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ABSTRACT

_ Twoeindependent methods are described for calculating the
multiple scattering distribution for projected angle scattering
resulting when very high energy charged particles traverse a
thick scatterer, The single scattering law for projected angle
scattering 1s taken to be the Rutherford scattering law for pro-
jected angle scattering modified at small angles by elsctron
shielding and at large angles by a nuclear form factor :?;(QP//§Z)
which gives the effect of the finite nuclear sizeg The calcu-
lations can be carrled through for any reasonab;e choice °f¢:;g
and have been carriéd through for tWO'Suggeétééwchoices of :;;
for the examples 6f fast p-meson scattering in 2 em and 5 cm
thick lead slabs, with good agreement for the two methods of
calculation, The results are compared with the theories of

Molisre and Olbert,




SECTION 1., INTRODUCTION

Several multiple scattering theories have been publishedl’2’3’u

1 E. 7. Williams, Proc. Roy. Soc. A169, 531 (1939);
Se Goudsmif and J. L. Seunderson, Phys. Rev. 58, 36 (1940);
H; S. Snyder and W, T. Scott, Phys. Rev. 76, 220 (1949);
H, W, Lewis, Phys. Rev. 78, 526 (1950),

2

3 s. Olbert, Phys. Rev. 87, 319 (1952);
M. Annis, H., S. Bridge, and S. Olbert, Phys. Rev. 89, 1216 (1953)
4 H. a, Bethe, Phys. Rev. 89, 1256 (1953)
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. which are concerned with the angular distribution of particles
passing, with no substantial loss of energy, through a thick
material for which the single scattering law is the Rutherford
cross section modified at small angles due to electron screening,

In this paper we shall present two methods by which a
multiple scattering distribution for projected angle scattering
can be obtained from more general single scattering laws than
those already treated., We shall be concerned in particular with
single scattering which 1s Rutherford for a wide middle region,
bﬁt is‘modified both at large as well as at small angles, In
scattering from atoms the modification at small éngles 1s due

to electron screening, while at large angles there can be modl-

rage two
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fications due to additional forces ( as in the scattering of

M mesons from carbon ) or due to the finite extgnsioh of the
nucleus.and the subsequent deviations from Coulomb's law inside

the nucleus, We congider only the case where relatively small

@ are important so the approximation 30 % sin® X tan @ is
appropriate, |

5,6

There has been a good deal of experimental interest recently

- v -t

5 E, Amsldi and G. Fidecaro, Nuovo Cimento, 7, 535 (1.950);

We L, Whittemore and R, P, Shutt, Phys. Rev, 88, 1312 (1952);

E, P. George, J, L, Redding, and P, T, Trent, Proc. Phys. Soc.

466, 533 (1953);

B, Leontic and A. W, Wolfendale, Phil, Mag. ll, 1091 (1953).

M, L, T, Kanéngara and G, S. Shrikantia, Phil, Mages l4,1091 (1953).
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in the multiple scattering of p-mesons. Experimental results, after
being compared with the results of the'Moligre2 and Olbert3
multiple scattering theories have been interpreted as indicating
the exlstence of an anomolous pemeson-nuclear interaction. Among
the many difficulties arising in the interpretation of these experi-
ments (see Appendix B), one of the moét'obvious seemed to be the
absence of a reliable estimate of the expected multiple scattering
distribution from extended nﬁclei. | |

In the Moliefe multiple scattering theory the nucleus ié
treated as a point.charge. The single scattering cross section

is taken to be the Rutherford cross section modified, at small

ze three Ly
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angles only, due to electron screening., This gives more scat-
tering for large angles than would be expected from extended
mucleli, In the Olbert theory an attempt is made to estimate
the effect of the nuclear extension by multiplying the Molisre
projected angle single scattering law by a step function which
cuts off all scattering beyond a given projected angle qzit X//R °
' This, however, gives a very great underestimate of the multiple
scattering for angles larger than,q%,.as for large angles
Olbert's distribution falls off as a Gaussian which soon is
much smaller than even the coherent part of the singlé scat-
tering law,

In what follows we shall outline two distinct procedures
by which a multiple scattering distribution can be obtained
from given single scattering laws., We deal with projected
angle scattering as this is the usual experimental parameter,
Our second method coﬁld be extended to include the total scat-
tering angle, Sections 2 and 3 describe the two methods we
have developed for dealing with multiple scattering problems. o
The results of these two sections have been used to calculate
the expected multiple scattering distribution of relativistic
p-mesons (cp = 1 Bev) passing through 2 and 5 cm of lead, Agree-
ment between the two methods is excellent, Appendix A contains
a discussion of the single-scattering cross section ﬁsed for the
above calculation, Appendix B gives a review of the experimental

sltuation with regard to p-meson scatbtering,
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SECTION 2. DESCRIPTION OF THE FIRST METHOD OF COMPUTING MP)

The first method to be described consists of folding together

several simpler distributions in a manner somewhat analogous to

the actual effect of successive layers of the scatterer."Although

this method is simple in principle, it seemed on first inspection
that it would be extremely tedious to carry through such folding
operations. This did not prove to be the case when the'computing
techniqueé described below were used, and we give a rather detailed
description of the proceaure for thls reason,

The method is based on the observation .that if 'F(Q)c(? ,
the probability of a single scattering through @ to ?+’d? to
one side in projected angle, is given, then the multiple scat-
tering distribution M(qJ) is completely defined. (Note that f(CP)
is not normalized to unity, but integration over all angles gives
the average number of single scatterings in traversing the sample, )
Furthermore, if the actual scattering slab were replaced by a
series of consecutive slabslA? B, C having single scattering

1aws £,(@), £5(®), =----, where
£(@) =£,(@) + fp(@) + -=-- - (1)

then the same mﬁltiple scattering distribution results on
traversing all of the slabs in series. If M,(Q), Mp(P),=--=
are the separate multiple scattering distributions for A, B,~=--,
then M(CP) results on folding M,, Mg,---- together,

page five
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For the case of two components
oQ

»M(C}?)=j MA(cp')MB(cp—?l)dqo, o ' (2)

—c0

We require that only small @ are important so sin P~ tan § 2 @,

and effectively consider ¢ as ranging from -0 to +00 , '

The distribution law for small angles is just the Rutherford
scattering law modified due to electron shielding., Following

Molieré we represent this as
' (p) =8 (gf +gh 2 - (3)

where 9315 the projected angle and q% is the screening angle

2,1/3
= 1'1'[,' mec Z ‘ 2 1/2
Qom T57 o9 [1'1,3 + 3,76 (2/137/6’) ]

and @ = Lt (N t/A) (Z e2/pv)2. Here (N t/A) gives the scatterer
thickness in atoms/cm2; p is the momentum of the incoming
particle; A = F/p; v is the incoming velocity; a is the "Fermi-
Thomas rédius" of the atom = 1,67 x 10”2"1/3(62/m602); Z is the
atomic number of the scattering material (the incident particle
is taken to be singly charged) snd m, is the electron mass,

The modification in the above distribution law at larger
angles is given by multiplying f'(?) above by 3‘;;( q’/ ® ) to

give.

