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ERRATA f o r  

"Relativist ic Quark W e 1  as Representation of Current Algebra" 
by MURFUY GELL-MA" 

( CALT-6 8 -10 3 ) 

(2)  
is2 i 

2 ' . . * * * *  
Page 9: 2nd l i ne  of instead of + e  

Eq. (2.5): 

is2 hi (2) 
. . . . . . . 2 read - e  

Page 20: Line 5: instead of "commutable i&inity" 
read ' I  countable infinity" 

Page 32: Line 3: read ltp(l) = 1 when the whole system i s  a t  r e s t  
or P = 0; f o r  a f ree  particle" 

$.- 

Line 5: read "quark i s  a t  r e s t ,  or P/2 + - x = 0. Thus we 
m 

construct I' 

iy(2) . a  

0 
read iy(2) .  fl 

2 instead of 
x 

Page 24: last 2 lines: instead of ,/ %* + Pz2 read , 1- + Pz 

instead of \I=- r e a d '  ,/%2 + P: -t k2/4 
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ERRATA f o r  

" R e l a t i v i s t i c  Quark Model as Representation of Current Algebra" 

by MURRAY GELL-MA" 

( CA LT -6 8 -10 3 )  

Page 29: Eq. (5.5) : Add t o  t h e  right-hand s ide the term 

4m2 

E (5 .6 )  Add t o  t h e  right-hand s ide t h e  t m 
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Let us summrize the discussion in the f irst  part of th i s  work on 

the use of equal-time cammutation relations of charge densit ies a t  

in f in i te  momentum. 

t o  a l l  orders in the strong interaction, and wi th  weak, electromagnetic, 

We consider the space of a l l  quantum states of hadrons, 

and gravitational interactions treated as perturbations. We assume the 

va l id i ty  of equal-time commutaticm relations among the time-components of 

vector currents Ti,(x) and ax ia l  vector currents 3ia ( x ) ,  w i t h  

i = 0, 1, . . . 8, such tha t  only 8-f'unctions appear on the r ia t -hand  

sides and no derivatives of &-functions. We sandwich these relations 

between hadron 

arbi t rary f i n i t e  Px and P ) and l e t  the common value of Pz tend t o  

inf ini ty .  

5 

states of equal momentum Pz i n  the z-direction (wi th  

Y 

- 7  

* I n  fac t ,  we work wi th  transverse F m i e r  components of' the charge - 

densit ies : 

I 

P 
%ii3 

where hL i s  in  the x-y plane. These operators, by vir tue of our 

assumed commutation rules, have the commutators 
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Now we label each hadron state by i t s  momentum ( Px, Py , Pz = 00 ) , 

Y i ts  he l ic i ty  h (effectively equal t o  Jz since 

f ini te) ,  and an index N t ha t  includes all other labels, such as mss M, 

in ternal  angular mamentum 

matrix element aP Fi(,kl) or Fi (,kL) has the property 

Pz + 00 with Px, P 

9 ,  pari ty  8 , e t c  . We then find that the  

5 

t h a t  is, at  

F' + 
*.. 1 
the difference gi - P 

thus we can write the matrix elements in abbreviated form as i n  (1.5) 

and (1.6). 

Pz = 00 the matrix elements are independent of the  sum 

of the final and i n i t i a l  transverse momenta and depend only on 

which equals lcI by momentum conservation; .-.I' 

The analogue a t  P = 03 of the angular momentum2 of the system 

f z  ~h 

2 

a t  r e s t  i s  easily defined; we c a l l  it 2 a,nd it is made up of 

and defined by 9 x  and 9 Y  

where (h' I gxl h) and (h '  I9,i h) are ordinary Clebsch-Gordan 

coefficients. A s t a t e  of in t r ins ic  angular momentum 6)N then has, 

a t  Pz = OD, 
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The operators M (mass) and b) ( i n t r i n s i c  parity) have similar behavior: 

We now establish the angular momentum and parity properties of the 
5 operatars Fi(ki) and Fi (BL) according t o  r e l a t iv i s t i c  kinematics. 

Since the Lorentz transformation from rest t o  a fixed momentum Pz i n  the 

z-direction depends on the  mass M, the angular properties of the matrix 

elements of Fi(gL) and Fi ($L) involve the initial and f i n a l  masses 

14 and M' respectively. The conditions imposed by r e l a t i v i s t i c  kinematics 

turned aut 8 s  follows. 

