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ABSTRACT o
?
The possibility of generalizing the Yang-Mills trick5is

w.w_n«

examined. Thus we seek theories of vector bosons invariant under VL$HWmm o

[P o

»continuous groups of coordinateudependent linesar transformations.

All such theories may be expressed as superpositions of certain
simple' theories, we show that each simple“ theory is associated
with a simple ILie algebra. We may introduce mass terms for the vec-

tor bosons at the price of destroying the éauge-invariance for
coordinate-dependent gauge functions. |
The theories corresponding to three particulsr simple ILie

algebras -- those which admit precisely two commuting qﬁantum num~-

bers -- are examined in some detail asAe;amples. One of them might

‘play & role in the physics of the strong interactions if there is

an underlying super-eymmetry, transcending charge independence,k
that is baedly broken.

The intermediate vector boson”theory of weak interactions is

discussed alsoe. The so-called "schizon™ model cannot be made to e

conform to the requirements of partial gauge~invariance. It is
possible, however, to find a formal theory of four intermedisate
bosons th;t are partially gauge-invariant and gives an approximate

|a1] = 1/2 rule.
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_ I. Introduction

The electromagnetic interaction of Q;ementary'partiCIés is

PR S :

B remarkébly'simplee Tt is of universal strength ahd‘fdrm‘andbis‘

associated with a principle of gauge inxﬁgggnce In fact,'starting

with the idea of inva;iance under gauge transformations with coor-
dinate - dependent gauge functions, one can'deduée the existence of
a massless vector field coupled to a conserved current. If all
charged fields are subjected to the same gauge transformation, then
the electric charges of all particles are the same.

The fact that the weak interactions are vectorisl in cheracter
(apart from nonconservation of parity) and nearly universal in strength
has suggested to meny physicists thét they may be mediated by vector
fields (;,g) and that theére may be a useful parallel between them and
eléctfomagnetism, perhaps even extending to the notion of’gauge
invariance (3,4,5,6).

The strong interactions, too, seeﬁ‘to exhibit some degree of
universality. Mbreover,-the approximatevconservation laws of isotopic
spin and of strangeness, as well as the exact law of conservation of
baryons, present an analogy with the conservation of charge and suggest
that some principles of gauge invariance may be at work. Until recently,

it seemed that the strong couplings were not vectorial, but there is

- mounting evidence that there are objects (like the I =1, J =1, =x

resonance) that can be interpreted as vector mesons and that may play

a very significant role in the strong interactions (Z,§).

ogg 04




e ]

i

(’" 3y

“5a

There‘are two great difficulties_inwthgmway of constructing

theorles of weak and strong 1nteractlons by analogy w1th electrodynamlcs.,

‘One is that some of the relevant currents are not conserved.vvigg_lso-

topic spin and strangeness currents that may enter into a vectorial

theory of the strong couplings falil to be comserved on account of elec-

tromagnetic and weak interactions, while the comservation of the weak

current is brokén not only by electromagnetism but, in the case of the
axial vector and strangeness-changing parts, by masses and perhaps by strong
interactions as well. ’ -

The other difficulty is that whereas photons are massless (as the

qpanta must be in & theory that is fully gauvge invariant with a coordinate-

: dependent gauge function) the vector particles that mediate the _strong

and weak 1nteract10ns musb,be massive if they exist at all.

pertially geuge-invariant. In each case we have a Iagrangian like the
electromagnetic one, fully invariant under coordinate-dependent gauge
transformations, plus other terms. The remaining terms are of two kinds:

a) those which break the full gauge invariance, while leaving

intact the conservation law and the inveriance under constantﬁgaugé\
transformations;

b) those which destroy the gauge invariance altogether, along

. with the conservation lawe.

In the case where the_congngggéonmlaw is exact (conservatiqn”“,

of baryons) the terms of type b) are, of course, absent.
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wa the idea ofvpartial gauge-invariance poses a number of ques-
tians,to which we shall return briefly in Section VII. For the moment,
let us concentrate on the stralghtforward part of the problem, the con-
struction of the fully gauge-invariant part of the theory.

The coupling of a wvector meson field to a single quantity like

baryon number follows exactly the pattern of electromagnetic
coupling to the charge, as long as the complete gauge-invariance is
maintained. But, when we go over to the case of three non-commuting
quantities 1ike the components of the isotopic spin current, the
situation becomes different and a more sophisticated theory becomes
ﬁecessary. The intermediary vector meson field now carries isotoplc
spin 1 and its own isotopic spin current contributes a source term.
Thus the theory of the vector meson field becomes non-linear. The
problem of constructing the theory in question has been solved by
Yang and Mills (9) and by Shaw (10).

In the next two sections, we review the simple case of charge
or baryon nunber and the more complicated case of isotopic spin. Then,
in Section IV, we go on to the main point of this article -- the des-
cription Qf éll possible straightforward generalizations of the
Yang-Mills tricke Wé are interested in such  generalizatiocns
because we do not know, for either the strong or the weak interaétions,
exactly how many intermediate vector fields may be involved (if any).

To give just one example; it has been suggested (11,12,13) that there

_may be four such (hermitian) fiehis for the weak interactions -~ the
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so-called schizon model, set up to gi;\re ,A;_‘ = 1/2 and AS =0, +1

for the nonleptonic weak interactions of baryons and mesons. We shall

_show in Section VIT that the ideas of partial gauge-invariance lesd o

severe restrictions on four-fieldjmodels; in fact, the restrictions are
so strong as to make it imppssible to construct the schizon model
according to the gauge prigciples of tﬁis articlee.

The classification of generalized Yang-Mills theories discussed
in Section IV is described further in Section V; séme examples are given
in Section VI; and some possible physical applications are touched on

briefly in Section VII.

Il. The One-Peremeter Geuge Theory

The gauge formalism of electromagnetism is, of course, well-
known. The generalization from charge to baryon number was discussed
by Yeng and Iee (14); it is clear from their work that the generalization
contradicts experiment vnless either the coupling éonstant is ridi-
culously small or the gauge invariance is broken, say by a mass tefm
for the vector field. Iet us review the method.

We start with an additive gquantity like charge or baryon mmber;

call it Q. Iet the fields Wa(x) destroy particles of charge Qa amib

create their antiparticles. We then discuss invariance under the =

infinitesimal gauge transformations

V0 v () - 1 AR Y00 - (2.2)
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Whenever the coordinate dérivative 3 o acts on Wa. » 1t undergoes the
transformation
- i A '
3y —> aa iQ, éot ‘ | (on \Ifa) . (2.2)

In order to cancel this change, we introduce a vector field Aa(x)

that suffers the gauge transformation

Aa(x) — Aa(x) - 6a A(x) (2.3)
and a field Iagrangian density LA invariant under this transformation,
say |

L, = - i/% (saA - ap Aa) . (2.4)

Bv,

In the absence of the field Aa and its couplings, let the
Iagrangian be Lo(llfa) and let it comserve Q. Then the "minimal® gauge-

invarient Iagranglan including Aoz is’

L =L (\i{a) + I, , (2.5)

e

where Eo is obtained from L0 by the replacement
3477 9419, Aa(x) (on \ifa) . (2.6)

Tt is evident thet (2.5) gives us a gauge-invariant Iagrangian
and certainly the procedure described by (2.5) is the usual one. But
what do we mean by "yinimal®? The point is that we could add to

the lagrangian (2.5) further gauge-invariant terms involving the field

ogg 08
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strength aaAﬁ é A o However, nature 5 in the case of electromagnetism,

does not seen to ma.ke u.se o:E‘ such terms.