2095 (¢ + 92 12 L (9/@) W
?N ((P/ @, ) is discussed in Appendix A,

6y2% o7
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The trick of this method consists of selecting some angle
90' which is a little smaller than the R, M. .S, width of the
gaussian which approximates M(§0) a‘t: small angles, fA(SD) is
then set equal to f£( P) for tq>[<?and==0for'l§”9§0/ ’
while £,(@) = 0 for [@[< ¢ anda = £(@) for |@| 2 ¢’ . The
multiple scattering due to fA is given with good accuracy by the
gaussian

M, (P) = (2n¢g?>) 72 o P2/2< 9" > (5)

| where
9

(P>= Q[ 7 (92 + 9232 a9 (6

since ‘;I;( 39/500 )= 1 for{ﬁo‘g qp’ . Also ?I>.>ﬁfer s reasonably

thick scatterer so we can simplify the resulting expression

' -X CP,/‘?M Pl/?m
< CPZ> = Q [m/2] + [ln (x+—\‘ 1+ xz )Jo 80
° (7)

G7> = @) 2P/R) - 1}7
It is convenient to use the parameter'g = QD/QK, and re-—
place (P, Q §, , and ?Iby the equivalent quantities g(y),
B, ym,‘ and y’. For the case of a p-meson with cp = 1 Bev and a
2 cm lead scatterer, 970 = 0,030 radisms = 1,74,°, B = 0,126, and
Yy = 9.6 x 10-)4". For the choice y" = 0,5 we obtsin <y2)= 0,75,
showing that this is a satisfactory choice for y"’. Then, for

this case,

2 ) :
M, (y) = (150 n)~/2 =¥ /1450 (8)
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whore the subscript 1 on MAl emphasizes that this method gives
the distribution in terms of y = ¢/¢,. (The distribution function
M,(x) of the next section is given in terms of the angle
characteristic of the Molisre theory.)

The multiple scattering distribution MBl(y) éorresponding
to single scattering angles 2 ?,= j/q% is obtsined using the
following considerations, If we chose, not the full scatterer
thickness, but some sufficiently small fraction X, then‘the
single scattering law o g(y) for \y);»y’ would have essentially
unit weighting for no scatterings at all, and very small welght-
.ings for all [y[ > y}. The corresponding multiple scattering
distribution would then be idénticél to the single scattering
law for ly[_> y' since there is negliglble likellihood of more
than one scattering, If this distribution is folded together
ﬁith itself the multiple scattering is obtalned for fraction 20
of the total thickness, This distribution differs from the
single scattering law by double écattering ﬁerms proportional to
0<2, so the fréctional devigtion is proportional to «<<K 1, If
the multiple scattering law for thickness 2« is folded together

with itself the multiple scattering law for thickness lie< results,
For lyl)»y' this distribution has a fractional deviation from
double that for 2% of an amount double that of the previous
prﬁcess (always neglecting higher order effects). Thus the net
.fractional correction from the single scattering law is 3 timeé

that obtained in the first folding., Subsequent foldings for 8,

page eight
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16« , 324, etec., have net fractional corrections (1 + 2 + L),

(1 +2+4+8), (L+2+ U+ 8+ 16), etcs times that of the
foldihg starting with'thickness.o<. These sums, T, 15, 31, eeee,
would be 8;’16, 32,408 1f we had started our folding process with
an infinitesimal fraction of &, since going from « /2 to o gives
1/2, from « /I to o /2 gives 1/, etc. for fhe extra series terms
(/2 + 1/ 4+ ceee) = 1., We thus note that the net fractional cor-
rection after any étage of folding (neglecting higher order ef-
fects) is just double the fractiohal correction obtained by the
given step (i.é; cOmpariﬁg‘the multiple scattering for y # O for
the given thickness with double that for half thickness), We
‘make use of the above feature to select as our starting thickness
a fraction 27 of the total for which the fraction correction of
any of'the points iIn the first folding is not too large. This
fractional correction is then doubled to account with good ac~
'curacyvfor the effect of not starting the process with an in-
finitely thin sample, in the calculations for 2 cm lead and

cp = 1 Bev it was found to be suiltable to start with 1/8 the
sample thickness, while 1/16 the sample thickness was suitable

for 5 cm lead. The actual folding opefations can be carried
through with good accurécy)by replacing the continuous ﬁB(?)_

by a discontinuous function having values only at regular grid
points, For the 2 cm lead case where y' = 0,5, the régioh 0.5

to 0,7 was répréSented by O;2Vg(0;6); etd. S0 values were de-

fined only at y; = 0, + 0.6, % 0.8, * 1,0, —-=-= with a maximum

‘page nine
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vy = 6.0 used in the calculations. For the 5 cm lead case we
used y' = 1,2 and Ok intervals to y = 10,0, . It was found con=
venient and permissible in these cases to neglect contributions

to values of y # O where 1yl(_y', (In cases where these contri-
‘butions are not negligible it requires 6n1y slight additional
computing time to include them;) ‘The remaining computing tricks ,
can best be illustrated in terms of the exampl: of the calculation
~for the 2 cm lead case where we started with 1/8 of the total .
thickness, Let ,e (yj) be the lumped weights given to the grid
points 0, + 0.6, + 0.8, ~---, + 6,0 to represent the single scat-
tering law (0.,2/8) g (yj) for \Yj,)? 0.5, with

o . o :
Lor=1-22 | £ty | (9)

% >0

A calculation sheet is now preparéd in which values of yj =
O, 0.2, Ooly, ~=--, 6,0 are entered in the first colummn., The
values of /€ l/éyj) are entered in the second column, An uncor-
rected mul?;ple scattering distribution /g 1/ (y) is then com-

puted where

/@L/u Zﬂ /et fipvy - o)

Use is made of the fact that terms for y, # yj/Z appear

twice andee can write

,@/;L(y ) = zz I,swk)f (%) + H,/?(y /1)] (11)
<Y/2
The cqlculatlons thus proceed as follows, In the third

page ten
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o : e
column the values of /@/8(5’3‘ ) are miltiplied by ,@(o).
The first number appearing'in the column (yj'= 0 here) 1s circled
and is only couﬁ%ed ohce in the subsequent suﬁming; The n?ft
§olumn!$ntry starts at vy = 1.2 and cbntains‘products /géChéﬁ
béyj - 0.6). Again the first term at vy = 1.2 is circ%ed;
The nex} column starts at ¥y = 1.6 and contains terms /f%go;B)
/Z@éyj - 0.8). Subsequent columns are formed simllarly to
produce a triangular array (requiring less than 1 hour of slide
rule computing time). Contributions from negative ¥y are usually
negligible but the terms for the first few negative values of Vi
can be added if necesigry. The rows are then addgd as indicated
by Eq. 11 to give o/ég/u(yj). The function /[Z/u(yj) is then
compared w%ﬁh‘z /gl/s(yj) for g # 0 and the differences are ad=
ded to /e;/h(yj) to obtain the corrected multiple scattering distri-
bution '21/h(yj); This is similarly folded with itsglf tOigive
J?l/E(Yj)’ and a repetition gives (yj) which corfespond?’to
Mpp(y). Values of M, (y) (Eq.8) are computed for vy = 0, 0.2,
Oui, ====, 6.0, The final Ml(y) is“just the sum of gaussians

centered at O, + 0,6, + 0,8, ==== 1'6;0; ————

M ()= 20 A Mo (3~ ) )
Jd gk : } ¢
The value of Ml(yj) for any 33 is computed‘using Eq. 12, For
yj near 6,0 the contributions from y, >>6;O mist be_esﬁimated;
Fortunstely the single scattering g(vy) and-‘[kyk) are decreasing-
positive functions of y so the terms in Eq. 12 have a maximum for

Ty < jé,and the remainder can be estimated by noting the behavior
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of the series for smaller values of y .