5 

Fi r s t  of' al l ,  

k ( N ' h '  lexp (arc  tan - arc  tan m)} 

5 

act  only on the i n i t i a l  end final 

hac 

x-direction, Here the matrices 

hel ic i ty  indices h and h ' ,  and the rotation angles depend on the ini t ia l  

and  final mass eigenvalues, M and M' respectively. The parity and time- 

reversal  properties m e  reproduced here: 

l q x l  5 1, and the same f o r  Fi (kl), I. with El taken i n  the 

Q Y  

, 9, Fi(k) even under f' e and r e  

In 9, in '' and even under e Fl (k) odd under e . 5 

We repeat a l s o  the properties under k-reversal: 



Fi(k) + Fi( -k) has A 9, even , Fi(k) - Fi( -k) has A f z  odd , 

F:(k) + Fi (-k) has A B z  even , 
(1.12) 

5 5 F;(k) - Fi (-k) has A 8, odd . 

3 Finally, there axe the conditions an 

when M' - M = 0 ( the allowed multipole conditions) and, if we want t o  

include t h e m ,  the forbidden multipole conditions t o  each order i n  M' - M. 
These are mentioned in the first part of the notes, but we shall not  use 

them explicit ly;  they often come out automatically. 

l A 9 l  for the coefficient of k 
*.rr 
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11. RELATIVISTIC REFRESENTATION OF' CURRERP ALGEBRA 

We have postulated that, t o  a l l  orders i n  the strong interaction, 

the set of all quantum states describing hadron systems with a given value 

A of baryon number, a t  

ta t ion relat ions (1.2 - 1.4) of the local algebra of vector and axial. vector 

charge densities. 

and par i ty  @ f o r  these states, as w e l l  as a mss operator M, the angular 

re la t ion (1.10) and the M e r  conditions (1.U - 1.12) are obeyed exactly 

between every pair of states. 

Pz = 00, constitute a representation of' the commu- 

2 We have seen also that, d e f b i n g  angular momentum 

Dashen and I now propose t o  construct smaller mathematical represen- 

tations not only of the current commutation rules but af t h e  whole algebraic 
system composed of Fi(,kl), Fk 5 (lcL), 9 ,  8, and M. The purpose is t o  

I.... 

describe approximately an idealized infinite set of meson or baryon states, 

including the well-known low-lying bound and resonant states, and perhaps 

including a l l  well-defined resonances. A t  very high masses (many BeV) 

no doubt the description i n  terms of such resonances is  highly idealized, 

but over the first few BeVthe resonances may w e l l  be a good approximation 

t o  the  real situation in w h i c h  complicated contlnua of many particles are 

involved. 

in a s e t  of resmances gives a reasonable description af many phenomena. 

So far it has been our experience that subsuming these continua 

If we f ind  such small representations of the algebraic system, with 

very f e w  degrees of freedom, we may suppose that all or nearly a l l  of the 

baryon bound states and resonances belong appracimately t o  such a 

representation in the same sense that the lowest ten  baryons with 

J = 3/2+ belong approximately t o  the  10 representation a€' the U ( 3 )  *- 

algebra of the Fi( 0). In f ac t ,  the state n'( 1675) is  bound and 
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perfectly well-defined, while n(l.240) is a very broad resonance tha t  

actually represents a chunk of (EN) continuum; nevertheless, the decimet 

approximation has been highly successful. In  the same way, we have hopes 

of describing a l l  or m o s t  of the baryon resonances in a useful approxi- 

mation as belonging t o  a single r e l a t iv i s t i c  representation of our 

algebraic system, with a small number of degrees of freedom, rather than 

the huge representation t o  which a l l  the states, including a l l  the con- 

t i n u a ,  actually belong exactly. 

To represent just the commutation relations (1.2-1.4) w i t h  a small 

number of degrees of freedom i s  t r i v i a l ,  We could take f o r  the mesons, 

for  example, a representation corresponding t o  a mathematical qpark and 

antiquark : 

where x i s  an ordinary three-dimensional space variable operator (it could 

even be twodimensional, since & is two-dimensional), the hi'') are 

the nine isotopic matrices of' a 2 representation of' U ( 3 ) ,  the hi ( 2 )  are 

the matrices of a 5 representation, and the 

matrices of two spins of 1/2 each. The minus sign i n  the second rela- 

w. 

a 's are  j u s t  the Pauli 
Z 

t ion i s  natural since the axial vector current behaves oppositely under C 

t o  the vector current. 12) 

5 To represent the system of Fi(kl), Fi (lcL), 9, @, and M is  - 
somewhat more complicated. We nust make x three-dimensional in order t o  

c.1 

accanmodate 8, which w e  can take t o  be the  ordinary expression 
rcn 
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where c p is  the mcxnentum canju@;ate t o z .  Parity i s  t r i v i a l l y  represented: 

where L(L+l) 

canes from the  in t r ins ic  par i ty  of quark and antiquark. 

is the eigenvalue a€' ,L2 = (x M X P ) ~ ;  t h e  extra minus sign 

Charge conjuga- 

We now take a mass operator M that c d e s  wi th  2 and P and 

M can depend an IC, I)... p, ,d (1) $> with charge conjugation. 

