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Fractional Quantization of the Hall Effect * 

R . B .  Laugh1 in 
Lawrence Li vermore National Laboratory 

P .O.  Box 808, Livermore, California 94550 

The Fractionai Qud i l tum Hall Effect i s  caused by the condensation of a two- 
dicierisional electron gas in a s-Lrong magnetic f i e ld  i n t o  a new type of macro- 
scopic g round  s t a t e ,  the elementary excitations of which are fermions of 
charge l/m, where m i s  an odd integer. 

1 Preliminary Considerations 

We consider a two-dimensional metal in the x-y plane subject t o  a magnetic 
f ie ld  Ho in the z-direction. The many-body Hamiltonian i s  

where z 
the potJntia4 gene4ated by a uniform neutralizing background o f  densit$ u 

= x - i y .  i s  a complex number locating the j th  electron, V ( z . )  i s  

H A  and I?; = -3 (yx - x i )  i s  the symmetric gauge vector potential .  
our  attenfion t o  Lie lowest Laildau level ,  f o r  w h i c h  t h e  single-body wave- 
fu1;cti ons are 

We r e s t r i c t  

with the magnetic length a = (fic/eHg)’/* s e t  t o  1. These s t a t e s  are 
degenerate a t  energy fiwC /!? , w i t h  
Ne assume 

2 Ground State  

wC = eHo/mc the cyclotron frequency. 
fiwC > e /ao.  

By analocjy with l iquid tlelium, we propose a variational wavefunction for  t h i s  
system of the Jastrow form 

as such wavefunctions 
t o  the lowest Landau 
requires f t o  be o d d ,  

- - 

a re 
eve 
and  

e f f i c i en t  as keeping the par t ic le  a p a r t .  Restriction 
requires f t o  be a polynomial , the Pauli principle 

conservation of angular momentum by H requires f 



t o  be homogeneous. Thus t h e  o n l y  a l l o w e d  wave func t i ons  o f  t h e  Jas t row fo rm 
a r e  

1 r  

: r i t h  m an odd i n t e g e r .  The n a t u r e  o f  t h i s  s t a t e  
i t s  squar? as t h e  p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t  
t h e ma n ne r 

w i t h  B = l / m  and 

i s  understood by  i n t e r p w t i n g  
on o f  a c l a s s i c a l  plasma, i n  

@ desc r ibes  p a r t i  c l e s  o f  "charge"  m r e p e l  1 i n g  one a n o t h e r  l o g a r i  thmi  c a l  ly 
a!id b e i n g  a t t r a c t e d  l o g a r i t h m i c a l l y  t o  a u n i f o r m  background o f  "charge"  
d e n s i t y  u = 1 / 2 ~  . Loca l  n e u t r a l i t y  o f  t h i s  ' 'charge" r e q u i r e s  t h a t  t h e  
e l e c t r o n s  ae spread o u t  t o  a d e n s i t y  urn = ol/m . The F r a c t i o n a l  Quantum 
H a l l  e f f e c t  occu rs  when u = u . m 

l e  c a l c u l a t e  < m l r n >  and 
f o r  t h e  r a d i a l  d i s t r i b u t i o n  f u n c t i o n  g ( r )  o f  t h e  plasma. 
and d e f i n e  f o u r i e r  t r a n s f o r m s  i n  t h e  manner 

< m l H  Im> u s i n g  t h e  h y p e r n e t t e d  c h a i n  a p p r o x i m a t i o n  
I f  we l e t  x = r / f i  

A 

h ( k )  = Lrn h ( x )  J o ( k x )  xdx , (8)  

where J i s  an o r d i n a r y  Bessel  f u n c t i o n  o f  t h e  f i r s t  k i n d ,  t h e n  t h e  e q u a t i o n s  
we s o l v &  a r e  [ I  ,21 

g ( x )  = exp{ h ( x )  - c,(x) - 2mK0(Qx) 1 , ( 9 1  

where i< i s  a m o d i f i e d  Bessel  f u n c t i o n  o f  t h e  second k i n d ,  Q i s  an a r b i t r a r y  
c u t o f f  B a r m e t e r ,  and 

w i  til 

A A A A 

h ( k )  = c ( k )  + 2 c ( k ) h ( k )  , 

and h ( X )  = g ( x )  - 1 . The numer i ca l  s o l u t i o n  t o  these equa t ions  f o r  m=3 i s  
d i s p l a y e a  i n  F igs.  1 and 2. The absence o f  s t r u c t u r e  i n  g ( x )  beyond x=4 
r e f l e c t s  t h e  l i q u i d  n a t u r e  o f  t h e  s t a t e .  I n  terms o f  g ( x ) ,  t h e  t o t a l  energy 
p e r  e l e c t r o n  i s  
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Cohesive energy per 
electron in units of 
e / a  versus f i l l i n g  
fact8r  v = 1/m. T O P  
curve i s  charge dms i ty  
wave value from [3]. 
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2 in units o f  e /a . M i s  the number o f  electroiis. We have f i t  a sequence 
of sucli cal culati8ns t o  the semiemperical formula 