The above observatlons suggest an easy method for estlmatlng
My (y) for large y in terms of MAl(y) and MBl(y) without actua]ly
carrying through the process 1ndlcated by Eq. 12, If MBl(y) can
be approximated by a straight line on a semi-log plot of the form

Moy (v + %) = Mgy (3,) o P ay

thenth. 2 gives 5;122
2

Ml(yj) =MB1(Y.]) ez‘a : . o | (1)

This may be regarded as incre381ng MBl(y ) by a certaln

amount on the semi- ~-log plot to produce My (y ). Alternatlvely,

it can be wrltten
MBl(gj) = Ml(yj +A) (15)

correspondihg to a sidewisé diqplacement?ﬁ of M 1(y ) to generate
Ml(y +Z§).. 1he quantlty Zk is obtalned by plottlng both MAl(y)
and My (y) on the same semi-log plot as in Fig., 1. Let zg be
the value of N at which Al(y) has the same (logarithmic) slope
that Mgy (y) has at y = Ty Using Eq. 13 shows that L{ =\<y2;>/a,
so A = zg’/a. Here a 1s assumed to be a slowly varying function
of yo (The plot by comparison can be made réﬁidly, using two
straight edges;) When the semi-log plot of M (y) also has

curvature so

2 /0.2 |
) ~ -x/a_x“/2b
Mgy (7 + %) = My (wy ) e e 1T - (16)

page twelve
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then the equation analogous to Eq. 1l is

1/2 2b22§’y‘2> ZN
My (3) 2y (3) [02/ (02 = @3> ) T o 22 (BT = v

which, for b >><y > can be wrltten approx:.mately as

L2 [1+ (a2 + (32> IMF ]

~ (17)

Inspection of the final result shows that this corresponds
again to 2 sidewise displacement of MBl by Z&klo;élg'to generate
M1 in the examples considered, #n alternate method of sidewise
displacement 1s obtained by noting that MAl(x) MBl(y-X) has its
maximum at‘A!, about which it resembles a displaced gaussién.
This suggests that M (y.) is generated mainly from MBl(yk) in the
reglon y, = V; -Z& so My (y) should be generated using MBl(y - £()
miltiplied by e~ /l/ij e . (The last factor is the ratio MAl(A/ )/
MA1(0)°) These methods of generating the approximate curve for
‘Ml(y) can be carried out rapidly by simple displacements on the
semi~log plot and are qguite insfructive in giving insight into
the behavior of Ml(y); The difference between Mpl(y) and gB(y)
decreases rapidly if the choice of the dividing angle y’ is in-
creased, This 1s compensated largely by an increase in the width
of the gaussian MAl(y), and thus in the required sidewise dis-~
placement A to generate Ml(y) from MBl(y). It is of interest
that the second method (of the next section), at large angles,

just folds The single scattering law at large angles with a
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gaussi&n characteristic of the Mqligre theory, which is sOméwhat
wider than MAl(y) for the method of seleéting y' discussed above;l

Figs. 1, 2, and L show: the characteristic functions when
only elastic processes are included. It is seen that Ml(y) re-
. mains considerably greater than gB'in a reglon &heré the Moliere
curve 1s almost the same as the point nucleus singie'scattering
curve, This is consistent with the above discussion since the
logarithmié slope of the point nuéleﬁs g(y) is muchvémaller than
the extended nucleuslé(y) so thé réquired Sidewise displacement
is less; and the result'of a given sidewlse displacemehﬁ is also
less (using Eq. 15.). When inelastic scattering is included,
Figs., 3 and 5, the curves apbroach those for a point nucleus,
decreésed by a factor z°1 at Very large o

It is inétructive td make a further comparison of this method
and the second method (of the next section) for y > L, say. Thié
method folds togethef the smallvahgle multiple scattering gaussian
with the 1argé‘ang1e multiple scattering distribution, while the
second method essentia11y folds together a wider gaussian and the
law for single scattering. The.second method uses an expansioh
in terms of the pérameter (uG)~l described below, neglecting
terms of order (MG)-E and beyond., This very roughly corresponds
to neglecting multiple 1argé angle scattering, so the first |
method would be expectéd to be more reliable in cases where such
effects are not negligible; o

As a final point of interest, we note that the curves given

in terms of y apply for all relativlistic momenta where/e = 1,

page fourteen 33 28 15
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In‘ thé example considered, y 1s in unlts of 1.7k qu- degrees;

Thus multiplying the absisse, and dividing the ordihate by le7h
gives the distribﬁtidn per Bev degree unit of ( c pP)s This is |
‘shown by noting that £( )JAY = g(y)dy so '

gly) = g (y2 o+ yi)'"B/aaj\ N(y) where

-2
B=Qf, =lx (1-——-—3% )2 (—f--)

= = LL B Tyiag 4+ 3076 (271370 )2 22 ana
Im m/wo 13721,06[ (b ]

Toe = ea/mecaa', 2;82 X 10"13cm are lndependent of p for

SECTION 3. MODIFIED MOLIERE THEORY

A, Methods and Notation

To introduce the mathematical methods and notation used in
this section we réview the derivation.of the general expression
for the projected angle multiple écattering gistribution for an
arbltrary single scattering cross'sect‘ic‘m; The derivation fol=
lows that of Mol:i.Bfe2 and Olbert3 and 'applie‘s when only relatively
small engles are important,

If £(% )d ¢ 1s the probability that an incident particle
undergo a single. scattering through the projected angle ‘F tof +a¥

page fifteen
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7in‘ité passage through the scatterer, then

where o g.f(?061¢ » 1s the probability that the particle in
passing through the material has exactly n single scatterings 5 v v
fthrough the projected angles Prs Py ===y F, with angular inter¥‘  
vals d @, 4 P, ———y d ®,e © 7% 1s the probability that there
~ be nq'other scatterings besldes q&, ?b - ?;. Since we are
interested only in the final angle ¢? we integrate over inter-

medlate angles and put

n ~Or e n-
f," )(cp)ch _ S f&cce.)fccm A (P~ 9% <pm,)d<p °’(‘i9)’

where fD (¢VJ? 1s the probability that the particle emerge at‘ 
a projected angle_betweeh ¥ aﬁd ¢ + d@ - after exactly mn scat~
terings in the material., The factor 1/nl occurs because in the
integration over intermediate angles the n& permutations of ‘Pl |
' ?-~-<P héve each been-éounted. Since Eq;'18 holds for independent
events the order of the n scatterlings is irrelevant. '
| Now introduce the Fourler representation of the single scat-

tering cross section, Let

= € B
feq) = g | 9(He "dg TS

oo -'lgc? _y ‘S.O
= foye d
gp= [f@me e e
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(where g( g) is not related to g(y) of the previous section). Put-

ting Eq. 20 into Eq. 19 gives P P ) y
fﬂ t n(ty-—?l ‘Rl-l n-1
P g)dg =42 &7 (ar f {a6y-9(8)e ™ - T sl ?

The 1integrations over q&, - ?;_1 give delta funetions which,
after the ?i - ?; 1 integrations ylelde

Ppap=22 €™ f[acg)] L%g N 2

The probability of a final projected angle g’arter any number \
(n)
of scatterings is just the sum of the 'vf; C?)ifover all values

of n, )

o (w TAES £3<§)J"e‘§q}4g
Paq)dez 2 H®de= e o T (2ly)

-0

where we use the result from Eq, 21
o0

o, & ff(Q) a¢ = g(0)

~c0
From this it can be seen that the solution of the multiple
scattering problem is equlvalent to the evaluation of the integral
}in Eq., 24, Moliére® has glven an evaluation of thls integral
in the case of a screened Coulomb field, The main trick in
evaluating the integral lies in thevobservation that the'existence
‘of multiple'scattéring will smear out fine grained irregularities
in the final distribution so the high Fourier components give a
negligible contribution,

Moliére used the single scattering law of Eq. 3 appropriate

page seventeen
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"for a point nucleus with electron shielding. We are interested
in the case where this 1s modified by the nuclear "form factor"
?N( K/ SDO) as in Eqe. 4. From the discussion of Appendix A we

| note that .
| for small 1@/ S|

:}’;Cq’/%) < {Z"-For’!wf‘ge |® /| (our choice)l (25)

with the rapld change occuring when @ ~ 2 CPDQ
Olbert!s method consisted of using a step function for?';

