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Abstract

Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like
electrons confined to the lowest landau level, and can do everything electrons can do,
including condense into "second generation" Fractional Quantum Hall ground states. I
review in this paper the reasoning leading to variational wavefunctions for ground
state and guasiparticles in the 1/3 effect. I then show how two-quasiparticle
eigenstates are uniquely determined from symmetry, and how this leads in a natural way
to variational wavefunctions for composite states which have the correct densities
(2/5, 2/7, ...). 1 show in the process that the boson, anyon and fermion
representations for the quasiparticles used by Haldane, Halperin and me are all
equivalent. I demonstrate a simple way to derive Halperin's multiple-valued
quasiparticle wavefunction from the correct single-valued electron wavefunction.

In this paper I shall try to summarize and clarify what we know about the condensation
of quasiparticles in the Fractiona] Quantum Hall effect into the hierarchy of stable
states first suggested by Haldane.' Quasiparticles are acknowledged to be similar

to electrons in the lowest landau level, yet they condense at densities different from
those expected of electrons. Haldane has called these quasiparticles bosons, I have
called them fermions,Z and Halperin3 has called them "anyons" obeying "fractional
statistics.” Who is right? What physically causes the quasiparticles to pack at the
densities they do? Can quasiparticle motion really be understood by analogy with
electron motion? I shall try to show in this paper, by supplying missing logical
steps, that, in fact, everyone is right. Quasiparticles are like electrons in that
their separations are quantized because of angular momentum conservation, but
different from electrons in that the quantized separations that occur are compatible
with "fractional statistics" as Halperin has asserted. Quasiparticles admit of both a
boson and a fermion description, as is also the case for .electrons in the lowest
Tandau level. Multiplying together pair quasiparticle wavefunctions to make a
variational wavefunction for the composite state, as was done with electrons to make
the 1/3 state, leads to a class of wavefunctions for the composite suggested by
Halperin and by me. One of these can be shown to be equivalent to Halperin's
multi-valued "fractional statistics" wavefunction, which is known to describe a liquid
at the appropriate density and to have a“ 16w energy. The existence of legitimate
variational wavefunctions for these states is important because it is the physical
basis for "angular momentum counting," which I shall explain in detail. This method
is more powerful on a sphere than it is in a planar geometry because the charge
density of an eigenstate of angular momentum is automatically uniform on a sphere.

~ Angular momentum counting can work on a plane only if the state is known in advance to
be uniform.

The Fractional Quantum Hall effect occurs in a two-dimensional electron gas subjected
to ‘a magnetic field. This system may be described by the idealized Hamiltonian ?
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where Z{ is the location of the jth electron expressed as a complex number, and

where V{z) is the potential generated by a uniform neutralizing background of density
g, in the manner
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In the absence of coulomb interactions, and in symmetric gauge
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K = Ep[y; - xy] , (3)

the single body eigenstates may be written
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with the magnetic length a = /%% set to 1. The energy of this state is (n+l/2)hnc,

where we = eHg/mc is the cyclotroﬂ frequency. The manifold of states with the

same n is the nth landau level. I shall consider only the case when the lowest

landau level is partially occupied and when the coulomb interactions are too weak to
significantly mix landau levels (e2/ay < Hwc). When this is the case,

the ground state and low energy excitations of the system are to a good approximation --
comprised of single-body wavefunctions in the lowest landau level solely. The most
general such wavefunction takes the form :

N
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where P is a symmetric polynomial. My wavefunction for the 1/3 state is one of a
series of the form

N 2
N -—1/422|z‘|
Im> = 1I (zj--zk)m e ' (6)
j<k
where m is an odd integer. These are the only functions which (1) lie in the lowest
landau level, (2) are eigenstates of angular momentum and (3) are a product over pairs
of some function of the difference coordinate. The restriction to functions of this

type is motivated partially by our experience from 1iquid Helium, -but also by the
observation that

1 .
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is the only 2-particle wavefunction in the lowest landau level which has internal
angular momentum m. In order to construct a wavefunction analogous to im> for
quasiparticles, it is necessary to construct and understand two-quasiparticle
wavefunctions analogous to xy. I shall do this using quasiparticle creation
operators, defined in the manner
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for a quasihole or quasielectron, respectively, residing at zy. These operators
approximate the action on the system of a thought experiment in which the system is
pierced at location z, with an infinitely thin magnetic solenoid, and through this
solenoid is adibatically passed a flux quantum hc/e. This procedure maps the exact
ground state onto an exact excited state of the many-body Hamiltonian. The operators
slide the ground state over so as to pile up excess charge * e/m at z,. That they
do this most easily seen by interpreting the square of the wavefunction as the
probability distribution function of a classical plasma, in the manner

<mlS;oSZo|m> = f .. fe d221 « e d22N R (-IO)
where 8 = 1/m and
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9' is the potential energy of particles of "charge" m repelling one another with
logarithmic interactions, the natural "coulomb” interaction in two dimensions, being
attracted via the same “"coulomb" interaction by a background of "charge" density

oy = (2na8)'], and being repelled by a "charge" 1 particle located at

Zg. Since this plasma must be locally neutral, electrons distributed themselves
uniformly at density oy = 01/m, except within a Debye length (ay/vV2) of

29, where screening charge -1/m electrons accumulates. Similar reasoning works for
the quasielectrons, except that the accumulated charge is +1/m electrons. The energy

SZ im> or SZ Im> does not depend on 2,5 SO long as z, resides inside the sample,

) %o
so that any linear combination of these is also an eigenstate. In particular, the
elementary symmetric polynomials Si defined by
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generate quasiparticles in angular momentum states.