The cohesive energy per electron, defined by 

- - - /II - 1  
'coh 'total 4 8 ' 

i s  compared with t h a t  calculated by YOSHIOKA and FUKUYAMA [3] for  a charge 
density wave in Fig. 3. 
par t i t ion  function, and  i s  given by 

The normalization in-tegral < m l m >  i s  the plasma 

where f i s  a slowly varying function of order 1 f i t  from monte carlo experi- 
ments [4] t o  the formula 

B C D  f ( r ) =  A t -  + -  t -  Y 

r0 ry  r 

with r = 2 m  , 
Table 1 .  The function f i s  the excess free energy of the plasma, while ti72 
remaining terms are "e lec t ros ta t ic"  i n  nature, except for  an (2mN) ,  which i s  
just the log o f  the volume. 

valid in the racge of i n t e re s t .  The parameters are l i s t e d  in 

Table 1 

A = -0.3755 3 = -1.2862 
B = 1.6922 ci = 0.74 
C = 0.1494 y = 1.70 

3 Quasi parti  cl es 

The elementary excitations of q~ 
the exact g round  s t a t e  i s  piercpd a t  location z with an in f in i te ly  thin mag- 
net ic  solenoid t h r o u g h  which i s  passed adiabatipally a f l u x  q u a n t u m  hc/e . 
Tile solenoid may then be removed by a gauge transformation, leaving behind an 
exact excited s t a t e  of the many-body Hamiltonian. 
the effe.ct of t h i s  procedure are 

are made with a t h o u g h t  experiment in which 

Operators which approximate 



and i t s  hermitean a d j o i n t  S t  , rdierc a i s  the laddzr opz ra to r  
zO j . 

T h a t  they do so r:iay be seeil from the f ac t  tha t  the t h o u g h t  experiment maps the 
single-body s t a t e s  (3 )  in the manner I n >  + In+l> whereas 

and 

The op2ra to r  a annihilates I O >  , consistent with the ti iouqht experiment's 
mapping i t  t o  the next Landau level.  
interacting electrons when they are described by 0 . 0 a single S la te r  
det?rminant of the single-body functions I n > .  

Note t h a t  Sz and S are exact for  non-  
Z 

We calculate quasipar t ic le  properties with the hypernetted chain. For the 
quasihole wavefunction 

1 2 
- 7 c l q  

n ( z i - z  ) rI ( z . - z  ) m  , ( 2 1 )  
J k  

R +Z sZ I m >  z JI, o = e 
0 i O j < k  

., with B = l/m and  +z 2 -BO I we write 0 1  = e 

This i s  a plasma w i t h  two components, N par t ic les  of  "charge" m and one 
part ic le  o f  "charge" 1 .  The two-component hypernetted chain equations are 

g .  . ( x )  = exp( - B V .  - ( x )  + h .  . ( x )  - c i j ( x )  1 , (23 )  
1 J  1J 1 J  

and 

where tile ind ces r u n  over the two kinds o f  par t ic le .  
the densit ies are p l  = 1 and p = 1 / N  . To solve the problem, we do pertur- 
ta t ion theory in p2 :  The zero-orger solution t o  g 
( 1 1 )  . For g 1 2 ( x )  we have 

With x defined as before, 

i s  given by ( 9 )  t h r o u g h  11 



> 

. -  
. a  

and 

T h e  numerical solution of th-ese equations for  m=3 i s  shown in Figs. 4 and 5. 
Note t h a t  the divergence of (26)  as k -f 0 
accumulated around zo t o  be exactly - l / m  of an  electron. 
construct the change t o  g ( x )  result ing from the presence of the &mihole. 

requires the total  excess charge 
Using g, ( x ) ,  we 

11 
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F-igure 4:  c ( x )  versus x for  m=3 
’’5 and Q=2 

. .Figure 5: g12(x )  versus x for  n1=3 
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We have 

and 

. 
6 i l l ( k )  = (1 + 2c l l [k )}2  6 i l l ( k )  + k h 1 2 ( k )  , 

The solution ki6h , ( x )  t o  these eqiiations for  m=3 i s  plotted i n  Fig. 6. 
2nergy t o  make a Auasihole can be calculated from i t  i n  the inaniier 

The 

ri 
"ll1 ( x )  clx y 

- -  
'Quasihole - 1 ( 3 3 )  

2 in units o f  e / a  . \Je obtain 0 .326 ,  which i s  considerably lower t h a n  the 
"Debye" estimate 'of 8.062. 