. | S"OY \CPI‘$<P9 .
Tfchc?/cpb).fgo o @1 @ (O1bert) (26)

As mentioned in the introduction, this gives a very large under=-
- estimate of the multiple scattering for @ >> ¢, where the Olbert
function falls off as a gaussian while, for any reasonable form
factor, the multiple scattering distribution lies above the
single scattering distribution £(P) for large ¢, and thus far
above the Olbert distribution,

B, First Derivation of M, (x)

We filrst treat the multiple scattering from extended nuclei
as a correction to the Moliere theory by setting 3; =[| +(G‘N-‘)];
where (f, - 1) gives the correction term, This 1s the method
used by Olbert for his step function., Such a treatment yields

satisfactory results for small angles, but 1s inconvenient for

page eighteen
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large. angles where a second method (described following this) is
~ preferred, Eq. U4 1s written

a 2-3/1"
Cf(@) = FFHR) [+ (F)]

(27)
Then o @ _ q;
_a((e ?—1)44’ g_f &' ')jm
3(?) 3(0) 266 (cf .f..(Pm ’/2- 2\’6 ‘ (? ‘f‘(p”\) * - (28)

The first integral has been treated by Molidre' and to a

T See H, A, Bethe, Reference l, for a discussion of this integral,

sufficient degree of accuracy, is

a ((&'%%-1)de ~ & a'? _]
1~oo (9*+ P, )’5/:. N [ e g ,(29) |

We now lntroduce the various parameters typical of the Moliere

theory, following the notation of Olbert,

2 2 ~1/a !
) P | R - , - /2
G=-s&—7?36¢)JX (26Q) ¢ ;M= @EE (4

Z Rt
and G~5‘66+/ Y@;? [/mﬁ .,.3.76(;2//37)“]

is 1independent of the‘momentum in the relativistic region,

Putting Eq, 29 in 28, and using 30 gives

& (M) = 3\5@) 3(0):_14_2@[41%4 +al ] (31)

where T = fo(e Wlx C:};(X /Xo)*l] dx’
e (x‘-&—xw) ke

8828 »
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Inserting this result into Eq, 2l we obtain in terms of the

parameter X T 2 R ,
vt g g L E 8
JW;“\d* gﬂne e T - (32)

We uise the i‘act'that G is a ’reaSOnably large number (for mo.dérate
foil thickness G varles from about 7 to 15) and expand the portion -
of the exponential which is .multiplied bj,(ZG)"lg This glves, |
to first order in (2(})"l |

1’17‘ -7 - ‘11 | L ‘
Mz(mdx gdne | [Hlé(/ﬁn )+% T+- ]  (33)
After performing the integrations over 42 this becomes v
M, dx = eéx .27?; [,c(xjothcx)] oG
where % ) —(X—*’)i _x*
| JX [l fﬂ:(’(/x")] ~(x e
K= '_“ — TN + c - 2% .
VT ) (x4 X ) »
and ’Vl ’yl/“\" 2 2
-~ N «3
§ (X)°°) 50/ (?ﬁ.‘ i )

4f"‘()(‘3°0) 1s the Molidre function. The integral K(x) which oc-

curs in Eqe 3L muét be evaluated numerically for a given ::E(.X’/Xo)". |
Eq;‘ 3l is seen to have the form that was desired ()(riginally; The
integral which contains the effect of the nuclear extension oc«
curs as a correction to e'xa/\{ﬁ; + q“é‘ J;I(X)'-"o) which is the

MoliGrev miltiple scattering distribution for a point nucleus in

pagw—
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terms -of the projected a.ngle parameter Xe This corresponds to

Sf = 1 for all x, If :9:(x/x ) 13 the Olbert step function, Eg.26,
the correction term becomes the Olbert correction function K(x;xo)
1f use 1s made of the fact that xo‘§>>xm;'

Using Eqs 34 the multiple scattering distribution can be
determined for a particular %(CF/%); However, Eq. 3lf becomes
inconvenient for large values of x, because in that case K(x)
becomes almost equal to f" (x;00) and the difference between two
large numbers rmust be used to givé a small one, . qu large values
of x therefore 1t is better to treat the modified cross section
.directly, rather than as a correction to the Moliere distribution,

This ls done as below,

Ce SECOND DERIVATION OF Ma(x).

Consider again the Fourier transform of the single scattering

1aw; ' /

o 'oo(e.z fqa_')tzz_l(?//g%)‘/ﬁ
5(€) J(e) = f T (e B )Y | (35)

Introducing the Moliere parameters X, oz and G as defined

Eq. 30 we get

| - vu,L*‘ Sﬁ(K/Xo<CnﬂL7“UJ
g(é——ﬁ)_j(o)‘:/a(n)—zéo ————-&—qﬁ;)/p_ - (36)

Adx_ [ ¢
M (X)X = 57?{4;61 CE s | (36a)
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Eq. 36 of course is the Moliere-Fouriervtransform if:-ﬁ (x'/xo) = i;
In the case of the point nucleus thls integral is evaluéted through
the observation that there exists an angle x! = K at which the
integral can be split such that K >7 x, but ¢ ';'\-c where ™|,

is the frequency in the neighborhood of the main Fourier compon=-
ents Then in the 1ntegratiof1 up to W the frctor (cos m x! - 1)
can be put equal to -('v\ X')e /2 and, in the integration from
K to; (x'2 + xmz)"'B/2 becomes x!”>, Both integrétio.ns can
be performed, and the splitting poifﬂ: ' cancels up to terms of
the order 1y 2,’, which are very small,

In the case with which we deal the argument is modifled as
follows, Again we split the integral at an angle K where xmlc
= \‘L“”'\;‘ ¢ Now we meke use of the important property of
the form factor given in Ege. 25 that 05" (ic'/xo) %1 for small
values of the argument x'/xo. In particular, for x' = 1/l our
chosen form of '}: (A‘ppe‘ndix A) gives a:)qN (1/L) X 0,96 for the
2 cm lead case, and 0,93 for the 5 cm lead case, The integral

up to W 41s thus the same as in the case of the point nucleus,

G R TR AL

Performing the first integration and using the fact that xm<< K ’

" Eq. 37 becomes

Q\‘“:‘ &m(\{/xb\*'xggw, (38)

where \m L\ /:.ub (QM XY~ 3/'1\
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It is understood that K must bé much -smaller than 1, If
now s(wl) is put into Eqe. 36a and the  terms multiplied by (2¢)~ -1
a$teY
are expanded in the same way as before,the M integrations, the

following result 1s obtained for the first order in (2G)~%,

M = .\R? \‘* Lo (e -dnhnd] g 5 N (0 (39)

where N (\.{__‘)Q:: ( 03‘ ()\l’d T(x, A) AN . and
| -—(%*—& %Q'(“ -\ -

T(%N) = -2e

In 1ts present form Eq., 39 18 convenient for calculation only
for large values of x(x= li in the 5 cm lead case) because in this
case e-xz'is so small that the precise value of W does not influ-
ence the result,

'However, for smaller values of x the exact value of W is of
importance, In order that the expansion of (cos v x'-1) in Eq. 37
be correct K must be much smaller than 1, Howeve.r, it is in-

convenient to evaluate the final integral of Eq. 39 numerically

for very small values of K.

o voan o

We can see more clearly what error is introduced if K 1s al-
lowed to become large by doing the following, Expand T(x,}\ )
of Eq. 39 in powbers of 2x\ ., Then neglecting terms of order
}\,* or (xh )4 gives T(x, N )% 2\? cs:"x2 (2x%=1)

page twenty-three
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Integrating N( Ka,' X) from 'K to L and letting i;f'( )«/xo) = 1
N
in thls integral we obtain

M, (X)= }”—;—[e_x ‘,623 (Qx—l)ﬁw (L. ze)+— i N(L, x)]

"But this 1s just the same result obtained by letting K_ =L in the
Fourier transform 8 ( ’7’( ) of Eqg., 37 Thus allowing K_ to become
large introduces the same error as would be introduced if the

final result were expanded iri powers of ZX/\.