’Consider s for example, a Dirac particle of charge e, for which ¥
is a spinor and the free Iagrangian density is
=~ (7a 3, + m )V . (2.7)
The substitution (2.6) gives the usual cow ling ,
;- e V¥ 7a AOI ¥ N » (2’8)

but no Peuli moment. We generally suppose that the effective Pauli

moments of nucleons arise from the ordinary electrical interaction of

the meson cloud around the nucleon and not from a basic Paulil moment

term in the leagrangian:

ipV % ¥ (2 A'B - ag Aa) . | (2.9)

Hence the attempt (15) to s’cate a principle of minimal electromegnetic

interaction, that the electromagnetic field interacts only with electric
charges in the normal ;»Iajr (as in (2.6)) and not through special field-
dependent terms like (2.9) in the basic Iagrangian.

The difficulty (16,17) with any attempt to put the idea of minimal

electromagnetic intersction in definite mathematical form is the follow- =

ing. Various Iagrangian densities (differing by divergences of four-
vectors) can lead to the same equations of motion. Bub if we ,choo},se in

this way a new LO s the resulting electromagnetic coupling (and the

-equations of motion including electromagnetism) mey become radically

289 03
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d'“ferent. Thus we can obtain the Paull moment, term (2 9) by the
"minimal® procedure (2. 6) if we aust add to uhe usual L in (2.7) the

term

2p 3, @ Go:BaB ¥) . - (2.10)

e

'We see that the procedure (2.6) dgfinés the "minim31V interagt16p_‘
only if the originel Imgrangien demsity L is chosen in a "minimal®
wey. We must assign a physiéal meaning to Ib and say that (2.7) des-
eribes a~Dirac.particle properly;whiie if the temm (2.10) is édded we
obtain the wrong~lagrangiaﬁ density for a Dirac particlegyeven ﬁhough'
‘the equation of'motion;Without,elgctrgmagnetism is just the Dirac
eqﬁation_in both cases.

| Of course We,hévewstill‘not specified in a clear?cut,way how
to find the "minimal“ L, in ailjcases.‘ But’%hatﬂ@;iﬁigp;ty is not
restricted to the problem of electromagnetic couplings. Even without
electfomagﬁetic intersctions and without strong and weak interactions,
we must still assign & physical significance to Ib tecause it deter-
miﬁes the gravitational coupling. If we add a termklikg,(E.lO) to Ib
and follow the usual procedure for constructing the stress-energy-
momentum tensor, we will get a different answer. In fact, the
gravitational interactions are const;gqp;ﬁﬂfygm‘lb in a way that ié
closely analogous to the method given in (2.6) for electromagnetism.

wa,let us»return,ﬁo,the theqry described by'theblagrangian

density (2.5). The equation of motion for the field A, is

289 10
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=° Aa - 3,8 A = - D-zc(\ifa)/D A, =-
where D/DAa is the Iagranglan derivative 8R4 - és a/a(aB A) R

The formulas for the current can be re-expressed as follows. Consider
a gauge transformatieﬁ in which the ¥ fields are affected as in (2.1)
but A is not trans...omed. Denote partia.l derivatives with respect to
Aand 3, A under this condition by [3/3!&] sao and '[A/a(a A):] SA=0°
Then we remark that since L is totally gauge- 1nvar1ant, the derivaetive
[3 /3 (é A)] sp=o D2s the effect of thé negative of a derivative with
Enlfa =0 and only Acx a;t’fepted by the gavge transformetion. But such a

nega:bivé derivative is exactly -D/DAa. Thus we have the result

: o~
The current is calculated from the Iagrangian (either L or L) by a
gaugg tr@sfomaﬁlon involving only the \lfa fields and not Aa’
Next we note (6) that in any local gauge transformation, the
Euler-Iagrange equation applies to the gauge function, even though it
is not a field variable » as a conseguence of the Euler-Ilagrange equa-

tions for the field variables themselves, Thus we have

ada= °a [é L3 A)} BA=0 [al'o/s‘/\‘]&bo

S i’o/aA . (2.13)

)

it

‘ _‘ But the lagrangian is invariant under gauge transformations with con-

- stant gauge function. Therefore the current is conserved:

ogg 11




d = 3L PA =0 . (2.1%)

a Yo
Iooking back at the equation of motion (2.,11), we see that the supple-
mentary condition o o Ao: = 0 may be imposed.

Finally, we may identify the constant of the motion -i [ 3y a>x
with the charge Q. So far we have looked at the equations classically;

but in quentum mechanics, of course, @ is an operator and has the

commautation relations

.Ua,c;]g 9%, “’a. - - ) (2..15)4

Now that we have sketched the fully gauge-invariant theory, we

may discuss what heppens when a term is added to L that breaks the full

gauge invariance but leaves the invariance under gauge transformations
of the first kind, that is , with constant A. Ve shall take the simple

case of a mass term for the wvector meson

2
- 1 Ay AO/Q .
Evidently all that happens is that the equation of motion (2.11)

becones

2 2 . '
(o -po) A, - eaa A, == (2.16)

BB (o ?

while the expression (2,12) for the current and the conservation law
(2.14) remain unchanged. We have a vector meson coupled to a conserved

current in a "partially gauge-invariant” theo:r'y;

289 12
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III. The Turce-Porameter Geuge Theory of Yeng and Mills

AR e

We now tura from ’thes:_mple case of charge or baryon numbei' to

the case of the isotopic spin 5‘, obeying the conmutation relations

[Ii’ Ij] = l’eijk I - ' (3._1)
This time our Tields V¥ carry isotopic spin; let us consider for simpli-

city a field N of isotopic spin 1/2 (the nucleon) and a field x of

isotopic spin 1 (the pion)(9)e. The relations analogous to (2.15) are
' [N, Ii] = TiN/E s
- [:rj, Ii] = -ley L5 . (3.2)
The infinitesimal gauge transformations analogous to (2.1) are then

W) >N - 17T A B

i(x) —> f»(;x) + 27, AMx) x n(=x) . (3.3)

(We have denoted by 7y the bare coupling para.meter.), Thus the coordinate

derivetive O, acting on the fields N and x suffers the change

aa"';'aa'i7oz’aaﬁ (OBN),
éa —-—> aa-!- 2y éa'{} x (on 25) . (3.4)

corresponding to (2.2).
To form a gauge-invariant theory, we must introduce a vector

field “j}a(x) with isotopic spin one; its gauge transformation is

289 13
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essentially différent from (2.3) becaﬁse;%u caffies isotbpic spin,

whereas the photon carries no charge. Thus the field is not only dis-

" placed by the gradient of A but élso'undergoes isotopic rotation as

g(x) does in (3.3). The gauge transformation is thus
- .A. - *
Afx) =>4 (x) - 3, Alx) + 27 AMx) x A () (3.5)

For the field lagrangian density, we must choose an expression

invariant under this gauge transformation. We nbte that

o ) :
Sop = 2q8p - Pplyt 2 By Xh (3.6)
-transforms according to the rule
' - A . 3.7
Sop ™ Gp * 2, A G (3.7)
The simplest gauge-invariant Ilegrangian is thus
L, =- 1/k Som * Sop , (3.8)

which is, of course, nonlinear, unlike (2.4). In the éqyaxion of
motion dedueible from (3.8), the source of the A field is its om
isotopic spin current.

