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Fractional Quantization of the Hall Effect *

R.B. Laughlin
Lawrence Livermore National Lavoratory
P.0. Box 808, Livermore, California 94550

The Fractional Quantum Hall Effect is caused by the condensation of a two-
dimensional electron gas in a strong magnetic field into a new type of macro-
scopic ground state, the elementary excitations of which are fermions of
charge 1/m, wnere m is an odd integer.

1 Preliminary Considerations

We consider a two-dimensional metal in'the x-y plane subject to a magnetic
field HO in the z-direction. The many-body Hamiltonian is

H=7 %1%6-92(]?-1» V(z,) | + 7 Z‘fi , (1)
J ¢ J j<k 1437k
where z. = x. - iy. is a complex number locating the Jth electron, V(z.) is

the poténtla? aene}ated by a uniform neutralizing background of dens1t} o

2.,
V(z) = -0e” | nggrr , (

and A = —0 (yx - xy) is the symmetric gauge vector potential. We restrict
our attention to tne Towest Landau level, for which the single-body wave-
fuinctions are
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1 2
| ] 1l (3)
n> = T z e ,
/2"
with the magnetic length hc/eH )]/2 set to 1. These states are

degenerate at energy Hm /9 s with wc = eHO/mc the cyclotron frequency.
We assume ﬁw > e /a

2 Ground State

By analogy with liquid Helium, we propose a variational wavefunction for this
system of the Jastrow form

-3 1 1z,1?
Vo= nf(zs-z,) | e 72 , (4)
J<k

as such wavefunctions are efficient as keeping the particle apart. Restriction
to the lowest Landau level requires f to be a polynomial, the Pauli principle
requires f to be odd, and conservation of angular momentum by H requires f




to be homogeneous. Thus the only allowed wavefunctions of the Jastrow form
are . .
1 2
-7 1 7]
)m o 4 i L

, (5)

im> =y = 1 (z,-z
m j<k J 7k

with m an odd integer. The nature of this state is understood by interpreting
its squarz as the probability distribution function of a classical plasma, in
the manner

2= o B (6)
with 8 = 1/m and

2 m 2
o = -2m~ ¥ en|z.-z, | + =7 |z,] . (7)
j<k J 7k 2 ) 2

¢ describes particles of "charge" m repelling one another logarithmically
and being attracted logarithmically to a uniform background of "charge"
density o, = 1/2n . Local neutrality of this "charge" requires that the
electrons %e spread out to a density o_ = o]/m . The Fractional Quantum
Hall effect occurs when o = o . m '

We calculate <m|m> and <m|H|m> using the hypernetted chain approximation
for the radial distribution function g(r) of the plasma. If we let x = r/V/2m
and define fourier transforms in the manner

H(k) = gm h(x) Jo(kx) xdx , (8)
where J, is an ordinary Bessel function of the first kind, then the equations
we so]vg are [1,2]

g(x) = exp{ h(x) - ¢ (x) - 2mKy(Qx) 3 (9)

where K, is a modified Bessel function of the second kind, Q is an arbitrary
cutoff garameter, and

h(k) = c(k) + 2¢(k)h(k) , (10)
witn

c (k) = c(k) + 2mQ? (11)

S kz(k2+Q2)

and h(x) = g(x) - 1 . The numerical solution to these equations for m=3 is
displayed in Figs. 1 and 2. The absence of structure in g(x) beyond x=4
reflects the Tiquid nature of the state. In terms of g(x), the total energy
per electron is

- <m/Hm> , 1 I ™
Utotal = ~<mme /N - 7 feg = o £ h(x) dx , (12)
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Figure 1:

Figure 2:

Figure 3:

c_(x) versus x for m=3
aRd Q=2

g(x) versus x for m=3

Cohesive energy per
electron in units of
e“/a, versus filling
factgr v = 1/m. Top
curve is charge density
wave value from [3].
Bottom curve is (13).




in units of e2/a N is the number of electrons. We have fit a sequence

of such ca]cu]atigﬁs to the semiemperical formula .
0.814 0.23
U, . (m) = ' -1] . (13)
total Jm m0.64

The cohesive energy per electron, defined by

- _/n 1
Ucoh Utota] Yy 8 m > (14)

is compared with that calculated by YOSHIOKA and FUKUYAMA [3] for a charge
density wave in Fig. 3. The normalization integral <m|m> is the plasma
partition function, and is given by

m
?&n(Zm)

o)

l-JLn( <m|m> ) = wN %&n(ZmN) -

N ] + g2n(2mN) -

- omf(2m) + 0[&1}2&] . (15)

where f is a slowly varying function of order 1 fit from monte carlo experi-
ments [4] to the formula

- a+B 4 C 4D
fr) = Al v n vt (16)

with T = 2m , valid in the range of interest. The parameters are listed in
Table 1. The function f is the excess free energy of the plasma, while the
remaining terms are "eiectrostatic" in nature, except for n(2mN), which is
Just the log of the volume.