Ai(2). Thus the whole spectrum of the  meson states we describe, with 

their  masses, spins, parities, and charge CmJugations, is  specified by 

the  operator M, with i t s  eigenvalues % and eigenf'unctions 

, ~ 

, hi('), and 

qm, 

. (2.3) 

5 Finally, we m u s t  make Fi(&) and Fi (&l> obey the angular 

condition (1.10), which they wil l  not do in general if we take the simple 

ex-pressions above. 

expressions in order t o  accammoda;te the angular condition. 

thought that a single unitary transfomation would do the trick, but it 

turns out t ha t  two different  ones are necessary: 

We nust perform a unitary transformation on these 

Dashen and I 
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where S1 and S2 axe so adjusted tha t  we s t i l l  have both of the f i rs t  terns 

i n  (2.4) and (2.5) cmmutfng with both the second terms, jus t  as we do f o r  

S1, S2 = 0. 

angular condition (1.10) satisfied. 

perties of Fi(lcL) and Fi (EL) are guaranteed if we talce S1 and S2 

( w h i c h  commute with 9,) satisfying 

We must now -her adjust S1 and S2 so tha t  we have the 

The pari ty  and time-reversal pro- 
5 

in 9, even under e sl, s2 

and 

in P y  
S1,S2 even under e . (2.7) 

We shall see l a t e r  that there is one trivial mass operator, namely 
2 M = 2 J m2 + p , 

S1 and S2 have been found with t h e  required properties. 

that there i s  a class of M operators, including same w i t h  discrete spectra, 

such t h a t  we can find S1 and S2 w i t h  the  necessary behavim. 

suggest that  one of these allowable M operators w i l l  give a good descrip- 

t ion of' the  meson system, including a l l  or most of the well-defined 

excited s ta tes .  

corresponding t o  a free qgark and antiquark, f o r  which 

Let us suppose 
nu 

We then 
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The eigenvalues % give the masses of bound and resonant s ta tes ;  

the corresponding wave functions qm(z) give the angular mentum and 

par i ty  of each s ta te ,  as  well as the isotopic spin and strangeness, and 

the value af C when Y = 0, We can calc-te a l l  the Rem trajector ies  

on which our mesons l i e  by solving the eigenvalue equation ( 2 . 3 )  fo r  

non-integral values of J. 

A l l  the matrix elements at  Pz = a, of the operators Fi(&l> and 

are found by sandwiching the operators (2.4) and (2.5) between 5 
Fi (gL) 
qNlht  and qm. lhus nearly a l l  the electromagnetic and weak form 

factors between meson s ta tes  can be calculated. A 1 1  Pian 

couplings t o  two mesons can be calcubted in  the PCAC approximation from 
5 the matrix elements of Fi (0) 

calculate certain other meson couplings approximately. 

* 

and similar techniques can be used t o  

Finally, we can loak a t  the result ing form factors and see if all 

the vector current form factors exhibit poles at  the same se t  of negative 

values, - (pn ) 

form factors a l l  exhibit poles at  the same se t  of n e e t i v e  values, 

- (pn ) , 
requiring that these values agree w i t h  the calculated values - 
and - (%A)2 of' the negative squares of the masses of the vector and normal 

axial  vector mesans with the appropriate isotopic spins, strangeness, 

v 2  2 
of &I . If' they do, and if the ax ia l  vector current 

A 2  2 of Icl , then we can impose the bootstrap condition by 

and values of C. 

conditions imposed on the mass operator M by the bootstrap requirement, 

In  t h i s  way, if the formalism permits, we can ffnd the 

and perhaps nearly determine i t s  form. 

If the fonn factors can be made t o  exhibit the  right poles, then 

of course the formalism gives def ini te  predictions of the coupling 
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constants of all vector and normal axial vector mesons to a l l  pairs of' mesons, 

even without assuming the va l id i ty  of methods like PCAC. 

also requires, of course, that the meson-meson-meson couplings determined 

in t h i s  way be to t a l ly  syxnetric i n  the three mesons and we must see if 

the formalism can satisfy tha t ,  too. 

The bootstrap 

It is easy t o  see how t o  apply our remarks t o  the baryon system. 

We take a three quark representation, with two 

described by zl, ,x2, and z3 and the  constraint 

two independent coardina;te operators belong t o  the two-dimensional 

representation of the permutation group an three objects, the one given 

coordinate operators 

+ z2 + ,x3 = 0. The 

by the Y m g  diagram 

the obvious way 

. The angular momentum i s  represented i n  

and the par i ty  by the t o t a l  orbital parity. 

under 

b ' s ,  and A ' s .  The current algebra is represented as follows: 

The mass operator M is invariant 

P , 9 ,  and permutations of the three quarks and depends on m-. x' s, 
c" 

c 

is3 hi(3) % l ' 5  (3 )  -isg 
e e > 2 + e  (2.9) 

(2.10) 
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where Sly S2, and S3 axe adjusted so that  the f irst  terms commute with the 

second terms, and so forth,  and so tha t  the angular condition (1.10) is - 

obeyed. 

are guaranteed if Sly S2, and S3 obey the conditions (2.6) and (2.7). 