Now, given a Iagrangian L (N,z) not involving the A field but
conserving isotopic spin, we can introduce the "minimal® gauge-inveriant

lagrangian density inecluding A:

L = I (W,x) + L, - s (3.9)

with Ib obtained from Ib by the substitutions

289 14
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(on X)
g > gt 2 AL (on x) (3.10)

a.nalogous to (2.6).
The current » source of the field A o’ is given, exactly as in

(2.12), by the formula N
ot e, 8] po - (3.11)
and is conserved, while the analog of the charge is Just

-i 270 f.“{?h dsx = 270 I . (3.12)

If we now add a common mass term for the three kinds of vector

meson,

“)lotm

fi‘ ‘éa 2

the gauge invariance is broken (except for constant “{}) but the isctopic
spin current is still conserved. Unfortumately the renormalizability of
the theory, at least in the conventional sense, is lost when a mass is

added (18,19).

IVe Generalizations

We now come to grips with out problem, that of classifying the

straightforward generalizations of the Yang~Mills trick. We imagine

sets of N fields, like the two kinds of nucleon or the three kinds of

pion in Section III, on which a gauge'opera‘oion performs a linear

289 19




PR

R T

_transformation as in (3.3) Ve may write

. N X
\Vi(x) llf (x) - 217 I21 pA M A (x) ¥ (x) . (4.1)
: J"l k—-]_ .

for oﬁr generalizétion. The n inde’pendent gauge functipns A.(x) may be
taken real, while the MJ are, for the moment, arbitrary complex N x N
ma'br:.ces. }

The Isgrangiasn density Lo(ilri) is presumed invariant under (4.1)
for constant gauge functions Aj' Then (4.1) must be an ini‘initesimai
unitary operation; the matrices Mj must be hermitian. The coordinate

derivative a.ét:i.ng on ¥ changes according to the rule
o . . n
aa——> aa - 21y 321 MJ (aa A;,) e (%.2)

To cancel this change, we introduce n hermitian fields A , to
take up the gauges Ai’ Tn place of (3.5) we have

Sy v
Aai(x)——?Aqd(x) - o, Ai(x) + 27 ,jzk=l le J(x) A (x) s (4e3)

where all the indices in ci,jk. run from 1 to n. The c's must be real

to preserve the hermiticity of the A fields. We must determine the

properties of, cijk that will permit the Yang-Mllls tr:.ck to go through.
First of all, we must be able to find a gauge-invariant field

Iagrangian for the A' 5 "We seek a field strength that transforms

simply, like G (3 7):
| _ ; g _ |
G —_ 9 o Asi -~ 9g Ay * 27, jz:k_l bijk Aaj ABk . (o)
; 3,k=

289 16
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The transformation is, in general, very complicated. Iet us use the

sumgztion convention. We obtain

Cops ™ Cops * 275 (e = Pyg) g By bey - 27 (cl.]k 1x3) g A5 A
+ 27, ciq By O Ay - as_ )
+ 1&7 (bijm Cyert bi[,j ka) Ak Bm . (4.5)

In order to obtain a law analogous to (3.7), we must put
Pigk = Cigr? Piky T Sk’ Pigm Caxgt Pis Sy T Ciky Pifm

Then we have

G p:=7G . + 27 c,

ofi oBl o “ijk ,] O:Bk ? (k.6)
with

Cops = o et = g hai ¥ 2% Cogx Aagter v (ke7)

Cijk = e cikj 3 (15'08)

ci‘m1 S0 ¥ 505 Cim *Cixs Came = 0 . (4.9)

Now the Iagrangian density

I, =-3G_.. G (%.20)

A TTETopi Topd ‘
i1l indeed be gauge-invariant 'provided we have

sk = 7 Syt . (ko11)

283 17
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~ The necessary and sufficient conditions for the construction of

the generalized Yang-Mills i‘ield ‘are thus:

¢y totally antisymetric emd real, (4.122)

Cism Ckg3 T Ckom i3 * Cgim Cixg 0 . (k.12)

The Yang-Mills theory itself is the special case in which n = 3 and

c = ey s which obviously satisfies (4.12)e

ik
Now we must couple the field A, to the current generated by the

gauge transformation (4.1) of the v, We have to construct from LO(IFi)

a completely gauge-invariant quantity ’EO(wi) . In order to make the |

gauge tray.nsfyor’mation‘s (%.2) and (4.3) compen'sa.‘cebea'ch other, we use the

prescription analogoﬁs to (3.10),

n
—_— - s
| oy aa 21 7, iil LA {on \;f) (4.13)

to constmcf 'Eo from L. Under the unitary transformation (4.1), which

we may rewrite in the form

the M's transform according to the rule

. - ; A .
M, —> M, - 217, zz [Mi, Mj] 5 (4 .1k)

“»

while éa and A, transform as in (4.2) and (%.3) respectively. Thus

the prescription (4.13) yields .a gauge-inveriant Iegrangien density L

if and only if we have

2893 18
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with the summation cbonvention understood. Evidently this is "the
generalization of the commutation rule (3.1) for the isotopic spin.
In order that 'E.he cl:Jk define the conmutatlon relation (14-.15) »

it must obey Just two conditions., First, the rule

[Mi, Mj] = - [Mj, Mi] (%.16)

tells us tha’t,ci jx TuSt be antisymetric in i and J; but we already

know that from (4.12a). Second, the Jacobi identity

[M [M ,Mk]‘j [n , [Mk,M_Jl M, [M ,M—ﬂ (4.17)

‘gives us just (lk.le)

There rema.:.ns the condition tha'b C5 3k be aptiSymnetric not only
in i and j but in the other pairs of indices as well., We shall return
to the consequences of this further condition shortly.