Table 1
A = -0.3755 D= -1.2862
B = 1.6922 a = 0.74
C = 0.7494 vy = 1.70

3 Quasiparticles

The elementary excitations of ¢ are made with a thought experiment in which
the exact ground state is pierced at Tocation z5 with an infinitely thin mag-
netic solenoid through which is passed adiabati9a11y a flux quantum hc/e .

The solenoid may then be removed by a gauge transformation, leaving behind an
exact excited state of the many-body Hamiltonian. Operators which approximate
the effect of this procedure are

(17)




and its hermitean adjoint S; , Wiere aj is the Tadder operator

0 .
X, + 1y, 3 5
S H N O S S (13)
J 2 By 3Y;

That tney do so may be seen from the fact that the thought experiment maps the
single-body states (3) in the manner |n> > |nt1> , whereas

ajn> = v/2n |n-1> (19)
and
a+|n> = /2(n+1) |n+l> . (20)

The operator a annihilates |0> , consistent with the thought experiment's
mapping it to the next Landau level. MNote that S_ and S_ are exact for non-
interacting electrons when they are described by 0 ..%0 a single Slater
determinant of the single-body functions |n>.

We calculate quasiparticle properties with the hypernetted chain. For the
quasihole wavefunction

+z ']ZZ 12,17 m
s, [m> = v 0 = e 3 H(Zi'zo) it (z.-zk) , (21)
0 i j<k 9
we write Jw;20|2 = o B , with 8 = 1/m and

o' = o -2m) zn]zi—z (22)
i

o

This is a plasma with two components, N particles of "charge" m and one
particle of "charge" 1. The two-component hypernetted chain equations are

g..(x)

9 exp{ 'Bvij(x) *hi(x) - e ()}, (23)

J 1]

and

A

eig(k) + 2 Thyy(k) oy cp500) (24)

~

hy5(6)

]

where the indices run over the two kinds of particle. With x defined as before,
the densities are p, =1 and p, = 1/N .- To solve the problem, we do pertur-
bation theory in p,: The zero-oréer solution to 991 is given by (9) through
(11) . For g]z(x) we have

El-lz(k) = {1+ zﬂ”-(k) } E]Z(k) , (25)




2

crp (k) = (k) + — g, (26)
S

k (k2+Q )
and

glz(x) = exp{ h]z(x) - c]zs(x) - ZKO(QX) } o (27)

The numerical solution of these equations for m=3 is shown in Figs. 4 and 5.
Note that the divergence of (26) as k - 0 requires the total excess charge
accumulated around z, to be exactly -1/m of an electron. Using g.,(x), we

construct the change“to g]](x) resulting from the presence of the fuasihole.
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We have

-

~ n 2 .7 2 v
shyq(k) = {1 + 2h o (K)37 scqq (k) + §hyo(k) (28)
and
_
(5C-”(X) = [WJ Gh-l](X) . (29)

The solution Hsh ](x) to these equations for m=3 is plotted in Fig. 6. The
anergy to make a AUasiho1e can be calculated from it in the manner

N e
bquasihole = Vom { shyp(x) dx (390)

in units of ez/ao. Wle obtain 0.026, which is considerably lower than the
"Debye" estimate “of 0.062.