A g a i n ,  the parity &nd time-reversal properties af the currents - 

Again,  we have no idea how wide i s  the C b s s  of mass operators M 

for which all t h i s  can be dane, but we hope that it includes one that 

gives a good description of the baryms. Once again, the spectrum of 

states ,  the Regge tragectories on which they l i e ,  the form factors of 

vector and axial vector currents, and the couplings of vector and pseudo- 

scalar mesons can a l l  be ccmputed. We can t r y  t o  impose once more the 
5 2 condition that the operators Fi(lcL) and Fi (k.l> have poles i n  lcL 

precisely at the negative squared masses of the  vector and axial vector 

c 

mesons respectively. 
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111. RJGATION TO APPROXIMATE SYMMETRY 

r 

kt us assume tha t  we can find suitable mass operators f o r  t h e  

meson and baryon systems t o  carry out the program outlined in  Section I1 

and obtain reasonable agreement w i t h  experiment. What do we have, and 

how is  it related t o  attempts that have been made so far t o  describe the 

mesons and baryons? 

F i r s t  of all ,  we have described representations in which the higher 

states are given by orb i ta l  and radial excitations, staying wi th in  the 

mathematical <q or qqq configurations, not by excitations of "quark 

spin" and unitary spin, which would correspond t o  canfigurations l ike  

qqqq or  qqqq; and higher. Thus we are ignoring all baryon states wi th  
- -  

SU(3) representations other than 1, 8, and 10, and a l l  meson states wi th  

SU( 3) representations other than 1 and 8. So far, there is no very con- 

vincing evidence t h a t  resonances with such exotic properties exis t ,  but 

m u n  wn. * 

ICI w 

of course there are  contlnua w i t h  such values of the  quantum numbers, 

and there may very w e l l  be sme bumps or even genuine resonances. Such 

resonances could be described by other representations, but our formalism 

is approximate in  tha t  no connection af the usual resonances w i t h  these 

"exotic channels'' i s  permitted. 

Second, our resonances all have zero width t o  begin wi th  and t h e i r  

decays are described in  perturbation theory, using the  coupling canstants 

t o  n, p, etc., determined by the formalism. 

idealization, especially f o r  the very high states, which are  probably not 

This i s  a considerable 

well-defined a t  al l .  
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Third, a l l  current sum rules, including the Adler-Weisberger rela- 

t ion,  the Bjorken-Cabibbo-Radicati r e h t i o n ,  etc., are obeyed exactly in 

our formalism. 

Fourth, if  we wish t o  introduce antisymmetric tensor currents, 

Pz = 00 , the camponents with non-vanishing we may do so. A t  *ipv , 
matrix elements are Tho ard 

and 7 (which become equal) We can define 

rbz (which became equal) and f l  
i Y 0  

i Y Z  

, 

5 and postulate that these together w i t h  Fi (I&) and Fl(,kL), obey the 

commutation relations of a loca l  " [ ~ ( 6 ) ] ~ "  a t  pZ = 00 The operators 

Tix( 0) , 
"[U( 6) 1," a t  Pz t 00. 

representation of these additional operators. For instance, i n  the 

baryon representation we can put 

5 
TiY( 0) , Fi ( 0) , and Fi( 0) then farm the algebra of' a regular 

There i s  a natural "home" i n  the theory f o r  the  
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etc.  

hold; presumably they do. 

of t h e  vector mesons by mans of an approxbate "PCTC" principle, we may 

do so. 

We can then  see if the suitable cammutation and angular relations 

If we wish t o  estimate the "wgnetictt couplings 

I n  any case, whether we use U(3) x U(3)  or [U(6)], a t  P = 00, z 

we can see the relation of our t h e o r y t o  the notion of' approximate sym- 

metry. Suppose that we can write M = M(O) + I$, where M (O) i s  

completely independent aP spins and isotopic spins, while d can be 

treated in sane reasonable approximation as a perturbation. 

lbit of ignoring d, 
Then Fn the  

M is  invariant under the  group U(6) X U(6)  w i t h  

generators 

A i  s - 
Y 

- 
2 hi: + z 

2 -  antiquarks 
and z - hi 

quarks 2 + r, - Ai z 
quarks - antiquarks 

and under orbital angular manentumk. 
L tation (6, G) with different values of' L and w i t h  par i ty  - (-1) , 

while the baryons belong t o  (56, - m-.. l), ( 7 0 ,  A), and (20, **n i) with 

different values of L and parity. 