I wish now to determine the two-quasiparticle eigenstates analogous to xy in Eqg.

(7). To do this, for quasiholes, I shall project the Hamiltonian onto the set of

states of the form SZ Sz Im> and then diagonalize this projected Hamiltonian. I
A °B

first need to calculate the normalization integral

N
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This is not difficult begggse the integrand is the probability distribution function
of a classical plasma e®® , with B = 1/m and

N N N
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If one were to add to this potential energy a term

8d = L(1z51%412g1%) = 2 bnlzp-zgl (15)

to account for the interaction of the "charge" 1 particles at N and Zp with the

background and with each other, then Eq. (13) would be the partition function of a
plasma with two of its particles held fixed. Up to an unimportant constant, this is
just the probability to find these particles at z, and Zg if they are allowed to roam
around in the plasma. Thus, we have

;i([zA|2+lzB|2)
e
C gzz(le_ZB|>

I
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where g22 is the radial distribution function for particles of "charge" 1 and C is a
constant. I have performed hypernetted chain calculations for gpp and have found F
to be approximately fit by the formula

fz—z |2

1
° (17)
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For our purposes it is important only that F falls off asymptotically as Izp-zg!=2/m

and contains no large fourier components. In order to make the translational invariance
of this problem apparent I shall take as a basis set the wavefunctions

- ;i(|ZA12+IZBI2)
IZA,ZB> = e SZASZBIm> . (18)
One sees by inspection that the overlap matrix <zA',zB'le,zB> is analytic in
the variables Zp, Zps zAT, and zBf, and thus is determined uniquely by analytic

continuation of the normalization integral to be
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Similar reasoning applied to matrix elements of energy leads to
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where E is fit roughly by the formula
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with the ground state energy taken to be 0. Matrices of this form are diagonalized by
the states

1
= =(lzp1%+12z51?)
In> = tr (zg-z3)" > d2z, d2
= e zp—25) "1z, 29 Z, Zg . (22)

where n is an even integer. In> is analogous to xp+1, and is in fact its
electron-hole conjugate when m=1. The integer is even because we are using the bose

representation for the quasiparticles. SZ and S_ obviously commute. It would need

to be odd had we chosen as our basis the séates (zR-zB)le,zB>, which form
the fermi representation. The state (zp-zg)lzp,2zg> is the electron-hole
conjugate of the two-electron wavefunction

V/(z1,22) =.¢ZA(Z1)¢ZB(ZZ) — ‘sz(zm)‘iazA(zz) , (23)

with

when m=1. The energy eigenvalue for In> is given by
<n || n> <E0>n

= , (25)
<nj|n> <Fgy>

n
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and similarly for <Eg>p, where Fy is an "image enhanced" version of F,
defined by
- Sz |2 ,
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Since this is an important result, I shall add some algebraic details. We wish to
show that
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Letting &4 = zp-zg and A'= zp'-zg', and making use of the identity
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we have
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Like the two-electron state xp+1, the two-quasiparticle state does not depend on
the repulsive potential between quasiparticles. It is also not basis dependent. If
we solve the problem in the fermi representation, the overlap matrix becomes

1 2 2 .12
] - D Uzpl 2+ lzgl 2 Hlzg 1241250 17)
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with
Ff[lllz] = |z|? F[lzlz} ' (32)

and is diagonalized by wavefunctions of the form
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with ntl odd. However, this is the same state as In>, since for any function g,
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with Sy defined per Eq. (12). This is extremely important. The actual wavefunction
generated by an expression of the form of Eq. (34) is unaffected by any factor in the
integrand not carrying angular momentum. It is also unaffected by the length scale
transformation : :

!
k
1a12" g(lal?) d%a ] DRSS dm

_ 2 2 —a( 1z, 12+12512)
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with o any positive number. What is affected are the normalization and formal
expression for the energy, which in the case of the fermion representation is
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The energies in Eq. (36) and Eq. (25) are identical, despite their involving different
moments, because there is a zgy + 0 core contribution to the energy which is

strongly enhanced by the sharpening procedure Eq. (27). In injudicious choice of
basis, therefore, can generate expressions for the charge density and energy which are
formally correct but technically unmanageable. For the case m=1, the "optimal"
representation is obviously Eq. (33), although accurate calculations can also be done
starting from Eq. (22). When m#1, neither is optimal, but both are acceptable. For
large m, it is easier to perform accurate calculations using the boson representation.