Suppose we ‘can divide the indices k into two sets such that
ci,jk =0 mrhenevér i belongs to one set and J to 'bhg other.. Then ﬁhe
fields Aia of one set and those of the other set are completel:} uncon-
nected to each other by any of the gauge transformations we have
discussed. Iikewise, the operators Mi belonging to one set of indices
connnu'be‘ with thosé belonging to the other se‘b. We are then dealing

with a l:.nea.r superposition of two completely independent Yang-Mills

' theories, which may have 'irastly different c’cuiiliﬁg strengths and no

direct physical connection. We might as well restrict our attention

289 13
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'to one oi‘ ‘bhese.‘

We can go :E"ur‘bher. Suppose our thebi',y' is not simplifiable as
Just discussed. We may apply any real rotation in the n-dimensional
space of the A. o’ rotating at the same time the M. and the gauges A..

The properties (k.12) of c are maffected by such a rotat:.on.) It

Jk

- may ‘turn out then tha,t our theory is sn.mpllfla.ble. In that case, let

us restrict our. a’c‘bent:.on to one of the parts. We continué this pro-
cess until we reach an irreduc:fble Yang-Mills theory » One for which
we cannot, no matter how we rotate in the n-dimensional space s find

two sets of indices that are uncomnected by the ¢

135k° Fraom now on,

. we shall deal with these unsimplifisble or "simple" theories, from
which the most general theory can be built up by ordinary superposition

and rotation.

Simple theories with morve than one vector meson have an impor-
tant property -- they are characterized by a single universal coupling

constent. To see this, suppose there are two distinet multiplets of

" fermions \lf(l) and \lf(a) » both coupled to the A . by means of the pre-

seription (4.13) but possibly with different coupling strengths, 7(1)
and 7(2). The scale of the matrices, M(l) and M(a), acting upon

‘4!(1) and \V(E) is fixed by (4.15). For the ::.n*beractn.on to be invariant
wder sizmmltaneous rotations of the,\lf(m, (ke1), and the LS (%.3),
it is clear that either: (2) the Aai may be separated into two sets,
one of which imberacts only with ¥\, the other with ¥(2) -- such a

theory cannot be simple; (b) Cgx = 0 --- this is possible only if the

g9 20




‘ rela.tion :

 w21e
theory is a superposition of one or more triviel one-perameter theories;

(e) 7(1) = Y(z) =" the non-trivial simple theory mmust also be a wniver-

sal theoryg.

Now the cond::.t:g.on that ci,jk.

be 'botally antisymmetric is easily
shown to be egquivalent to the conditions, |

Tr M; My = (const.) §ij s (k.18)

for a "simple” theory. For the original Yang-Mills theory » in vhich the

N, (1 = 1,2,3) are isotopic spin metrices, Eg. (+.18) is evidently ful-

filled.

We mzy now summarize the necessary and sufficient conditions for
a simple generalized gauge theory. We must find an algebraic system,
say of quantities S, (i = 1,eeeen), defined by a commutator [Si ,Sj]

obeying the antisymmetry and Jacobi laws (4,16 and 4.17) as well as the

[si, sj] = icgg S
with real, totally antisymmetric Ci.ﬁk’ Furthermore, no real rotaﬁion
of the S, may result in & system that can be split into two commmuting
parts. ’
Sueh an algebraic system can always be represented by various
sets of hemi’hiaﬁ ma‘bﬁ‘i'ic;es,Mi obeying the same rules as well as the
condition (4.18)s The construction of a Yang-Mills theory then follows '

the pattern we have outlined.
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Now, the algebraic systems under discussion are well known to
the mathematicians, One is the trivial ome withn =1, ¢, =0 that
was discussed in Section IT. A1l the others » including the Yang-Mills

case with n = 3 > c.ijk = eij

> are called simple Lie algebras (strictly
speaking, simple Lie algebras in a special kind of real form). As
such, they have been completely classified. All possible ones are.
known s and their representations by hermitian matrices Mi have been
studied. In the next Section, we shall discuss the classification and
some of the simpler cases. | ,
Utiyams (20) has treated the commection of the Yang-Mills trick
with Lie algebras, but he did not mention the severe restrictions of
the ILie k,,al»ge‘bra -that are necessary “bo obtain a vector meson theory

with positive probabilitie sh' .

Ve On Simple Iie Algebras

‘ Iet us mention firsb’c‘ the listing of all the simple Iie algebras
by Cartan (_2__1), Each one, of course, may be regarded as the algebra
of ﬁhe infinitesimal generators of a continuous group, which is called
a2 simple Lier groupe _

a) First of all, there is the infinite sequence of uniﬁary
unimodular groups SU(VV)(V = 2,3,k 5000e)e The group‘SU(v) is made up
of all unitery trensformations with wiit determinent in an v-dimensional
compleX space. The ini‘initesimal generators are then isomorphic tcs the
traceless hermitian v X v matrices; evidently there are v2 - 1 indepen-

dent matrices of tha.t kind and therefore the algebra has v2 - 1 elements
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‘ 2
Si' We have n = v - 1.

We have, incidentally, constructed the smallest representation
of the Si by matrices Mi; we simply use the v2 - 1 traceless hermitian
v x v matrices. They can, of course, be chosen to obey (4.18). More-
over, this representation is irreducible. (To avoid confusion, let us
remark that the algebra of the Si is already simple; no real rotation

in the n-dimensional space of the A, can divide it into two parts

that are unconnected by the cijk’ However, the representation of the
algebra by the N x N matrices Mi may be reducible. Inlother WOrds ,
there mey be a2 wnitary transformation in the N—dimensional space of
the W's that reducés all the Mi'simultaneousxy to block form and allows
us to pick but é smaller’repreSentation of the algébra. If such a
reducfion is impossible; the representatiop is irreducible.)

) The isotopic spin algebra is that of SU(2); we have

n = 22 - 1= 3,and Si = Ii (i = 1,2,3)s The irreducible representation

by traceless hermitian 2 x 2 metrices Ti/2 satisfying (4.18) is just
the familiar SPin 1/2 representation. Ve know, too, all the other

irreducible representations, classified according to the value i(I + 1)
3

Vl
€

- of the matrix Z N? » which commutes with all the Ii. The Ith repres~

4=
entation (I = 0,1,25¢eee) is said to correspond to isotopic spin I and

has dimension 2I + L.
b) DNext, we have the infinite sequence of rotation groups o(v)
in real v-dimensional spaces (v = 7,8,9,se¢es). We have omitted 0(2)

because it is Jjust the one-parameter group of electromagnetism and that
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degenerate case is not ihclUded emong the simple Iie groups by the
mathematiclians. 0(3) is Just the 3-dimensional rotation group and we
know that is essentially the same as the isotopic spin group SUé;
The four-dimensional rotation'groupyo(h) is not simple; it is equiva-
lent ﬁo the direct product 0(3) x 0(3). The groups 0(5) and 0(6) are
omitted because they are essentially the same asvSp(E) (see belew)
and SU(4) respectively. Thus we begin with 0(7). The dimension n of
the algebra of O(v) is just the number of infinitesimal rotations
Zﬁ%:;l « In faect, the infinitesimal v x v refa%ion maﬁrices‘(imaginary
and antisymmetric) form an irreducible matrix representation of the
algebrakof the groupe.