A similar procedure may be used for the quasielectron., We have

2

1
t _ -z -~ Iz 3«
S, |m> = v, 0 = e 2 H(Zaz._ zo) m(z.-z

0 i i Jj<k

ok (31)

Normalizing this wavefunction and calculating its charge density involve
integrating over spatial variables, which allows us to integrate by parts and
then consider a situation similar to (21) and (22) but with [1]

' = o -2m ) an{ |zi—z 2} . (32)
i
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Figure 6: &h,,(x) versus x for
qu;;iho1e at m=3.
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For this problem, we obtain an "integrated by parts" é]o(x) and 512 (x)
satisfying (25) and (26), but with =

-

. 2 ., . .
g]z(x) = [ 5152-] exp{ h]z(x) - c]2(x) - ZKO(Qx) } . (33)

The numerical solution of these equations with m=3 is shown in Figs. 7 and &.
As with the quasihole, the Ornstein-Zernicke relation (25) forces the total
charge accumulated around Z, to be -1/m electrons. However, the dctual g1z(x),

given by
2 g, 5(x)
9 .
91200) = [z,]] ("g‘;?‘“];s;)”xg'x'”mxz*?} [——2 = ] (34)
l mx -2

1 Figure 7: €19 (x) versus x for
‘ s m=3 and Q=2
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Figure 8: é]z(x) versus x for m=3




correctly accumulates +1/m of an electron. (x) is shown in Fig. 9. To
calculate the quasielectron creation energy, wg emp]oy the somewhat uncon-
trolled approx1mat10n of assuming the existence of a pseudopotent1a]" which
when used as v, (x) in (23) and (24) reproduces g To the extent such

a potential is Bhy51ca1, we can calculate 6&h 1asmg and (29), and
then ca]cu1ate the quasielectron creation en rgy using (30) In Fig. 10, we
show the &h obtained using this procedure. Note the similarity to Fig.

6. The qual]g]ectron creation energy we obtain using this 5h]]( x) is 0.030
in units of e

Figure 9: 1 versus x for
u§s1e1ectron at m=3
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Figure 10: 6h,,(x) versus x for
qu3;1e1ectron at m=3




Operators S, and ST creating a quasiparticle in an angular momentum state
ainalogous to t%e sing&e—body'state |n> in"(3) are the elementary symmetric
polynomials [5], defined by the expression -

k
S, = Vs, z . (35)

ZO 7 k 0

We have explicitly
S0 = 272,24 zy R (36)
517 - JX 292y wee Zgoeee Iy (37)
Se.= (D% (2 4+ 4z (38)
N-1 1 e N i

~

where z, means omit this factor from the product. When m=1, the state S, |m-
is a full Landau level, but for a hole in |k> , that is, a hole with orbTt
radius v2k#2 . We now show that the quasiparticle behaves finematically as
though it has charge e/m: . the orbit radius of Sk|m> or Sle> is exactly

2m k+2 " K

We first observe that since there are no thermodynamic forces on plasma
particles, provided they feel the neutralizing background potential, we have

1 2
ﬁ—'lz |
+ _ cm 0 T
<m|SZOSZO|m> e <m|SOSO|m> . (39)
However, -we also have
+ NS k +
<m]SZ SZ | > = ,z I(zo) (zo) <m[Slek!m> , (40)
0 0 k,k
so that
¥ Sk ¥
<m|S, S, [m> = ' - <m|SASa M, (41)
| k' k‘ (2m)kk! 070

and similarly for the adjoint. We next observe that from translational in-
variance of the plasma, matrix elements of the charge density operator o(z)
inay be computed from the relation

t _ KUk et |
<mlSZop(z)SZO|m> = Ekl(za) (zO) <m|Sk.p(z)Sk|m>

?




+ 1 2
alsis m ot |z,
- 070 e2m 0 912( E Zor) (42)
2mm
Thus
+ 1 2
<m|S,p(2)S, [m> (1. (2mk B, 2k |
+ T 2m k! 523 aZO
<m|S, S, |m> "
X h]2( Iz-zol ) 1 } ] . (43)
z~=0
0
Since h]z(x) is short-ranged, the charge density is (2nm)_] almost everywhere,
Also, since from the charge-neutrality sum rule
1
A [z ¢z = - L (44)
we have
T : 1
[ <m|Se(2)S, [m> 2;”"} 2y - . % (45)
<m|Ssz|m> ‘
Similarly, the constant-screening sum rule [2]
1 242, = _ 2 a
2mm I h]2(|2|) |z}” d"z = m ’ (46)
implies that
( + ' 5
J' l<m|5kp(z)5k|m> _ _ZT]T‘I,H] IZ[ dZZ
<m|SISk|m>
2
2 1 ((mf e s & _zllzoi 2
_ 2 {2m 9 m
T T n ' Tm [ ki Gzraz) e 1zl 1
070 20—0

[ 2k 1) ] . (47)




and similarly for quasielectrons.
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