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EXCITONS IN THE FRACTIONAL QUANTUM HALL EFFECT*

R. B. LAUGHLIN

University of California, Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore,

" California 94550

Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are
collective excitations physically similar to the transverse magnetoplasma oscillations of a
Wigner crystal. 1 propose a variational exciton wavefunction which shows explicitly that the
magnetic length is effectively longer for gquasiparticles than for electons. 1 use this
wavefunction to estimate the dispersion relation of these excitons and the matrix elements to

generate them optically out of the ground state.

I then use these quantities to describe a type

of nonlinear conductivity which may occur in these systems when they are relatively clean.

The Fractional Quantum Hall Effect is due
to the condensation of a two-dimensional
electron gas in a strong magnetic field Hy
into a "new state of matter," described
approximately by the ground state wavefunction

g ()

N
lm> = 11 (‘j"k)m e
j<k

where m is an odd integer, zj is the
location of the jth electron expressed as a
complex number, and the magnetic length

ag = (Kc/ety)1/2 is taken to be 1.

The elementary excitations of this ground
state are quasiparticles of charge 1/m
represented afpgoximate]y by the

wavefunctions
N
- 174 f |x‘nz N N .
S, im> = e N (z;-2,) 0 (zj—zk) < (2)
b i j<k
and
N
SEVZE R LN C LN -

Sy fm> = e g (2— - 2g) DB (z;20" - (3)

8 H H j<x .

for a quasihole residing at zp or 2
quasielectron residing at 5. In this paper

1 discuss bound states of two quasiparticles
of opposite sign. Excitons play the role in
the Fractional Quantum Hall Effect of the

*Work performed under the auspices of the
U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract
#W-7405-Eng-48.

low-lying "transverse” phonons of a Wigner
crystal in a strong magnetic field. An
enerqgy gap to make them is necessary for the
electrons to conduct with no resistive

loss.
The Hamiltonian for this system may be
written

N e~ N 22
Xtt[-—l—V--—-—A-|2+V(zJ~)]+ T - {4)
<

where j and k index the N electrons and V is
the potential generated by a uniform
neutralizing background. The electrons are
cold and confined to the lowest Landau
level. In symmetric gauge, when the vector
potential is

- H - -

o

A= —[yx - xy]
2

noninteracting electrons occupy degenerate
states of the form zKexp{ - 1212/4).
I consider the high field limit
(ﬁnc>ez/a0, with we = eHg/mec),
when mixing of other states into the
many-body wavefunction is unimportant.

The two-quasiparticle problem is soluble
because it is physically equivalent to the
problemd

2
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but for the substitution ere/m. In the
high field limit the eigenstates are
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where't? js the sample area, for any
translationally invariant interaction between
the particles. For the case of a coulomb
attraction, the eigenvalue is

o ‘|10'2 2

. . -5 .
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o] 0 c JB € IO[.“O' ]00 . (7)

where lg is a modified Bessel function of
the first kind. Izgp> describes

particles displaced zg from one another and
traveling with momentum g=izp!) (ap=1)
perpendicular to zg. The exciton energy at
q is the coulomb energy of two particles a
distance q apart.

To solve the two quasiparticle problem I.
make the "variational® assumption that the
quasiexcitons are linear combinations of
states of the form

S‘r S Im>. S.r S_ I'm> describes
2,72 g T2

B A B “A
electrons uniformly spread out to a density
(2am)-1 except within a magnetic length
of zp or.zg, where the density is depressed

or enhanced so as to accumulate an

excess charge = 1/m. S'r and S_ do not
g 7,
commute. I do not use the combination

S S'r or higher-order combinations such as
z2p 28

Sf S. , because this extra variational

2t %8 a
freedom would unduely complicate the
calculation. A highly accurate calculation
would need to include all combinations of 5's.
The Hamiltonian projected onto the set of
states of this form is diagonalized by the
wavefunction

e
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The enerqgy eigenvalue is given by

<1, D0 24> .’ Eo(iegl)
ro(llol) ’ (9)

<rglzp>

where Fg and Eqg are related to the
diagonal matrix elements of overlap

?ﬂ[U(mN“)—U(mN)] ~(Brg, Brg,*+1)

<m|S; S, S S, Im> = <mm> e e
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and energy
wlS) s, bast s, Im> E{1z,-24]) n
<@[S;, S3,53,57, Im> Fllza-2gt) ()
by the smoothing operation
- =Y yz-2n12
E(lzgl) = 5%; f e % gum e o (12)

The normalization integral [Eq. (50)] is the
partition function of a plasma.ls 1
evaluate it using the 3-component hypernetted
chain equations,