¢) The third infinite sequence of simple iie groups is that
" of the symplectic groups Sp(v/2) with v = 4,6,8,10,12,eeces The algebra
of the infinitesimal elements of Sp(v/2) is Just the algebfa of the
v X v skew-symplectic matricess. Again we have a natural v x v irre-
ducible matrix representation of the algebra. We note that sp(1) is
omitted because it is the same as SU(2).

a) Finally, there are five more simple Lie groups and the cor-
responding Lie algebres. These are called exceptional lie algebras

and their names and dimensions are as follows: G

5 =" ik, F, -- 52,

__ Cq B on .
Eg 78, B, -- 133, Eg 24o

- In our listing, we have really defined each of the simple Lie
algebras (except the exceptional ones, for which the same can be done)

by exhibiting one of its metrix representations. In each case, we
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understand that the n v x v matrices of the defining representation
are to be taken hermitian and satisfying (4.18). We then have the
.simple Lie algebra in "real form" with real, totally antisymmetric

c ‘In each case, we fix the value of the constant in (4.18) for

ijk'
the defining representation; that fixes the scale of the M's and of

the c'se.

For any given Iie algebra the matrix Z Mig, which commutes with

all the M, (as we can see from (%.15)), equals some number for each

irreducible representation. (This situation is familiar for the iso-
2

to?ic’spin algebre, as mentioned above.) Iet the value of I M," for
. , 1
representation R be V.. Then for that representation the constant in

, . R
(4.18) is V. n, where is the dimension of the representation.
R .

In our generalized Yang-Mills theory, the various fields V¥ that
are coupled to the Aia fall into multiplets, Vith each multiplet cor-

responding to an irreducible representation of the algebra. As long

" as the symmetry is maintained under gauge transformations with constant

gavge function, the members of a multiplet are degenerate. The number

of particles in the multiplet is, of course, the dimension of the
representation.

Now the n vector fields Aia represent n vector particles that
also form a degenerate multiplet. They too correspond to an irreducible
representation of the algebra, called the-adjoint representation, with
the same dimension as the algebra itself, (For example, in the case of

isotopic spin, for which n = 3, the adjoint representation is that with
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isotopic spin one, and the vector mesons form an isotopic triplet.)
The matrices of the adjoint representation are easy to construct. They
are simply
for adjoint representation.  (5.1)

s
My =-iega

That this is so0 is obvious from the transformation properties of the

_ Aia in (4.3), with the gauge function taken constant, compared to. those

of the Wi in (k.1), In the adjoint representation, let

Tr Mﬁ’Mj = A 513 (ad joint representation); (5.2)

Then A defines tThe scale of the algebra. it is an arbi’cvrary positive

i~

coﬁstant; from the above dlscussion it is clearly equal to the valuve of

2

z Mi :E'or' the adjoint representation. For any linear combinations S

i
and T of the Si s We can define a scalar product

(8,7) = mr M(8) M(T) (adjoint representation). (5.3)

Then we haver (.Si’sj) =A 5ij’ iAcijk = (Sk’ [Si’sj] Yo

We might now characterize each simple Iie algebra by the con-
stants cijk’ but ‘Ehey are sﬁbject to arbitrary orthogpnal transfomations,
on the n-dimensional space of the Aio." An invariant and physically use-
ful characterization is constructed as follows,. (We guote without proof
the usual mathematical rews,ul‘lﬁs_ (22).)

Each simple algebré. has a »cer'bain maximm number £ of elements

that all commute with one another; let us call f the rank of the algebra.
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We may then enumerate the elements S, of the algebra in this way: ¢

i 1?

E,+E; Ey+E, E,+E_ E -E

ca, XYY X C —W‘—‘ —'7?—""', seée -%——53 ——E_j—'-—,. sacne

E-
- ;Ei_ -
Here g = (n-f)/e. The c‘s,are 8 maximal set of commuting elements., The

E's are not real s.nd are representéd by ndn-hemitian matrices, but Ea

and E-a are repre‘sented by hermitian conjugate matrices. The corres-

pondihg ‘vector fields are complex. The E's may be chosen to have these

propertie_sé:
(By» Bg) = 48, g ’ _ (5.4)
o I ( |
[E E ]= : ¢ : o (5.6)
La’ Tea 3 G § ? ‘ *
a -0 ' ' '
.'\i "_, -y : ¢ v _ (5.7)
The C 4 are analogous to Iz in the isotopic spin algebra, while

the E o 2T¢ analogous to the raising and lowering cperators I - The
)f; are the possible eigenvalue differences of the operators Ci' in any

representation. They are real and can be regarded as n-f distinct

‘non-zerc vectors in a ree.l f-dimensional space.

The (n-f)/2 complex vector fields corresponding to the E, give
n-f vector particles carrying specific valueé of the quantities -Ci s

namely 7\?. Thus in the Yang-Mills theory the two charged mesons carry
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'IZ = i la‘

The vectors 7\? in the real f-dimensional space of thé Ci are

‘called roots. Their lengths and relative angles are invariant proper-

ties: of the algebra (except for the overall scale. of length, ;prdporé

tional to \/A— )e We may define a scalar product for the roots:
{a, B) = 23 (5.8)

When we add to one root 7\? integral multiples k 7\? of another,
we may find further roots. Whenthlsoccurs, it alweys happens only
for a sequence of suc":cessive_in‘tegers k = Pﬁa’ ssevee q_ea ¢ BEvidently
p<0andq >0. When q 21, then 7‘\__1ﬁ + 7\? is a root. This si‘bué‘bion

is important for the commitation pro;ﬁer‘bies of the B

[Ea’ EB] =0 vunless P = -qor 7\? + 7\? is a root; (5.9)
‘[Ea, EB} = 1N E, vhen 2+ 7\2 = 7\; 5 (5.10)
N§B = -21- <laa) Apy (1 - Ppg) ; (5.11)
| Ny = N;d,_ﬁ . | _ (5.12)

Even with the sign condition (5.12), the Various rela.tive.signs of the
E's must still be adjusted and a sign convention established for the
N_.. But apart from that the algebra is now completely and inveriantly

oB
described by its rank and the scalar products of its roots with one

another. The commutetion rules of all the C's and E's can thenbe =

constructed.
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In the generalized Yang-Mills theory associated with the simple

Lie algebra, we have gone over to a new particle represén’cation.