The mesons belong t o  the  represen- 

M -  

With simple forces, the lowest set of mesons would be a ( 6 ,  g) 
- 1  

with  L = O', 

vector mesons. The next s e t  w o u l d  be a (6, g) w i t h  L = 1-, giving 

nonets of tensor mesons (observed), both kinds of axial vector mesons, 

corresponding t o  the known nonets af pseudoscalar and 

m . A *  

and scalar mesons. Examples of the last three kinds may have been 

detected experimentally. We can refer t o  the mesons we have l i s t ed  so 

far as 'So and 3S1, then 3P2, 3Pl, 3P o, and lT1 nonets. The 
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f i r s t  Regge recurrence of the 'So mesons w i l l  correspond 

of the 3S1 mesons t o  3D3, etc. (The Regge t ra jector ies  

t o  b2, that  

passing through 

and 3D1 have no physical par t ic les  at  lower values of' J, where the  D2 
t ra jector ies  correspond t o  "nonsenseft.) 

M are mostly ordinary forces, we w i l l  have "exchange degeneracy", i.e. , 
the Regge t ra jector ies  of even and odd signature w i l l  nearly coincide, as 

they seem t o  do experimentally. 

the t ra jector ies  for different orientations af ,L c and 2 apart, but in t he  

l i m i t  af U ( 6 )  x U(6) symmetry they me degenerate. We can think of S, P, 

D, . . . The next "trajectoryt'  

corresponds t o  the first radial excitation, and gives us again a f u l l  

panoply of S, P, D, . . . states.  This i s  repeated f o r  an infinite number 

of radial  excitations or "traJectories", the later ones being, no doubt, 

no t  very physical, but the early ones corresponding, we hope, t o  observable 

t ra jector ies  and obsemble  resonances. 

IT the forces i n  the mss operator 

Likewise, spin-orbit f a c e s  w i l l  s p l i t  

crudely as lying on a single "trajectory". 

Now the baryon ground state, in the l i m i t  of ~ ( 6 )  X U(6) symmetry, 

i s  certainly a (56, 1) with L = 0'. Taking the simplest point O f  view, 

we suppose tha t  the wave function of our three mathematical quarks is 

always t a t a l l y  symmetric (rather than antisymmetric, as it would be fo r  

r ea l  fermionic quaxks). 

s-state,  as it wauld be f a  forces that are mostly ordinary. 

we expect t o  find a (70, 1) w i t h  L = 1- and, indeed, a l l  the negative 

par i ty  baryon s ta tes  lying reasonably low can be f i t t e d  into the 2Fl/2 

singlets, octets, and decimets and the 4P1/2, 4P3/2, and and 2P 

e -  

The ground state wave function i s  then an averall  

Above it, 

M h n  

3/2 

octets that are predicted by t h i s  assignment. Other configurations 
5/2 

4P 

tha t  my l i e  lar, with ordinary forces, are  another !j6, L = O', 
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+ a s ,  L = O + ,  a 5 6 ,  *..I L = 2 ,  a 7 0 ,  I.*. L = 2 + , a n d a 2 0 ,  rv L=l+. The 

* . > 3  56, L = 2' no doubt contains the first Regge recurrence of the ground 

s ta te .  

Now the symmetry under ~ ( 6 )  X ~ ( 6 )  of the mass operator and the 

meson and baryon spectra, when we neglect the perturbation term d, i s  

by no means reflected i n  an obvious way in the matrix elements of Fi(gl) 

and Fi5(_kL), i.e., the electromagnetic and weak form factors ,  or i n  the 

matrix elements of TiX(kL) - and TiY(_kL) ei ther .  Indeed, l e t  us con- 

sider the algebra of [u( 6) Iw at 00, composed of Fi( 0) , Fi5( 0 )  , T T (  0) , 
and T;(O). I n  the l imit  of neglecting d, there a re  s t i l l  the unitary 

transformations eis t ha t  make these operators different  from the 

corresponding generators of the [ ~ ( 6 )  b subgroup of U(6) X U ( 6 ) .  

For example, f o r  the baryon, we have 

-isg 
(3) e 

isg A i ( 3 )  
B 2 z + e  

The operators S vanish only when we l e t  a l l  the masses of a l l  baryon 

s ta tes  be equal and furthermore l e t  the common mass value tend t o  a. 