9;;(121) = expl-8v i (121) + n (121 = ¢ 50020]  (13a)

hij(|z|)=9;j(lll)"‘ . (]3b)

hiUzn) = ¢ 0020

+ T o, I e izl vy ) o%e’

k (13c)
where exp(-8vyy) = 1z12m,
exp(-Bv1p) * 1212, exp(-Bvy3) =
iz1€-2, ex?(-ﬁv23) = iz12/m]
oy = (2r)-1, and 0 = 03 =
g3 = 01/N. In particular
97,(lzi) ) (14)

f =
(1z1) I




The function U in £q. (10) is a "coulomb”
energy given by

3
v(e) = o’[%ln(zo) - ;] . (15)

The quantitities ugy and wgy are the
quasihole and quasielectron excess chemical
potentials, given in the hypernetted chain
approximationb by

1
eud, - Pt f’—h,z(hl) + ln[qlz(lzl)]

. jl"[g,z(lzl)

el matt| 6% . (16)

and
Bu,, = Iim[L 1—h (|z|)+ln[('ﬂ—2-)95(|l|)]
Hex = i {2mm 3 12i2-2"

{z|<R
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1 evaluate the energy by adding the
guasiparticle charge densities and inserting
the sum into the formulas appropriate for
calculating the quasihole creation energy. 1
have verified numerically that the
superposition principle is valid when the
particles are coalesced, and it is trivially
valid when they are far apart. This energy
limits at large separations to my
expression for the energy to create a
particle-hole pair at infinity and at small
separations to the energy to make a composite
particle, as calculated with the formali m
used for the quasielectron. This latter
point is important because the procedure is
ad-hoc and may be inaccurate.’/ The -
quasielectron charge density is defined by

- thz
giz(lzl) = e

9,5(1z) e%"'Z] ~(18)
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with 1zl = /Zm x and with fourier
transforms defined in the manner

h(K) = f Jolkx) h(x) x dx . (19)
o
where Jg is an ordinary Bessel function of

the first kind. I calculate the change to
h)y due to the presence of a

quasielectron-quasihole pair separated by
xQ in the manner

- - -
onyy = [1ezny [ oey,

2- - - -
—24'— H L .
+ N[“IZ hi3-2ny3ni 3J0 o)] (20)
and
h
boqy = [‘*;:1] CASR I (21)

The energy above the ground state is then
given by

- 2
£z, 1) N <
0 =J—2_T[ f 6h”(x) dx ]Oo . (22)
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The matrix elements of the electron density
operator are given by

nims B[Um U] Bk, ) gh tagl?
<mlp(z)lzg> EJE\-L .

. Gltz°1) d?z° .i(23)
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where

6llzl) = e (2-) (24)
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I thus obtain for the exciton contribution to
the density-density correlation function S(q)

PO 1 G(kg) 12
Ser(a) = oferPhe S et (25)
Folxg)
evaluated at kg = /2m qag and xg = ko/2.
The contribution to S(gq) from all excitations
within the lowest Landau level is given by
the sum rule

T e

Stotai(a) = [2“1a(“0) te

For transitions within the lowest Landau
level, the transverse response is q¢ times
the longitudinal one.




I have numerically evaluated E, F, and G
for m=3 and have fit the results with the
following analytic expressions:

3 -
E(xg) = -0.025 ¢ f e Ig(xxg) =273 4,

+ 0.036 ¢ -~ 0.101 e . (27)

- lls © _ 1,
2
Flxg) = 0.55 ¢ f e ? To(rng) *'73 g
0

-x

+ 1.706 e . (28)

and

R Y

E(ko) « —0.0046 k§ e * . (29)

Analytic fitting is necessary because
numerical inversion of Eq. (12) cannot be
done reliably. I calculate the chemical
potentials Bug, and Buzy to
be -0.094 and 0.221. The exciton dispersion
curve and creation strength I obtain are
shown in Figs. 1 and 2. Note the similarity
of the dispersion curve to Eq. (7): at high
momentum the exciton energy is the energy to
Create a particle-hole pair at infinity
(%9ua jelectrons * A?uasiho]es = .057

ag) minus the coulomb binding energy
of particles of charge 1/3 separated a

0.06 T T T T

Energy le2/a,)

1 { 1
6 8 10

v 2m q (magnetic tengm)"

Fig. 1. Exciton dispersion curve. Dashed
1ine is the energy to create a
quasielectron-quasihole pair at infinity.

distance |zg! = 3q. The g*0 exciton

binding energy is less than that in Eq. (7)
because the particle and hole cannot be
brought together without strongly overlapping
with the ground state. This overlap
functions as a hard core repulsion.
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Fig. 2. Sum rule and sinéie exciton
contributions to the density-density
correlation function.

The neutrality and perfect screening sum
rules8 on gy cause my exciton
contribution to S{q) to vanish at small q as
a8. The same sum rules applied to g
lead to vanishing of S¢gtalla) as g%,
with coefficient

4
lim Syo104(a) = (m-1) ('M . (30)
q=0 8

determined from the compressibility sum
rule. It is not clear whether the disparity
at low momentum is due to multi-exciton
creation processes or inadequate variational
freedom in the exciton wavefunction.