. Instead of the grealfieldsAla, we have f real fields coupled to the

currents of commuting quantities and then @-i)/e complex fields coupled
to "bhe‘ currents of raising and lowéring operators for these commuting
quantities. Instead of the ¢4 > W have the quantities A and 'Nas to
deséri'be the commutation rules and the amplitudes of the trilinear
couplings among the vector mesons. (By going back to thé real and
imaginary parts of the complex fields, we can lmmediately recover the
4 5ic in a part:.cula.r form.) The particles of the complex fields carry -
the values 7\ of the quantities C and, since 'bhe C are conserved, ‘the
emission of the vector particle changes the value of C:.L for the rest of
the system by A, % the 7\? are indeed the possible eigenvalue differences
of the C,, whatever the represen‘ba:bioh. | . |

m the next _sec‘tibn » We shall give some examples of simple Iie

algebras analyzed by the method of rootse

- VI, Examples of Simple Ide Algebras

The simple Iie algebras of smallest dimension are those of the

groups SU(2), with n = 3; SU(3), with n = 8; Sp(2), with n = 10; Gy
with n = 14 sU(¥), with n = 15; Sp(3), with n = 21; 0(7), with n = 21;
su(5), with n = 24; 0(8), with n = 28; SU(6), with n = 35; Sp(L), with

n = 36; and 0(9), with n = 36. Tt is hard to imagine that any higher

‘Iie algebras will be of physical intereste

283

29




LR

«

-30-

‘The algebra of SU(2) or 0(3) or Sp(l) is just the isotopic spin

algebra and has, of course, rank one. The next three algebras are /fhe o

only ones of rank two, and we shall use them as examples. (We might
mention, however, that the next algebra after these, that of su(k) or

0(6), with rank three, is familiar to physicists. It is the algebra of

~ the traceless Dirac matrices and is also the algebra of Wigner's old

theory of nuclear supermultiplets (23).) For the thfee algebras of rank
two, the roots are two-dimensional vectors » which are plotted in Figs.
1«3, The orien’cation and overall scale of length are é,rbitraxy 3 és
has been mentioned.

’ For' any algebra, it is convenient to take one of the roots lying
along the first axis and normalize its length to unity by proper choice
of the constant A. For sU(3), it doesn'f matter which root is chosen,
For each of the other two .cases, there are two inequivalent choices; we
can take e:‘i.ther/; a long ér a shoi'b' vector. |

With the "first®™ root taken along the first axis with length one,

1
J'Z of an angular momentum, as we can see from the commutation rules

the elements E.‘L’ E_,, and C form the components J +/~;/§ » I N2 , and

(5.5 and 5.6). Moreover, the second commiting quantity C, commites
with all three components of J.
Iet us consider the algebra of SU(3). We may, using our conven-

tion, read off the values of the six roots in Fig. 1:

(1,0), (-1,0), ‘(1/2,J§/2>, (-1/2, JB/2), (1/2, -f3/2), (-1/2, -f5/2).

The commuting elements Cl, 02 » can be thought of as belonging to a
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"root” (0,0). With respect to J spin and CE’ then, we have for the
eight vector mesons the fo]lcwiﬁg: a triplet with (‘,'2 = 0; g singlet

with C, = 0, a doublet with C, = J3/2, and a doublet with C, = - J3/2.

2
The triplet is coupled to the J—spin current, the singlet to the C

current, and the two doublets to the currents of raising and lowering _
operators that change J vy 1/2 and C, by + /3 /2.
Any representation of the slgebra may be analyzed in terms of

d and C,. For example, consider the defining representation, of dimen-

2
sion 3. In order to accommodate all the operators enumerated above,

it must contain a singlet and a doublet, with values of C, differing

by \/"/2.

To ob‘ba:.n ‘the q_uantlties N2 characteristic of the commutators

op
in (5.10), we must ask what roots, in Fig. 1, can be added to meke

2

other roots. Evidently, the only case is that of -vtwo‘ roots at 120°
to each other; vwhen gdd;ed, they give the root in betweeﬁ. We see by
inspection that the numbers p and g of Eg. (5.11) are zero and one
respectively in this case. Thus, Nzas = 1/2 <O:,Ot>

Next, let us look at the 10-dimensional algebra,; with roots as

in Fig. 2. If we take one of the short vectors to be (1,0), then the.

root system is

(1, 1), ©, 1), (1, -1), (0, -1), (41, 0)

Including the two wvector nﬁeso,ns coupled to C, and C., both treated as

1 2

(0,0), we have & triplet with C, = o, a triplet with C, = +1, a triplet

2

wi‘bh,C =1, and a smglet with 02 = O.
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- If we treat the algebra as belonging to the grouplsp(z), we get

- a four-dimensional defining representation which corresponds, using

the above analysis, to a doublet with C, = + 1/2 and another with

2 .
c, =~ i/2. It we. consider the algebra in commection with 0(5), then
the defining representation is the S-dimensional one, which consists,

in our present language, of two singlets with C2

= +1 and a triplet

with 02 = 0, .
Now we may consider the other possibility, taking one of the

long vectors to be (1,0). The ten-dimensional adjoint represehtaiicn

then corresponds to two doublets with C, = + 1/2, three singlets with

2
cé =4 1,0 , end a triplet with C, = O. The four-dimensional repres-
entation yields a doublet with‘02'= 0 and two singlets with‘02‘= + 1/2,
while the Tive-dimensional one gives two doublets with ¢, =+ 1/2 and

g singlet with Cé = 0. A conceivable physical application of fhis
situation is mentioned in the next section.

The eﬁaluation of NﬁB for the ten-dimensional algebra involves
two different situations in which adding two roots gives a third. As
we see fronm Fig. 2, we can add a long vector to a short one at 135°
from it, obtaining the short one at 45°, or we cah add two short vec-
tors at right angles, obtaining the long 6ne in bétween.» In each case,
N2 comes out to egual the nomm Qf the short vector.

 Finally, we look at Fig. 3, showing the root system of Gy. &
Here there are four different cases in which adding two roots gives a

third. For three of these cases, ¥ is 3/2 times the norm of the short

vector. The fourth case is that of adding two long vectors at 120° to
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each ‘other » obtaining the long one in the middle H N2 is twice the norm

- of the short vector.

Again, the J-spin may be chosen in two ways. If a short vector

‘is used, the é.d,joint representation corresponds to a singlet and a

" triplet with C, = O, two quartets with C, = + \/3/2, and two singlets

2 2

with C, = + /3. If a long vector is taken to be (1,0), then we get

2
four doublets with C, = 4 5%5 , i\_f"g_ , & singlet and a triplet with

C, =0, and two singlets with O, =+ J3 .

2
For each of the three algebras we have taken as examples, one

may work out all the representations of low dimension, analyze them

according o m{ and 02 » and calculate the matrix elements éf the various

operators. The whole pi‘ocedure is a fairly straightforward generaliza-

tion of what we do in the case of isotopic spin.

ViI. Possible Appliecations to Physics

Sé.lw.rai (_7_) ﬁas discuésed a vector meson picture of the strong
interactions in whichv three simple gauge theories are superposed. We
have a one-parameter theory of a meson w® coupled fbo the hypercharge -
current, a three-parameter theory of a meson »Q coupled to the isotopic
spin current, and another one-parameter theory of a meson ZBo couple”d to
the baryon current. In all three cases, gauge invariance with variable
gauge function is broken by some kind of meson mass term. In the first
two cases, the conservation of the current itself, gorfesponding to
gauge invariance W:L'bh ;:onsﬁant _gg,kuge’“:f"_unction 3 ‘j.s broken by weak and

electromagnetic interactions respectively.
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Root wvectors of sU(3).
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FIG. 2.

Root wvectors of Sp(2) = 0(s).
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 FIG. 3.