A similar procedure may be used for  the quasielectron, We have 

1 2 

(31 1 -Z  - c l Z R l  a m s t I m > - Q  0 = e R II(2- - z;) n (z . -z  ) . 
zO m i a zi  j < k  J k  

Normal iziiig th i s  wavEfunction and calculating i t s  charge density iiivolve 
integrating over s p a t i a l  variables, which allows us t o  integrate by parts and 
then consider a s i tua t ion  s imilar  t o  ( 2 1 )  and  2 2 )  b u t  with [ l ]  

0.15 

-.OS -.lo t 
Figure 6: 6 h  ( x )  versus x for  

quii ihole a t  m=3. 
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For this problem, we obtain an "integrated by parts" g 1 2 ( x )  and  c ( x )  
satisfying (25)  and ( 2 6 ) ,  b u t  with . 2S 

I 

The numerical solution o f  these equations with m=3 i s  shown in Figs. 7 a n d  8. 
As with .the quasihole, the Ornstein-Zernicke relation (25 )  forces the total  
charge accumulated a round  z 
given by 

t o  b2 -l/m electrons.  However, the d c t d  g 1 2 ( x ) ,  0 
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Figure 8: g , 2 ( x )  vsrsus x f o r  m=3 



correctly accumulates +l/m o f  an electron. g (x) i s  shown in Fig. 9 .  To 
calculate the quasielectron creation energy, A$ employ the somewhat uncon- 
t rol led approximation o f  assuming the existence o f  a "pseudopotential" which 
when used as  v1 ( x )  i n  (23) and ( 2 4 )  reproduces g 
a potential i s  Fhysical, we can calculate 6 h  , (x) '$s ing (28) and  ( 2 9 ) ,  and 
then calculate the quasielectron creation enirgy using (30).  
shobd the 611 ( x )  obtained using th i s  procedure. Note the s imilar i ty  t o  Fig. 
6. The q u a i l  lectron creation energy we obtain using th i s  6 h l l ( x )  i s  0.030 
in m i  t s  o f  "/ao. 

( x ) .  To the extent such 

I n  Fig. 10 ,  we 
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Figure 9: g ( x )  versus x for  
qAgsielectron a t  m=3 
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t Operators S and  S ,  creating a quasiparticle in an angular m o r n ~ n t u m  s t a t e  

aiialogous t o  t k e  singfe-body s t a t e  [ t i >  i n  (3) are 
polynomials [5], defined by the expression 

Ne have expl i ci t l y  

N s = z z z  Z 0 1 2 3 . . *  ¶ 

¶ 

the eleimentary syi:imetri c . 

= ( -1)  N- 1 ( z1 + ... + Zrq) ¶ sN-l 

(35) 

A 

where z .  means omit  t h i s  factor  from the product .  
i s  a fu j l  Landau level 
rad ius  m 2 -  . 
t h o u  h i t  has charge e/m: , the o rb i t  radius of S Im> o r  S Im> i s  exactly 

When m = 1 ,  the s t a t e  S , l m . >  
b u t  for  a hole in /I:> , t h a t  i s ,  a hole with o r b b t  

ide now sliow t h a t  "Le quasiparticle behave? k inemdciLeey  as 
ai&. k I: 

We f i r s t  observe t h a t  since there are no thermodynamic 
par t ic les ,  provided they feel the neutral i z i n g  background 

However , we a1 so  have 

so t h a t  

and similarly for  the adjoint.  Me next observe tha t  from 

forces on plasma 
potential we have 

(41 ) 

translational in- 
variance of the plasma, matrix elements of the charge density operator p ( z )  
may be computed from the relation 



Thus 

Since h 
Also, 

(x) i s  short-ranged, the charge density i s  (2m)-' almost everywhere. 
"since from the charge-neutral i ty sum rule 

we have 

Similarly, the constant-screening sum rule E23 

imp1 i es t h a t  

- - - 1 [ 2(km+l) ] 
m 



a n d  similarly fo r  quasielectrons. 
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