7.9) i % ?a hR 0 i % ya gi 8 

where we now work w i t h  the right-handed fields only, then the to t a l  
2 1 AS I = 2 interaction ca.n be made purely pseudoscalar and of order 8 . 

It will give no I$ - I$ ns6s difference, but it Kill glve a 'very splsu - probability for G 3 B i a. 

ep.; 
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!?!he model we have discussed is not seriously put forward as a 

in the gauge method. 

may constitute a 

interactions. In general, the 

"weak" snd "strong" gauge symmetries w i l l  not be nutually compatible. 

w i l l  also be conflicts with the elec 

conflicts t t be resolved in Favor of' electromagnetism, since 

its gauge invariance i s  exact. We have not attempted here t o  describe 

the ther, but only to s p e c h t e  about 

what the syplrmetry of eac might look li re 

209 44 



-4s, 

c t  the diff icul t ies  

independent of this 

quantum theory. 

Now if giL = A €iig 

dijk = A cijk and c i s  totally antisymmetric. 

i and j are connect 
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a simple theory, however, we can ultwtely convert a l l  

elements t o  

are equal. 

that g ims  

Hote that if' we set up the Eins te  

gauge methods then the conc 

an8 prove a l l  the Fi 

of course, it vanishes; 

p* 22: eory of gravity by 

ightly different. 

ion, we perform a Urentz trans- 

ve, i n  place of 

z index g,-giving us 8 

But whereas th!? 
* 

positive probabflities, the 

positive grobabilities. Thus the 

n, although it occurs in the 

camot be permitted i n  8 gauge theorg of vector fields. 

I not i > j. Sp(v/2) m y  tively be defined as the &roup 

of unitary transfo v /2  quaternions. The generators 

x v/2 matrices over 
ikl 

such matrices. 
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They do not s t he  pssibility of 

i 

- 

to leptons -- at Least, for  the chargea currents -- the 
ger the proper state- 

2 2 2  s theory % + GA = Gp 

r 

x 
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