Only in such a dras t ic  l i m i t  w e  the generators af the [ U ( 6 ) 3 ,  sub- 

group aF U ( 6 )  X U(6) i s  invariant)  equal t o  the 

generators of [U(6)], a t  P = 00. Only in such a dras t ic  l i m i t  a r e  

(under which M (') 

z 
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A 

the representations of [U( 6) 4 at Pz = a> pure. Representation mixlng 

of [U(6) 

anomalous magnetic moment 

kinematics and the S operators are nm-zero. 

a t  Pz = a>, giving, f o r  the nucleon, - GA/% f 5/3 and 

4 0, i s  compulsory as soon as we have reasonable 

Experimentally, O f  course, 

the various contributions t o  the Adler-Weisberger re la t ion show how there 

i s  extensive representation mixing a t  Pz = OD, w i t h  Fi (0) connecthg 

56, 

5 

L = 0' t o  70, ryI L = 1- and t o  other states. 
r*c 

It is probably useful, in fac t ,  t o  consider f irst  a mass operator 

do) 
s t i l l  a great deal d representation mixing with respect t o  [U(6) Jw a t  

P =a, and then t o  add the perturbation M") that causes sp in-abi t  

sp l i t t ing ,  octet-singlet s p l i t t i n g  f o r  the spin singlet case, and 

violation of SU(3). 

i n  the meson case. 

formalism, we m i g h t  t r y  M(') = 2 /a, + H, p + c E -, so that I?, i n  the 

~ ( 6 )  X ~ ( 6 )  

harmonic oscil lator.  

perfectly l inear  i n  2, a l l  with the same slope, a si tuation tha t  i s  not 

so far from the  experimental one. 

symmetrical under U(6)  x U ( 6 ) ,  giving a degenerate spectrum but 

z 

The operator M ( O) may be very simple, especially 

If it turns out t o  be an o p e r a t a  allowed by the  
2 2 2 2  

l i m i t ,  is  just given by the Hamiltonian of' a three-dimensional 

The result is t o  have "trajectories" for which J is 

3 
M( 1) If such a t r i v i a l  M(O), w i t h  some simple perturbation term 

explains the meson spectrum and is  cmsis tent  w i t h  the  formalism, we mu& 

s t i l l  ask whether it obeys the bootstrap conditions. Our program i s  

hardly one with 811 unlimited amount of freedom! 

Now l e t  us ask how our program cmpares w i t h  the work of those 

who have t r i ed  t o  fabricate mesons and baryons as r e a l i s t i c  bound s ta tes  

of real, heavy, fermionic quarks and antiquarks. F i r s t  of all, we know 
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t ha t ,  i n  the sense of dispersion theory, the p, for example, is mostly 

made up of 27r, E, JN>, 5, z, etc., etc.,  and so, even if real heavy 

quarks exis t ,  the conf'iguration aP real quask and real antiquark con- 

s t i t u t e s  only a minute fraction orf the p state. 

a r e a l i s t i c  configuration describe in a good approximation the behavior 

of p? Thus, without prejudice t o  the question of whether real, heavy 

quarks exist ,  we can say tha t  trying t o  make baryons and mesons mostly 

aut of them means facing sane real ly  unpleasant d i f f i cu l t i e s  tha t  we, 

w i t h  our mathematical quarks, a re  free of. 

mathematical quarks i s  t h a t  our m o d e l  m i g h t  be consistent with the boot- 

s trap. 

How, then, could such 

Another feature of the 

We are free also t o  t r e a t  potentials that rise t o  infinity,  l ike  

the harmonic osci l la tor  case discussed above. We are free t o  treat the 

3q configuration in the baryon as symmetrical, w i t h a r t  having t o  worry 

about r e a l  par t ic les  obeying unusual s t a t i s t i c s  . 
Finally, our formalism, assuming it works, is  consistent with 

re la t iv i ty ,  vhereas the heavy quark bound state calculations are done, 

typically, i n  a nm-re la t iv i s t ic  manner. In the next section we shall 

even present a covariant formalism describing our meson and baryon 

representations. 

In practice, the work done by the realistic quark investigators 

on the structure of the  mass operator M can often be taken over by us, 

especially fo r  the mesons, but t h e  calculation of form factors and 

coupling constants requires the r e l a t iv i s t i c  operators S and we believe 

that most conclusions about f o r m  factors based on a naive quark model 

must be wrong. 
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IT. COVARIANT FORMALISM 

It is  not d i f f i cu l t  t o  present i n  a covariant manner the r e l a t i -  

v i s t i c  representations of local  current algebra tha t  we have discussed 

f o r  baryon and meson states.  Let us consider t h e  meson case first.  