To overcome this difficulty one can use the ‘propertj of the

form factor that ?(,\/X) %1 for values of A much larger than

7?;’ . Th‘en _f,\ T(X)A)a[)I can be evaluated analytically

' where L = %. This makes the numerical integration f,\ 'T'(X,A)?u/)‘)‘{/\
pragticable. In doing this it will be seen that the dependence

upon K. vanishes and a convenient and accurate expression for

M, ( X ) is"obtained, We observe that if L "‘l/LL then A can be

P LE 3
considered small even if ZXA is not, Thus we can expand e

in T( X)>\ ).,
C,,,,,R ) 2E (1= N Yeahadn=1)
T(x,) =26 ERCNENEE ) ( (40)
v 2 .
- taking only terms up to )\ ‘ . We evaluate

}\

This, after some labor, e== neglecting terms in KE or higher, gi\}es

8828, 26
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kS

-%
(___ cos‘n 2lx ?_-_\E_ Sy 2\_,;_‘ 4 (,\2 e +

X (20 \3{§ ii‘i\-‘il‘—nw“\:] a0k

(42)
Putting this result into Eq., 39 gives d::
Mot = T+ B e e & X >3, (%A\TQMW(\&)
) &?
wher99 < L\t@s\‘t \\

(L ¥) = (A “‘3 \ﬂm (L/ ) ¥

and

,cjj_,‘i ('L ”\ (L-Bl
g 4 -4

9 In our earlier communication by the same title, Leon N, Cooper
and Jemes Rainwater, Phys. Rev. 95, 1107 (1954), q(L,x) was given
as 2(2x% = 1) q (K) = 2(2x° = 1)%n (K /1.26) which was a suf=-

ficiently good approximation in the example there considered;

D, EVALUATION OF THE INTEGRALS

The integrals K (x) and N(L, x) which occur in expressions
for the multiple scattering distributions deri\{ed above can easily
be evaluated by numerical means. N(L, x) in particular can be

evaluated conveniently for values of L = 1/4 or 1/2, and for such
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values of L Eqe. U3 is accurate, These integraels do not depend
on the momentum of the inéoming particle but rather on B8 , which

~ 1 in the relativistic region, Thus a single computation is

sufficlient for all relgtivistic momenta. For different thick-

AN
LN
ALY

8828

nesses, or atomic number, the form factor is changed only through
the change in )¢, in &, (X /Xo). Table 1 gives the function
T(Xz)/\ )Afor various .vallules of X at grid spacings of 1/l for X .
Table 2 gives the values of the function q(L,X ) for L = 1/l for
relevant values of X , o

K(x) and N(L; X ) have been evaluated numerically for the
2 em and 5 cm lead cases for grid spacings of Ax = 1/2 and 1/it

using Weddle's rule;lo Compariéon of the results for the two

10 Ho Margenau and G, M, Murphy, "The Mathematics of Physics

and Chemlstry", D. Van Nostrand Company, Inc., New York,
N, Y09‘19LI»39 page L61,

grlds shows the largest numerical errors occur for the small
values of X; where the correction term is unimportant., For
larger values of X (X2 3) the change in the numerical results
for grid changes from 1/2 to 1/l is less than 2 percent., In all,
the'errors in the distribution due to numérical errors resulting
from the integration, for a grid of 1/, appear to be less than
1l percent,

For very 1argé values of X asymptotlc formulas can be

developed, For a form factor which decreases asymptotically as

oy
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. -3 :
const./xn the asymptotic expression is

Oy = Og [].+ 2 i 22+ 1) 4o ]

Such expressions give reasonably accurate results for x 2 6 (5 per-

cent or better); The procedure described near the end of section
2 1s also readily adapted to this method for a‘quick graphical
.correction procedure to obtain Ma(x) from the single scattering
lew, For real atoms at the larger angles incoherent scattering
predominates so that the form factor becomes SE(?V@%)?: z"1. Then
the multiple scattering distribution is giveh by the asymptotic ex-

pansion of the Moliere distribution multiplied by 71, Tnis 1s

M2(X)dx=;"’s“[l+)3(‘2"+#ixq +—--~j

The results presented in this section have included only
the first powers in (2G)'l; It is possible to obtain the next
order, but in view of the large uncertainty in the nuclear form
factor 3;‘; (q’/‘f)o) it was ﬁot considered worthwhile at present to
consider this term, |

We wish to thank Professor Robert Serber for helpful dis-
cussions ogrginglé proton fofm factor, We also wish to thank
Miss Hilda Oberthal for her assistance with the computations of

the results of the modified Molidre theory,
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APPENDIX A, THE SINGLE SCATTERING LAW

oy

The single scattering laws used in the calculations were ob-
tained in the following way. The Rutherford formula, modified at
small angles due to electron shieiding, is given in Eq. 3 following
Moliere., When nuclear extension is considered, thils mnst be
multiplied by a nuclear form factor Z;TCQ?QQJ‘which'contains a
part. representing elastic coherent scattering plus a part rep-
resenting inelastic scattering g(‘f’/¢) = Fc (?/ﬁ, ) + FI (CP/f% )e
In principle, if the nuclear wave functions were known exactly,
6ﬁe WOuld prefer to calbulaté-Fg by an exact phase shift analysisa
for spin 1/2 particles, and calculate F§ by considering in detail
all of the possible final states of the scattering system. ﬁow~

ever, the nuclear'charge'distfibution,'and the nuclear wave
functions are not known exactly, and, in fact, measurements of

Fg for fast electronsl1 are providing valuable information con-

1 R, W, Pidd, C. L, Hammer, and E, C. Raka, Phys. Rev. 92,

436 (1953); | | |
R. Hofstadter, H, RevFeChter,.and To As McIntyre, Phys. Rev., 92,
978  (1953); |

L. I..Shiff, Phys. Rev. 92, 988 (1953);

'R, Hofstadter, B, Hahn, A, W, Knudsen, and J, A, McIntyre,
Phys. Rev., 98, 512 (195L); | |

D. R. Yennie, D, G. Ravenhall, and R. N, Wilson, Phys. Rev, 95,
500  (195L) ) )

. 8}528 429 page.Fwegty-?;ght-
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cerning the nuclear charge distribution, In particular, mu-

12 11

mesonic x~-ray studiles, fast electron scattering™™ and other

Val, L. Fitch and James Rainwater, Phys. Rev. 92, 789 (1953);

12

L. No Cooper and £, M, Henley, Phys, Rev. 92, 801 (1953);
John A. Wheeler, Phys. Rev. 92, 812 (1953);
D, L. Hill and K, W, Ford, Phys, Rev. 9L, 1617 and 1630 (195L)

-

12, 13

experimental results which are sensitive to the nuclear

A -

13 F, Bitter and H, Feshbach, Phys, Rev, 92, 837 (1953);

B. G, Jancovici, Phys. Rev. 95, 389 (i95h);
D, C. Peaslee, Phys. Rev, 95, 717 (1954)

----- - -

charge distribution, éll agree that the nuclear charge distri-

bution is more compact than had previously been belleved to be
the gase, For a nuclear charge distributionw/o(r) = //g for

r {R = roAl/B, and‘/o(r) = 0 for r>R the radius R has clear
meaning and a best match to the above experiments gives rogjl.o
to 1.2 x 10"13em for not too small A. Elementary considerations
of quantum mechanics show that such a model cannot be strictly

correct, and‘/o(r) must be a continuous function of r, In this

_case,‘although the different experiments are not always sensitive

in the same menner to the shape of /~ (r), the eguivalent uniform
model rb is usually taken to be that value which gives the same