Root vectors of GE'
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If we are willing to let some large effect, such as the N-A
mass difference or wha'bevei' causes it, ’br‘eak the gauge ; invariance with

constant gauge function, then we may consider theories in which higher

' sy:mhetries than isotopic spin plaey a role, and strangeness-changing

currents are conserved to begin with., There are then strange vector
mesons in the gauge theory, and we may be dealing with generalized
Yang-Mills theories such as we have discussed.

It bas been suggested (8) that the eight-dimensional algebra of

SU(3) may be used for such & theory. The J spin of the last section

2
hypercharge. Then if the baryons N, =, A, and I all have the same spin

is taken to be the isotopic spin I and C, is taken to be /3/2 times the
and parity they can form an irreducible representation of the algebra.
So can the pseudoscalar mesons K, K, , and X, where A is e hypothe-
tical isotopic singlet of zero strangeness, The vector mesons of ‘the
gauge theory then follow ‘Ehe same pattern, and consist of Sakurai's

2 and «° and & pair of strange doublets M and M. The sources of the
strange mesons are then strangeness-changing currents, the conservation
of which is broken by such things as the baryon mass diff‘erencevs". |

v Alternatively, we mey imagine that the baryon supermultiplet does
not consist of ¥, =, A, and Z. Using the algebra of SU(3), we could
take the three-dimensional irreducible representation and bave it
correspond to N and A (25).

‘We might even use the ten-dimensional algebra of Sp(2), taking

_one of the long vectors to correspond to the root (1,0), as discussed
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in the previous section. If we interpret J as I and C, as half the

2
hyyercharge, then the baryons N, A, and = could correspond to the five-
dimensional irreducible representation.

Besgides the strong interactions, we mey considef the possible
application of wvector gauge theories to the weak couplings.

Since there is no sign of charge-retention weak couplings among

the leptons, one might try to describe all wezk couplings by a J; Ja

‘model in which just two intermediste vector particles X% are involved.

Since the operators to which X+ end X~ are coupled caﬁnot commute, the
algebraic system involved is not closed and the theory cannot be of
our type. |

The possibility has been discussed (%,5) of correcting the
situation by introducing the electromagnetic field as the third member
of & Yang-Mills triplet including X—. The introduction of a huge mass
for the Xi would totally ruin the symmetry and account for the short
fange and feeble strength of the weak interactions. A major difficulty
in this approach is that the genereting operators of X+ and X~ violate
parity conservation end it is hard to meke their commutator equal the
electric charge operator ﬁhich does COnserve pafity. For the leptoﬁs,
the problem can be solved (26) only with fhe introduction of a fourth
neutral gauge field. In the resulting "non-simple” 3 @ 1 theory, the
photon must be idegtified as a linear combination of the singlet gauge

field and one member of the triplet.
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"A further difficu’lty is that with just X for the weak inter-

actions, one cammot Jjustify the \AE“ = 1/2 rule for non-leptonic

' stra.ngeﬁess-violvatinngeak couplings ‘Of baryons and mesons. One may,

however, try forgetting the leptons and introducing, for baryons and
mesons, charge-retention weak interactions mediated by néutral X's,

If just one Xb is used, then the strangeness-changing part of
the operator to which it is coupled must carry both AS = +1 and

AS = -1 in order to be hermitian. In the resulting weak interaction,

one cannot then avoid having ‘AS, = 2, which brings trouble with the

' Kg - lg mé.ss differencg.

o "scbtzn” st (112,29 wros 55 = 2 17 wtag oo

neutral X's, X° and X°, along with XX. Sey X* is coupled to an
operator B, X~ to BY, x° to A, and X° to AY. Then we take B = B, + By,
where Bo cdnserves stra.ﬁgeness and changes isotopic spin by one unit,
while Bl lowers strangeness by one and changes isotopic spin by one-half

1

while A‘.L gives AS = -1, EAH = 1/2. The operators Bl and Al are

chosen to be isotopic spin "partpners™; the same is true of Bo and the

unit. Similarly, A = A+ A,, vhere A conserves S and gives fAOZEx = 0,1,

{AMIM[ = l part of A . It is then easy to adjust the relative values

of B, and A AS’=lforthenon-;

i 1
leptonic strangeness-violating weak interaction.

, B and A to give lAI[=1/2,
[+ [e] wa

Unfortunately, it is impossible to apply the gauge principles
we have discussed in this article to the "schizon" model',' as we shall

now see.
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The only four-dimensional theories of our type are those made

up of four one-dimensional theories superposed or eise of one three-

dimensional and ore one-dimensional theory superposed. In the first
case, the four ope;'ators A, B, A+, and B+ must all commute, which is
clearly impossible. In the second case, if we take account of charge

conservation, we must have (with suitable normelization and suitable

choice of the arbitrary phase of A) the commutation rules:

[B, A;A+] =B
[_B, A - A“'] =0

+
[B"', 3] - A £ N

[A + A%, A - A+] =0 (7.1)

characteristic of a "3 @ 1" theory. Writing the last equation as

EA, A+} = O and taking the AS = 0 part of the equation, we have
. + + _
[Ao, Ao] + [Al, AJ =0 . | | (7.2)

Now, Al is a strangeness-lowering operator. Iet us suppose that
g finite number of particles participate in the interaction, Consider
those particles of lowest sirangeness that are coupled to any of higher

strangeness. For all these particles (treated as states iri) s we have

ALY, = °  B ‘ : A{7.3)
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On the other hand, A} ¥,

these;particles are éoupled to states of higher strangenmess. Thus

cannot be zero for all the ii’ since some of

- . | |
L AR (7.4)
But by (7.é) we then have

RN AR I (7.5)

=)

which is impossible, since the matrices Ab and A: conserve strangéness
and connect statesbii only to states of the same set; the expression
in (7.5) is thus the trace of the commutator of two finite matrices
"~ and vanishés. : ‘ |

The algebraic‘sySteﬁ‘Of the "schizon" model, then, has no inter-
esting representations. | i

| It is interesting that if wé inSiSt on frying to reconcile our

gauge notions with the idee of a weak interaction with four X's that
expléins the ‘Z&;ﬂ = 1/2 rule and the Kg - K; mass difference, we can
econstruct a mbdel that does all of those ?E;ngs. ‘As usual, we must’
gloss over the leptons (with their apparent lack of neutral currents)
and treat just baryons and mesons.

To start with, we forget the Kz - K; nmase difference and allow
l[&s\ = 2, Then we can use just three vector fields: X+, coupled to B,
X~, coupled to B+, and Xo, éoupled‘to A. Iatef, we will'add'in g field

Y° coupled to an operator C. The X's are described by the original
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3-parameter Yang-Mills theory. As before, we have B = Bo + Bl’ but

thisvtime A= Ab + Al + Al.