We want a r e l a t iv i s t i c  wave function t o  describe an idealized 

inf in i te  se t  of mesons, consisting of' a commutable inf in i ty  of 0- states ,  

a countable inf in i ty  of 1- states, etc.  A l l  these s ta tes  a t  rest, with 

masses I%, correspond t o  the degrees of freedm represented by two spins 

(and two unitary spins, one quark and one antiquark) and a three-dimensional 

re la t ive coordinate. Relativist ically,  we  must describe at  the same t i m e  

the same states m w h g  with  any momentum m P and having energy /--. 
To obtain a covariant wave function, we generalize each spin 1/2 

variable t o  a fm-va lued  Dirac index ( c a l l  them a and p) and we generalize 

the internal coordinate x t o  a fuur-vector x. Let the four-dimensional 
nn 

coordinate describing the position of' the meson be called X. Then we have 

a meson wave function b i r s ( X ,  x), where r and s are three-valued 

indices acted on by the matrices Ai(') and hi (*) respectively. #e l e t  

the  Dirac matrices 

respectively. 

and y, (*) ac t  on the  indices a and f3 
yP 

Now, t o  compre th i s  f o d i s m  with our earlier work, l e t  us expand 

in  a sum over s ta tes  labeled by N and h and over states of motion 

labeled by a momentum P: 
w 
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where 

describing a l l  the various  sons at rest. 

(N) = /-. ht us now isolate  the terms w i t h  ,P = 0, 

We want t o  have In t h i s  case 

the internal  wave Atnctions JrNh(x) t h a t  we discussed ea,~?.fer.  Since 

qrn 

UI 

is  t o  be a function of a three-dimensional coordlrmte w x ,  we want t o  
a have the 6 ' s  describing rest-states obey ax 6 = 0. Cmariantly, t h a t  
0 

gives us the  equation 

Since qm is a function af two one-component spin variables rather than 

two four-component spin variables, we want the 6 ' s  descr ibbg  r e s t  states 

t o  obey f 3 ' l )  6 = 6 and f3(2) fd = 6. Covariantly, t h a t  giues us the 

e quat ions 1)  

OT (i y(') P + M) 9 = 0 , (4.2) a (l) ;SX + M) 3 = 0 
( y P  CI 

( 2 )  &- + M) $ = o  or (i y ( 2 )  P + M) k = 0 , (4 .3)  
CI ( 7P 

where M i s  an operator on t h e  internal coordinate x and 031 the  relati-  

v i s t i c  spin indices a! and f3 and the SU(3) indices r and a .  

of rest, M is  a m c t i o n  of x and two two-component spins and two sets 

of A matrices. 

For the  case 

.I.* 

The manifestly cwariant  form of M must be such that 

(4.2) and (4.3) a re  canwtible with (4.1). 

of M (as discussed i n  the previous section) is  2 a + p  + C  5 , we 

may write M covariantly as 

For example, FT the  rest form 
2 2 2 2  

1* 

X '  P P x * P  P 
a a  + c2 (x - 2) (xp - 9) > 

p p 2  . 
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is  orthogonal l a  where we recall  t ha t  the internal  four-momentum 

t o  P by (4.1).  A term in Mrest 

covariantly as a term proportional t o  

ax 
CI 

of' the form a L c m  be represented 
b n *  IJ 

(xa  - 
And so forth.  To sane extent, the mass operator i s  defined implicitly, 

since P' occurs i n  the  formula f o r  M, but t h a t  i s  not serious and the  

physical content i s  clear  when we look a t  the case of rest and obtain our 

old f o r m a l i s m .  

The equations (4.1), (4.2), and (4.3) are a combination of' familiar 

t r icks ,  the writ ing of spin t r i p l e t  and s inglet  as the d i r ec t  product of 

two spins of 

angular momenta in terms of a wave function with an internal  coordinate. 

The l a t t e r  t r i c k  has been discussed by Yukawa and h i s  associates f o r  more 

than 15 years. 

specification of the masses and spins and other quantum numbers by the  

operator M. Any assembly of meson states wi th  these masses and quantum 

nunibers is correctly described by Eqs. (4.1) - (4.3). Nor is there any 

real physics i n  what we do next. We write a general expression f o r  the 

matrix element of a vector current between two wave fimctions. This 

expression allows any form factors  between any of the s ta tes ,  cmpat ible  

wi th  r e l a t iv i ty  and the  usual conservation l a w s .  

d:mmical res t r ic t ions on the  vector current matrix element. For con- 

venience, we work i n  momentum space, using t h e  variable II conjugate t o  x .  