<<r2> as for the non-uniform /°(r)., Prior to late 1953 the

page twenty-nine
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value ‘of r  would have been considered to be "well known" and of =
magnitude 1.4 to 1.5 x 10'l3cm. Thus all’Of'thewcomparisons5’6=
between the experimental and expected multiple scattering distri=

butions used this larger value_of,ro;

Until recently it has been.customary to calculate Fg using

the Born approximation which gives a linear superposition of
the scattering amplitudes of the individual protons 80 the scat-

tered intensity is o;qtgg forn

. ) “g')?‘" 2 : 1 Z.c-" ) .
2 : Jys - _
A* [<ilZ e liy["= TR R (a1)
) |
where A~ 1is the scattering intensity of a single proton, q = k-ko

. ' : -
represents the vector momentum change in scattering, rj is the

- position coordimate of thé‘jth proton in: the nucleus; and the

evaluation is for the grdund'state'li P of the nucleus, Thus
(Fg)l/a is just the Fourier transform of the nuclear charge
distribution, For a uniform nuclear model; letting y =9/ ¢, ,
this gives
£ (3) = [ (atn v - Y A PP
N \v [3 sin y vcosy] A2)

Y
11

in particular has. considered the form of Fg (y) in Born approxi=-

mation for various simple anélytic forms for,/o(r); We note that - ¢

Fg 1s of the form of the square of a real amplitude term, and

thus gives diffractibn'minima when the.amplitude changes sign,
For distributions sufficlently peaked in the center.and with a’

gradual "tailing~eff", the amplitude may not change sign'anq

page thirty
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Fg will be a smoothly decreasing function of y., It is readily
seen from Eq, Al that F§¢O) = 1 and, by expanding the exponentials
and using inversion symmetry through r = 0, that the leading term
in the decrease of Fg for small y depends on <:r%>' o« In this
connection it is interesting to note that the widely used
Williams® formﬁla uses V(r) = (Z ez/r) (1 - e-Zr/R) for which
ALlr) = (LP/3) (R/r) e—2r/i§, and <r2> = 3R2)[2:. Here/g is the
charge density for a uniform nucleus of radius R, Although
Williams implied that this distribution closely approximates a
uniform model, and it has been taken by other36 as corresponding
to the uniform model, it actually corresponds to a rather strongly
peaked distribution about r = 0 with <r2> larger by a factor of
5/2 than for a uniform distribution, and thus a correspondingly
more rapld initiasl decrease of Fg for small y., For lafger y it
gives a uniform decrease of Fg with vy with an asymptotic form
lé/yu for large y. In the region of large v Eq. A2, between
minima, has a steady decrease with y which can be estimated by
neglecting tha sin y term and setting ,cos y’ =~ 1 to give an
aéymp?otic form 9/yu, which is below that for the Williams distri-
bution, | ..

The detailed phase shift calculations of Yennie, Ravenhall,
and Wilson, using various aSsumed//?(?), show that the shape of
Fg (y) ;s enargy-dependent_and significantly different from the
Born approximation value for‘highfz materials., In particular,

the scattering amplitude 1s a complex number which circles the
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value'Zero in the complex plane wﬁén "changing sign“. Thus the
"diffraction minima" are largely missing, or are greatly reduced'

in magnitude compared to the Born approximation results. This |

feature is also apparent in the experimental results and had led

‘to nn initial "Born approximation interpretation™ that)/)(r) must
resemble an exponentia'I distribution. The interpretation favored
at’ the time of this wrlting is that//D(r) can be fairly. constant

for values of r containing most of the charge distribution, with
a gradual dropping off at the surface

“In view of the above results, and with the consideration that

we wish to choose a form for FN which will not. underestimate the

‘expected multiple scattering due to the known electromagnetic ﬁ

. Interaction of mu-mesons with protons in examining the results

of experiments investigating possible “anamolous scattering",

we have chosen the following form for Fﬁ}' For y = 0, 1, 2, 3

we choose Fg = 1,00, 0,82, 0,50, and O.lSIto approximate Eq. A2

after the effect of the first diffraction minimum is "removed"“'

A smooth curve through these points is then Joined smoothly to

C.
N

and the value obtained above for a uniform distribution. In

F 12/&“ for y L, this being between the Williams formula
principle this should be applied to the cross section for total *
-angle scattering rather than for projected angle scattering as
we do here, The consequences of this approximation are discussed
following the discussion of Fg;

The calculation of the inelastic scattering i1s quite dif-

thirty~two
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ficult to perform exactly. Amaldi, Fidecaro) and .IVIzaLrianil}Jr have

h E. Amaldi, G. Fidecaro, and F, Mariani, Nuovo Cimento 7,
553 (1950)

’carried out detéiled calculations of the inelastic and elastic
scattering expected, using a particular independent particle
nuclear model, For incident particles of very high kinetic energy
and cp ~~ 100 Mev), a Born approximation treatment similar to
that used in the theory of x~-ray scattering by éfoms should be

reasonably accurate and gives the result, as for x-rays;lS that

15 ce fo A, H, Compton and S. K. Allison, "X-rays in Theory

and Experiment", D, Van Nostrand and Co. (1935), Chapter 3,

Fr 275 (1 - F$) times the form factor for the scattering by a

single proton., This last factor must be included if the proton

' 1s not effectively a point charge (due, say, to meson cloud ef=-
fects), Amaldil etallu have partlicularly emphasiied this point
and have calculated the expected effect of the proton &gize"’on
the basis of a simple model, Expgrimentally, however, 1t seems
that the proton charge diétribuﬁion should be treated as»being;
confined to a surpriéingly small volumé on the basis of electron

16

‘scattering experiments, and, by'inference, from the interpre-

16 J. A. McIntyre and R, Hofstadef, Bulletin of the American

Physical Society, Vol, 29, paper Il (also see paper I2) A.P.S.
meeting at Seattle, Washington, July, 195L.
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tation17 of the experiments on the neutron-electron interaction.

g

17 see L. I. Foldy, Phys. Rev. 87, 675 (1952) for a discussion

of this subject and for reference to earlier papers.

-

| Thevexperiments‘show that the proton form factor 1is essentially _
unity for cp ~ 200 Mev and at angles ~ 90°, sc we take it to be
essentially unity for cp @ values considered in this paper, For
large enough value of cpP this factor will eventually become
important and require coneideration;
If the single proton form factor 1is set equal»to unity, the
above expression for F§ can be understood by analogy with x-ray
scettening where the "inelastic" scattering corresponds to modi-
fied Compton elastic scattering, where the recoil momentum is
taken up‘by a single (moving) electron rather than by the atom
as a whole; The final etates of importance correspond to recoll
electronimomenta centened about the photon momentum transfer,
‘_modified by the initial electron momentum distribution, which

is given by the Fourier transform of the ground state wave function
~of the atom, For“charged particles of kinetic energy and cp >>
i'100~Mev;'and for y*>;>‘i the final states of importance should

'be attainable with moderate energy loss, .80 the expression for

the total scattering intensity in a given direction can be written
vwith fair accuracy by summing»over-all final states, keeping q,

for a given angle, the same as in the elsdstic case,
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o o (a3)

_by closure, For an independent particle model Eq. Al and Eq, A3

lead to the abbﬁe quoted result for F§; Thus we set

:}; = F;C+ FNJ,’ = FNC-{- Z_l(l - FNC> (Aky)