Because of the numerical uncertainties in
evaluating E, F, G, uby and
Hax, as well as the noisy nature of
the deconvolution step, the results presented
here must be considered qualitative. The
substantive content of this work is that a
simple exciton wavefunction for a
many-electron system exists, that the
quasiexciton is larger than the ordinary
exciton? because the guasiparticles behave
kinematically as though they carry fractional
charge, and that the creation of single
e?c;tons exhausts a significant fraction of
S{q).

It is helpful in understanding the exciton
physically to consider its similarity to a
phonon in a Wigner crystal. This connection
may be understood by substituting for im




in £q. (8) the Hartree-Fock charge density
wave state IW>, given by

; .
lw> -\[—N:! E sgn(a) !'(‘)(11) P.(N)(ln) . (3])

where o is a permutation, sgn{o) is its
sign, and ¢ is a gaussian orbital
centered at lattice site xj. and given by

Al 2 1
- = X .2
‘Izl

.
Nx. 12
3% Ix1

e V! . (32)

1
(2) = - ¢ e
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This state is a phonon because S
A-ZO/Z *20/2

effectively displaces the lattice point nearest
zp while leaving the others fixed. Its action
on a single orbital is )

- 42, 31212
e (26-— 25-15/2)(2-25-2p/2) [C P,‘(l)]
z

= [(5-2kear2) (amram20r2) + 2} o2 - (34)

wWhen xJ is far from Zp, this operation
multiplies ¢j(z) by the number
le-x 12, when xj equals z,, on the

other hand, it multiples ¢J(z) by the
function

1z'(z—x.)
2- 12124 lz’(z—-.)]=2 ! ° !
70 2°0 i

thus displacing xj by 20/2.

. . A
the operator which displaces the electon
nearest 2 by 10/2, I write

Calling Dz

2
' w> a1 Jr,-x;1° D, 1W>
SzA-lo/zsx‘no/ZI j'l AT Za

We have finally

[P .
~{2320-2,20)
(2g> = f R (36)

A

which is a phonon. One may say qualitatively
that the exciton and phonon are the same
except at long wavelengths, where the exciton
has a gap while the phonon does not. In
1ight of this analogy it is disturbing that
the exciton and phonon dispersion curves do
not match near the Brillouin zone edge.

(They are comparable). One would expect the
liquid and solid to be indistinguishable on
short length scales. Further work will be
required to clarify this point.

I remark finally that spontaneous
generation of excitons can lead to a
distinctive type of nonlinear conductivity in
samples that do not first break down by a
“Cerenhov catastrophe.”” This conductivity
mechanism is qualitatively similar to
tunneling from one Landau level to the next
in strong electric fields, but quantitatively
different in that the gap, and thus the
threshold field, is smaller. In the presence
of an electric field ¥, the exciton
dispersion curve is modified by an electric
dipole contribution to be

Eg(llol) _ e '.'r'
b iy (37)

where ¥ is 24 expressed as a vector.

Thus exg1tons with certain momenta § require
energy to create and can be emitted
spontaneously in the presence of a weak
impurity potential. The rate of momentum
Toss is

da 2 p, 1.2 j S(q) 112 Vool @
— = -~ 2P Q) Ivgl® t¥qul q dS . 38
a h 2nod () q Q q (38)

where pigp is the 1mpur1ty density, S{q)
is the static form factor given by Eq. (25),
Vg is the fourier transform of the single




impurity scattering potential
- P L L .
\/q - fvimp(') ] ar . (39)

Vqu is the momentum gradient of the
dispersion relation £q. (37), and dSq is a
volume element appropriate for integrating
over the momentum surface defined by u=0. As
the electrons lose momentum, they drift in
the direction of ¢ and dissipate energy.

One may obtain o,y by identifying this

power dissipation with ohmic loss, in the
manner

-

J.(:%) of = o,, 22 _ {40)

For ease of interpretation, I shall assume
that Vg is constant and express Oyy in
terms of the classical conductivity

W12 q .2
,gg),“&»!__“_]'_ _ (41)
2"'"°5 (Mc)z & _
in the manner
25 7,
R = (g;;’z g (42)

R, calculated for simplicity using the sum
rule S¢ota1(@) given by Eq. {26), is
plotted with and without exciton binding in

IR
cao/e

Fig. 3. R, as defined in Eq. {42) versus
dimensionless electric field aéc/e.

The dotted and solid curves are calculated
with and without the excitonic binding,
respectively.

Fig. 3. DOne sees in both cases a low-field
conductivity proportional to

exp{- l( 2A* )2] and a peak value of order 1,

2 eaolex
The singularity at 0.022 is a real effect
caused by the competition between the exciton
binding forces and dipole force. It occurs

when vZm q 3 = 6.4, which can be seen
from Fig. | to be well outside the core
repulsion region.
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