The commutation rules of the Yang-Mills theory
[=, a) = B
[B.‘-, B] = A ' (7.6)

yield, for the whole s&stem of Ab’ Al, Bo’ Bl’ strangeness S, and
charge Q, an algebra which (if we introduce a simplification by making

Al a linear function of S and Q) is equivalent to that of SU(3). (Wote

that for the,mamentﬂwe‘dpmnqtmigproducgfany isotopic spin rules; that
would make the algebra still more coﬁplicated.) We may describe the
theory, then, by using the smallest répresentation of SU(3), involving
three particles, which we will take to be n, p, and A.

Iet us introduce rotated "particles" (6,27)
n' =n cos® + A sind

A' = A cos® - n sind - (7.7)

end work only with the left-handed perts (1 + 75) /2 n' = n';, ete., of
these fields. Then we couple Py, and n'L only, with B = 1! , Bt = r; R
A =7, , vhere the 7' matrices are just like ordinary T's, but with

pL,~n'L as a basis, We get the currents
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1 N
‘pLy nL pLyanLcosO+pL7 ALsinO s
— - ‘
By, Yo Pp, = B, 7 Py, °080 + KL 7q P, 5100 s

2
\/5-(1’7 PL“”L L \/‘{PL%PL"‘L’ By, c08 ©
- AL ¥ AL sineo - cosQ sin® (KL n, + n )} (7.8)

vhich lead to AS =0, |As]| = 1, and \Asl = 2 interactions.

e |A s| =1 interaction contains both ‘A 1]=1/2 ana
lA; | = 3/2. Hovever, if ¢ 1s small, then the |21 = 2/2 interaction
is of order @ while the lA‘;«! = 3/2 interaction is pf order 05. Then
the> strangénesﬁ-changing interaction is weaker than the strangeness-
conserving one and: the 1A X ' = 3/2 interaction is weaker than
\A;“l = 1/2, but not zero.° | ‘ _

We must still cancel out the lAS{ = 2 contribution to the
Kg - Kg mass difference. That can be done (28) by cancelling Just the
scalar pert of the ]Asl = 2 interaction. If we couple the fourth

boson IO with appropriate strength to the current

R ’ ' | ,(7'9})‘

where we now work with the right-handed fields only, then the total

IAS‘ = 2 interaction cen be made purely pseudoscalar and of order 02.‘
v Iﬁ will give no Kg - KZ mass difference, but it will give a very small

probability for = ~> N + x.
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The model e hav’e. discussed :l.s. not seriously put forward as a
. physical theory » but it is a good 1llustration of the ideas involved
1n the gauge method. ; - ;
. We have discussed several ways in which the strong interactions‘ '

may constitu‘he a partially gauge-invariant theory ) and have sketched

2 gauge-invariant model of the weak interactions. In general, the

"week" and "strong” gauge symmetries will not_b'be mutually compa.tiblé.
There will also be conflicts with the electromagnetic gauge symmetry,
conflict's‘that'mustf be resolved in favor of electromagnetism, since
its gauge invariance is exe._ct. We have not attempted here to describe
the three kinds of interaction together, but only to speculate about

what the symmetry of each one might look like in an ideal limit where

symetry'-breaking effects disappear.

289 44




-5,

FoomNOTES

1 We are us:.ng a classical, not a quantum, action principle.

LY

p. 11
| The variational derivatives are thus with respect to
c-nmber quantltles. Although we neglect the dlfflcult:.es
' encountered d.ue to lack o:E' commutat:.v:.ty of the q_ua.nt:.zed
fields, our results are presumably mdependent of this

om:.ssion in a properly fornmlated qua.ntum theory.

Do p1: 2 The rema.rka'ble unlversallty of ’che electnc charge would be
better understood were the photon noi; merely a singlet, but

8 mem'ber of & :E‘a.mily of vector mesons comprising a simple
partially gauge-:.nvara.an’c theory.» One o:E‘ the a.u’chors (s.n.G.)
aclmowledges 8 conversa.t:.on with G. Femberg in this commec-

'tion-_ . |

p. 2L ° Define 4,y = -1 Try, [M s ‘aefine gu =Tr M M, .
_Clearly di k :x_s real and totally ant:.syxmnetr:.c > 8y p is real
and sy:nme#bric, and d‘ijk =3 &g Cpye Now if gi,é =43 ,,
evidently d;u =A ¢, and ¢ is totally antisymetric.
'To prove. the converse, diagonalize gi Y by an oi'thogonal trans-
formation of the fields A, . Then gb.’e’= F, 8, p and
4, =F c,.. Butboth d and ¢ are totally antlsymmetrlc

ijk i 1ak

and therefore d =F ¢ F ¢ ‘and F F vwhenever

Jik J Tk 71 1Jk
i and § are connected ‘by & non-zero coefflclen'b c k For -
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FOOTNOTES (cont.)

a simple theory » however, we can ultimstely convert all

elements to one another in this way eand prove all the F,

are equal.“ Thus g, , = A 5, , (unless, of course, it vanishes;
il il L A

that gives the one-parameter theory).

P. 22: Note that if we set up the Einstein theory of gravity by
gauge methods then the conclusions are slightly different.
Instead of an isotopic rotya.tion » we perform éf ‘Lorentz trans-
formation at each éoint of space. Thus we have, in ‘place of

the isotopic index i, another Lorentz index B, ‘giving us &

tensor field AaB or haB' But whereas the metric in isotopic
space must be positive to give positive probsbilities, the |

“metric in Mink.owski 3paée is both positive and negative, and
this causes no trouble with positive probabilities. Thus the

infinitesimal generator of a Iorentz transformation involving

the time is not represented by a hermitian ma,trix » but such
a situstion, although it occurs in the theory of gravity,

cannot be permitted in a gauvge theory of vector fields.

5

pe 2U4: A v x v matrix M is skew-symplectic if it is unitary end

MTAM = A, where " Aijl + av e depending upon whether or

not 1 > j. Sp(v/2) mey a.lternative]y be defined as the group
of u.nita.ry transfomaftj,ggg MQQ,\,V/E qua.ternions. "rhe generators
of Sp(v/e) are t.hen the skev-hermitian v/2 x v/2 matrices over

quaternions H there are evidently viv + 1) /2 such maetrices.
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FOOTNOTES (comt.)

S i 5, 51 S0 L S S b

The Ci and Eo: are known as a We_yl ‘b_a.sis {io the Iie algebra.

T theory of. the strong interactions of baryons and mesons

2

~ vwhose invaria.nCe .group is G, has been suggestea by Behrends

and Sirlin (24). They do not discuss the possibility of

introducing vector gauge fields coupled to each of the

~ Tourteen conserved currents in order to secure inveriance =

under coordinate-dependent transformations.

Observe that ,the sum of the _sq_ué,:%'es of the coupling strengths

1o strangeness-saving charged currents ,anak to stra.ngeneSs-

changing charged currents is just the square of the universal

coupling strength. Should the gauge principle be extended
to leptons -- at least, for the charged currents -~ the
equality between G, and GLI is no longer the proper state-

2 2

ment of wniversality, for in this theory G5 + Gp = ¢

(e is the wnrenormslized coupling strength for p-decay of 4A).
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