The remaining point to be considered 1s the error intro-
duced when :}% is applied to the law for projected (rather than
: ' ~n
total) angle scattering, For a do/df law varying as @ , the
projected angle single scattering law is obtained by multiplying
do/df by PCM), where c(n) = /2, L/3, 16/15, saz/lé and 32/35
/2, n~-2 o(
X!
In going from n ~u.for Rutherford scattering to V\— 8, (which

for n=1.u4, 5, 7, 8, and 9 respectively (C(W)"Q-f

is obtained when the asymptotic form of Fc multiplies the Ruther-

N
ford scattering, c(n) 1s reduced by the factor of 5/8s This rep-
resentg’an gxtreme situation since z;& is more slowly varying,
-We note that the abdve effect can approximately be taken into
account by choosing r, ™ 10 percent larger than otherwise when
applying :;h to the law for projected angle scattering., In the
examples we choose r, =1.1 x10 =13 cm, corresponding to r, ~
1.0 x 10 -13 cm for do/qn. ‘;p‘ylew of the uncertainty concerning
the exact form for the trﬁg'.:FN(y)5 we consider this approxim-

ation to be adequate for the present,
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APPENDIX B. DISCUSSION OF_THE'EXPERIMENTSS’6
ON MU=-MESON SCATTERING

The interest of the authors in the multiple scattering theory
was maihly stimilated by the possible consequences of a strong
:anomalous mu-meson-nucleon interaction on the interpretation of

the mu~-mesonic x~ray experiments;la Coamic fay experiments on

- the scéttering of fast mu-mesons by nuclei suggested that some
énomolous scattering exlsts, vut the interpretation of the experi?

- ments are not completely unambiguous, and theré 1s considerable
disagreement on the magnitude and exlstence of the effect. When
these experiments were analysed, the expected maltiple scattgfing
distributlon for an extended nucleus was obtained.by vafious ap-

‘ .proximatiqns such as comparing the experimental results with the
predictions of the Molidre and Olbert theories, or by using the |
Williams theory; In all cases the old “large“ nuclear size was
used which gives <:r2> twice that favored by recent experiments,
Thus the experiments were always analysed on a basis that under-
estimated the coulomb'muitiple scattering, Aside from'the results
of the experiments discussed beloew, we note that the mu-mesonic

~X-ray results indicate that any anomolous energy independent
‘nuclear potential for the mu-meson can in its effect at niost be
equlvalent to a 8light change in the choice of the nuclear radius

when calculating the coulomb interaction, This could not explain

any significany portion of the anomolous scattering reported in
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8828 37



. R-83

some of the experiments, Also, experiments on the nuclear'interq

action by Annis et a118 cen be explained without ihvoking'any’

18

o

M. Annis, H, C, Wilkins, and J, D, Miller, Phys. Rev. 9l,
1038 (1954)

anomolous interaction, Such an "anomolous interaction“ would have
to be strongly energy-dependent and thus only appear strongly at
high energies to explain the low energy experiments,

Amaldl and Fidecaro5 investigated the large angle scattering
of fast mu-mesons’in the energy bands 200 Mev to 320 Mev and ;>320
Mev, using a counter hodoscope, They compared the large angié
- multiple scattering in iron and lead, emphasizing the iron re-
sults as far as ancmolous scattering i1s concerned. About 5 x 10S ;
inclident mesons were counted and results for iron were consistent
with no anomolous interaction, In their series 2 run on iron 249,
168 particles were incident and 3 scattered particles were ob~
served in each energy band; When an extra 200 gm/cm2 of bricks
::;eplaced'above the apparatus to decrease the number of protonsv
etc., 204, 91l particles were incident with one scattered count
in the lower energy band and none in the higher energy band, The
latter numbers are about the expected values for scattered protons,
etc, with that amount of filtering. They set adﬁﬁpper limiﬁ for
-29

"anomolous scattering™ of ~ l,5 x 10

0'290m2/nuclean.in the upper energy

cm?/nuclean in the lower
energy band and ~ 2,3 x 1

band, These valuesvasSume isotropic scattering for thé anomolous

L3
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part. ‘
 Whittemore ahd Shutt investigated the‘multiple scattering of
negative mu-mesons in 5 cm of lead for particles having 0,3 Bev £
ép £ 3,1 Bev using two cloud chambers and a magnet for momentum
Manalyéis; Their experimental points essentially fall on the Scott-
Snyder (Moliéfe) curve for pC?S;l3 Bev degrees, with one point at
17 Bev degrees a factor of about two below the Molieére curve (but
with a large statistical uncertainty). From Fig, 5 these points
“would also fall above our theoretical curve., The principle dif-
ficulty in the interpretation of these results is the question of
the certainty that only nu-mesons were involved., It is of interest
"in this connection that the later experiments were conducted under=-
ground, or, in one case, using 1 méter of lead absorber above the
cloud chamber to assure greater beam purity. Also we should like

19

to point out that measurements on the scattering of cp ~ 200 Mev

g -

19 John 0, Kessler and Leon M, Lederman, Phys. Rev. ok,
689 (1954)

m-mesons on Pb show differential cross sections for elastic plus
inelastic scattering which are always ~ 0,1 barn or larger. By
contrast, the elastic scattering experiments using electrons of
comparable momentum give differential cross sections which are
NlO-6 barns at 1200, a factor of 105 below the m=-meson cross
section, This contrast 1s admittedly extreme, but it emphasizes

the importance of not underestimating the possible importance of -
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small‘percentages of beam\oontaﬁination in such experiments.

The remaining experiménts used greata; absorbér thickness at
sea level, or operated undergraﬁnd to minimizé beam contamination,
They have the common feature, however, that the momentum distri-

Mbution of the incldent particles was not measured directly, but
was assumed known from other sources, Any error in the assumed
known momentum distribution would tend to affect.all of these
experiments in avsimilaf fashlon, The fact that the observed
scatteriﬁg‘distributions are not given directly as a function of
P @ makes comparison of their final curves with our calculated
M( @) difficult,
| George, Redding, and Trent measured the multiple scattering
of penetrating cosmic ray particles in 2 cm lead plates at 60 m.w.e.
underground using a counter-triggered cloud chamber. Three
experimental arrangements were used for the triggering counter
telescope involving 0, 5, and 10 cm lead below the cloud chamber,
The particles were all assumed to be p-mesons and the momenta of
the individual particles were known only to be above the cutoff
values determined by the lead absorber thickness;' The analysis
was made by assuming that the energy distribution was flat for
E << E, = 12 Bev, The experimental distribution N(9) was com=
pared with one caiculated ﬁsing 8 weighted average of gaﬁésian _
functions (one for each energy) in accord with the abo?eﬂpre€
scription for the assumed'enefgy distribution, No anomolous
scattering was observed using 10 cm of lead, but‘a small amount

of "enomolous scattering" appeared at larger angles when O or 5 cm

8828 40
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lead was used, They conclude that no anomolous scattering is ob-
served for kinetic energles P>~ 200 Mev, and some may exlst for

lower energles, It 1s interesting to note that the curves for.

| 0 and 5 cm lead show essentially the same excess over thelr

theoretical curves whether point nucleusvscattering is included
or not, It would be desirable(to have a direct measurement of |
the momentum distribution of the incident particles,

Leontic and Wolfendale used a muitiplate cloud chamber at ses
level with a counter telescope that required that detected par-
ticles traverse 1 meter of lead above the chamber, six 2 cm lead
plates inside the chamber, and 0, 5, or 10 cm lead belc:;w the
chamber., It was assumed ﬁhat the 1 meter of lead excluded all
but p-mesons from the measurements; The main analysis compared
the maximum scattering»ih any of the center four plates with the
r. m. s. angle for the four plates, The analysis made the as-
sumption that the baslc multiple scattering law for any given
particle should effectively be a gaussian at all angles if no
anomolous scattering were present, By an ingenious analysis they
showed that the results were incpnsistent with this assumption,

A further analysis assumed that an "anomolous scattering gaussian®
would be superimposed on the normal multiple scattering gausSian

in some small fraction of the plate traversals. They then ob=-
tained a best matching of parameters, Unfortunately,-the éelection
criterlion for considered events was biased in favor of selecting
cases where "anomolous scattering" (or the non~gaussian multiple .

scattering tail) Qcpured; Dr, Wolfendale informszo us that a .
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preliminary re-examination suggests that %hé essential features
of the results wlll not be seriously altered on correcting this
bias factor, but we have not seen the detalls of such a re-exanin-
ation,

The mesasurements of Leontic and Wolfendgle have been exten-

‘ded by McDiarmi&zp uging a different and intefesting analysis,
ng

20 Private Communication., We wish to thank Professor G. D,

Rochester and Dr, A; W. Wolfendale for corresponding with us
concerning the ammlysis of the experiments of the Manchester
group on p-meson scattering, The paper by McDiarmid is scheduled

for publication in Phil, Mag.