The generalization of this pair wavefunction to a composite state containing M
quasiparticles with "pair" quantum number n is

M
-~ —Zinyl?

M M
fn> = ff k(n}'—'ﬂi)" s, Im> e 2t d2n, ... diny . (38)
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for the bose representation and

M M
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j<k J ) i i

M
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for the fermi representation. Up to length scale changes of the form of Eq. (35),
these are the wavefunctions proposed by ‘Halperin® and by mel for the 2/7 state.

As opposed to the case of two quasiparticles, the factor lnj-nklz in Eg. (39)
makes these wavefunctions slightly different. Both states are normalized in a way
analogous to the procedure in Eq. (30). For the bose wavefunction, the diagonal
overlap matrix elements

- _3%117E12 M M
,F[n,. .nM] =e " <m|Il S} IS, |m> . (40)
i ' }
which behave asymptotically as
M
~ ~2/m
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image-enhanced in the manner
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lead to the exact result
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For the fermion representation we have the similar exact result
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where Ff is the image-enhanced version of Ff, with
f M 2
F' = 11 l'rlj""?kl F . (45)

j<k

However, Eq. (43) and Eg. (44) are technically infeasible to evaluate because both F
and FT are pathological near the surface ny=np= ... =ny: F has an

enormous maximum and Ff has a correspondingly deep minimum. These functions behave
increasingly uncontrollably under image enhancement as the number of quasiparticles is
increased. As opposed to the case of two quasiparticles, neither the bose nor the

fermi representation is adequate for performing reliable calculations. We are led
instead to the wavefunction

1 M v e 2 u
[n + —> = jﬂ..j‘jgk(nj_nk)n ln}'”k| /m ? Sni|m>

M )
B 2m}glnz|

x e dzn1 e dan , (46)

which is the “fractional” representation. There appears to be no exact result for

this wavefunction analogous to Eq. (43) and Eq. (44), so I shall interpret it as an
interpolation.

I define

-_ M
F= 1 Igm=J%"F
j<k ! (47)

and then image-enhance as well as possible
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The integrand of Eq. (49) is the square of the multiply-valued wavefunction Halperin
assumed describes quasiparticle condensation. It can legitimately be interpreted as
the probability to find the quasiparticles at locations ny, ... ,ny. Thus
quasiparticles distribute themselves like a plasma of "charge" n+1/m particles in a
background "charge" density 1/2mm. This leads to an actual electron density of

%5[7235] ] %; [%] when m=3 and n=2.
The wavefunction analogous to Eq. (38) for quasielectrons is
M
1 2
‘ M M - "'zl"lcl
n> = |[... . n t 2m 2 2 .
| f fjgk (nj—nk) I;Isnilm> e dny ... d Ny (50)

I presently believe that this wavefunction is most suitable for performing
calculations on the quasielectron condensate. My reasons are not rigorous, however,
and more work needs to be done. The overlap integral for this wavefunction

M 2
= {;%lntl M Mo
F[n1, e ,nM] = e <m] II Sﬂ 11 Snj|m> , (51)

i [
behaves asymptotically as Eq. (41) as may be seen by integrating it by parts to obtain
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This is the partition function ot a plasma in which some of the particles have short
range repulsions in addition to "coulomb” forces. 1 believe that this function has no
pathology near ny=np=*<e<=nyM because of the short range corrections.

If this is so, then it is image enhanceable, and we may write meaningfully

M 2 - _J§|77£|2
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The integrand may again be interbrefed as the probabi]ify to find the quasiparticles
at locations ny,***,nM, and one thus calculates the charge density of this
state to be 1/2n[2/5].

It is important that the densities I obtain are compatible with those obtained by
angular momentum counting. Wavefunctions of the form of Eq. (44), (45) or (47)
increase the system's angular momentum by

AL = MN — nM?/2 (54)

in the 1imit of large M and N. They do this by expelling charge from a dise of radius
R, at the center of the sample and depositing it at the sample edge, so as to increase
the sample radius to Rp. Wavefunctions of the form of Eq. (45) decrease the angular
momentum by AL by adding to a disc of radius R, charge removed from the sample edge,
thus decreasing its radius to Ro. If we assume that the excess or missing charge
inside Ry is uniformly Sp, then we have three quantities to determine

(Ry, R2 and 8p) and three equations:

% sp = + (M/m) (55)

which relates the missing or excess charge to the number of quasiparticles,

1
TI'Rg (m) + 1TF\"12 ép = N (56)

which equates the total charge before and after the addition of quasiparticles, and

nRg 1 ﬂR? mN 2
PR e 7

which accounts for the angu]gr momentum increase or decrease. (An electron at radius
r carries angular momentum r</2). Solving these equations one obtains

o=~ [—] . (s8]

2nm t+nm

or a total charge density of 1/27 [n/nmz1].

I remark finally that the generalization to elementary excitations of the composite
state is straightforward and leads to wavefunctions such as

M M
oo I Y—-z2 I )N . 2/m
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M
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for a quasihole excitation of the composite 2/7 state. This is a particle of charge ‘
1/7, exactly as expected.
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