-

The results seem to contradict those of George, Redding and Trent.
in that no anomvlougy Scatterimg is observed for low enefgieé. At
higher energies the expérimental results are between the Moliére
end Olbert multiple scattering curves for a (partially) assumed
distributlon of iIncident particle qnergiés, The fesults are closer
té the Molidre then to théJOIbert qurvés, We have not, howevef,
performed thé detalled folding together of our final curve with
their»derived mohenﬁum distributions as 1is necessary for a quant-
itati%e compariéon;' | | |

‘References to eérlier papers will be found ihtthe articles

discuségd abgve,

page forty—one 
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FIGURE CAPTIONS

Fig; 1, ‘Curves illustrating the fipst method of computing_the
| multiple scattering distribution M (y) for cp = 1 Bev
in 2 cm Pb, including only coherent scattering. g =
singlé scattering lawg MAl = multiple scattering gausg=
sian for single scatterings through v £ .5, =
Vmultiple scattering distribution for single scatterings
through.y > Q.S; FN is the_assumedlcoherent nuclear
form factor, Multiply ¥y by}l.?h for Bev degrees. A
nuclear size R = l._OAl/3 x 10 13cm was used for all
of the examples of the figures,as discussed‘in Ap~
pendix A, .' |
Fig. 2. Curves for the same case as in Fig. 1., The Molidre
‘Jand101bert multiple scattering distributions are.
shown for.comparison with Ml(y). The Olbert distri-
bution 1s for a single scatteriné cutoff angle of y =
1;0. The point nucléus and extended nucleus single
scattering distributions arse g’fand ge
" Fig. 3. Curves for c¢p = 1 Bev and 2 cm Pb using :;k for tha
' total elastlc plus inelastic scattering., g! = point
nucleus single‘scattering lawg g = g!:?% is the as-
'sumed extended nucleus single scattering law; Mi’
- 1s the resulting multitle scattering distributicn;
Multiply y by 1l.7L for Bev degrees,
Fig. lie Cutves for cp = 1 Bev and 5 cm Pb using only coherentb

scattering. gl, g,‘ZF%, and M, have the same meaning

18828° 43
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FIGURE CAPTIONS (Continued) -

as in the preceding figures;b Multiply y by Ll.74 for
Bev dgérees; o |

Fige 5. Curves for épjz 1 Bev and.S em Pb using fhe total elastic
plus inelastic scattering. The symbolslhave'thé same:

- meaning as in the preéeding figurés;
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25
«50
75
1,00

1.25
2,50

1.75
2,00

2.25
2.50
2.75
3.00

xX=

-7.755

. =3.539

-2.0L40
-1,2642

x10”1
-8 009)4-
-5.301

© =34557
o -2 024-5)4'

x10~2

=17 147
-12 0775
"9 .612

=7 0L|-06

x=1

2,793

1,1875
0.5936
0,2826

%1072
10,751

1.3329
-3 4087
~11e597

x10™2
-1 +619
-4.03l
-36313
=2,657

x=2

x1071
10,540

54656

La113

3031

x10~1
24730
2.199
1.6845
1.2042

x10™2
70926
L e7499
2,56l
1.,2268

T S
-3 ~( +A)z' -
TABLE T, Values of TuNA=[e e M—-zﬁ ]’\

x=3

x10™2

1.9112
1.3507

1.h421
1.8069

x10™%

2.382
3,116
3.907
4.595

x10™2

5,000
14,983
lL,516
34703

x=l

X105
34650
34649
6,079

12,319

x10™4

2+659

54719
11,810
22489

x10™3
11,106
6,716
10,079
13.625

x10~8

08163

1.2620
3.385
11,251

Jr;lo"'6

1.4178
L.827
15.426

x107k4
O.11561
1.2355
30Ul
6,781

Xx=

’ -t
L3 o]

0.250L

0.5793

24537
13.887

%107
0,08138
0.14756
2,670

14,067

x10™7
0.6858
3,062
12,438
4S.71

x=7

x10~13
0.02241

0,2159

1.9982
17.360

- x0710
0.13953

- 1,0273

6.879
41,68

3
“

8825



Table T (o) 56

DN
"

A x107%  x107? x1073 x10™3 x1072 . x1073 x107> x10™7
3.25 . =5,826  -2,125 5.039 27436 1.6598  1,3625 1.5136 1742276
3,50  -l.665  =1,7116  1,6040 18,159  1.8165 2,458 11,503 1.1161
3.75 -3.793 -1,3942 0,19227 10,800 1.781L 3.975 12,003 1,905
1,00 =3.125 -1,149Lh -0,28618 SeTllt 1.,5625 5,748 28,62 19,283

%1072 x10"3 0% xoh  x1073 %103 x10™H X102
.25 -2.605 =958l -3e947 27427 12.237 Tel23 64093 0,6769
LS50  =2,195  =8,074  =-3,808 11.539  8.547 8.547 11.567 2,118
Le75  =1,8662 =6,865  =3,370 L.311  5.317 8,765 19,558 5.906
5,00 =1,6000 =5,886 -2.921 1455 24943 8.000 29.43 1,65

x10™3 x1073 T xot  xo®  xoH x10™3 x1073 x1071
5.25 =13,821 -5,.085 -2.530 2.0l 1l .1i86 6.492 3.92h 34232
5,50 =12,021 LG22 - =2,201 10,120 64335 )i 681 Iy, 681 6.335
5.75 =10,520 -3.870 -1,9268 1.4347 2.460 2.997  L.S1 11,026
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x10™3
-3,01L
2,679
-2,392
2,145

%1073
=1,9307
-1,740
-1,5806
'leu370

x10™3
-1.3103
-1,1980
-1,0983
-1,0092

x1074
-195004
"‘l 03339

'=1,1911

=1,0680

x1075
=9,613
-8,683
=7 +869
=74155

xlo"5

=652l

=56965
=568
‘50025

9

x10~7
-9,050
-8,813
-8,000
~7.193

x10~°
25093
7,029
1.689
0.3591

=8

- x10
6,729

1.,0809
0,1195

x10~4
8,586
3.838
1.5208
065340

x107°
16,4610
Le576
1,1162
0.24103

%10~
16,07
Te792
1.1660
0,1543

%1073
3.8L8
20836
1.8465
1.0726

xlo’h
5.500
241498
1.0048
043577
-6

11.273
30143
0,7756
0,1693

s .5 ¥

%1073
20326
2,836
3,055
2,916

x1073
21165
1.8461
1,2200
0,7185

x10‘5
37033
17.162
6,981

20512

5
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TABLE II. VALUES OF g(L,X) for L

T e T

a(L,X)

5
1.0
1.5
240
2.5
3;0
3.5
4.0
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1.595

—30218:

-11.339
-22007

| “3u065

=740
-57+U48
—60;35