1/2 and the writing of' an i n f in i t e  number of states of a l l  

There i s  no r e a l  physics i n  the equation, except t h e  

It does not place any 
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n 
The internal  wave functions 4*&n) are simply generalizations t o  the 

case of motion of the rest wave f'unctions 

transform. 
$m(g) written i n  Fourier 

We normalize the  b's arbitrari ly by the condition 

where the double bar means hermitian conjugation and multiplication by 

@(l) f3(2). Then we write the matrix element of the appropriate Fourier 

component of the vector current as 

, 

i s  a sum over where Gia 

independent vector operators, such as 

( l ) / 2  and Ai(2)/2 times a l l  possible hi 
( 1) ( 2 )  (') k 

Ya Y ra! 9 "*l u* P' 
(*) k 

u@ B' etc . ,  times brentz-invariant functions 
2 2  2 F(YI-  n', n' k, n.k, k , n , n' ), where we d e f h e  k I P' - P and 

(4.5) 

bear i n  mind the conditions rl P = 0, n'  P' E 0. We may write formally 

. (4.6) 2 2  = Z Bia Fe(n * z ' ,  n ' *  k, z * k ,  k , n , at2)  Gia 

?/e now have a general wave f b c t i o n  describing mesons w i t h  the right 

masses and quantum numbers md a general covariant form f o r  all vector 

current mtrFx elements between pairs of such meson states. 

impose current conserntion where appropriate and we can introduce a 

similar formula for the axial vector currents. 

We can 

Nothing ccmtrwersial 
A 



Q has y e t  been said and there i s  so far no question of consistency. 

Now we want t o  introduce the algebra of charge densit ies a t  Pz = 00. 

That can no doubt be done i n  a covariant manner by generalizingthe covariant 

way we have introduced the same algebra between spin zero states. However ,  

I don't 

algebra 

current 

- 
BNhP - 

where $ 

knm the generalization yet.  

of charge densities a t  Pz = OD by brute force. We express t h e  

matrix element (4.5) i n  terms of the rest internal wave functions 

For the moment, l e t  us put in the  

We have 

(4.7) 

i s  the ordinary function of a three-momentum and two-component 

spin,  

vanishing fourth component, and as a function of four-component spins but 

wi th  @(l) = 1 and 

A-' takes P into (0 ,  0, 0, 15,) and converts fi in to  (px, p , p,, 0) .  The 

normalization (4.4) is now equivalent t o  a standad normalization 

but written as a function of a four-dimensional variable with 

f3(2) = 1 acting on it; the Lorentz transformation 

Y 

Now l e t  us take Pz a. We let  ,pL = ( -  k/2, 0) and 

-P; = (k/2, 0).  Ihe Lorentz transformation A takes 

A 
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( p i ,  p;, p i ,  0) + JI'. 

operator Bia and obtain effectively the operator 

We consider only the time-component of each vector 

between @(l) = +1 and = +1 and between = +1 and = +l. 

Let us c a l l  the resul t  of that  operation, between two-component spinors, 

Qi. The expression (4.5) fo r  the current now leads us t o  t h e  result 
A 

k k 
Pi  P, + M' P:, Px - E P, Pi)  

Mt2&-k2 
2MMI P i  Px + P; Py -I. 

where the quantities tha t  appear as arguments of F are merely k 2 , gt2, s2, 

k * X I ,  k O n ,  and 

and p ' ,  in the l i m i t  P -, 00. Taking a l inear  combination of the Last 

argument and the product of the two preceding arguments, we can write 

n' n, expressed by means of A a d  A' in terms of p 
w 

*rr 2 
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where R i s  a rotation around 
Y 

6 = arc  tan 

the y-axis by the angle 

while R '  
Y 

i s  a rotation mound the y-axis by t h e  angle 

M' -M k 6' = arc  tan - a r c  t an  M'+M . 

We need then only examhe the t r ivial  angular properties of' the various 
I )  

t o  arrive at t h e  general resu l t  that 'i 

(kL i n  x-direction) 9 (4.13) 

which is  just the same as (1.U)). 

The covariant formalism gives us autamatically the angular con- 

The only problem is t o  impose on the formalism t h e  equal time dit ion.  

charge density cammutation relations at  

(4.9) the  That is the main 

physical content of our work (the rest being largely kinematics) and 

Pz = a, by requiring that in 

Fe be such that the algebra is obeyed. 
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t he  condition is non-trivial t o  impose in t h i s  language. 

non-covariant formalism the algebra was easy t o  satisfy but the  angular 

cmdition was dif'f'icult t o  impose. 

In t h e  earlier, 

In the  next section we present the case of m s m s  made of a f r ee  

Dirac quark and a free Dirac antiquark, which  has been solved exactly in 

both formalisms . 
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V. A SIMPLE CASE SOLVED EXACTLY 

In th i s  section, we describe, by means of OUT formalism, both 

covariant and non-covariant, a t r i v h l  model uf the mesons i n  which they 

are  bu i l t  of a free Dirac quark and antiquark, each of mass m. 

L e t  us first use the notation of Section 11. The mass operator i s  

M = 2 J m 2 + p 2  m. z 2 w  . (5.1) 

Mi -M and We notice tha t  in  the angular cmdition @&I) both 

a rc  tan '7 M +M 
-1 m . 

a( l / m )  + q 1 / m 2 )  + . . . . . 
and the manner i n  which angu.la,r momentum and par i ty  properties of the 

Fi(k ) and F:(k ) are affected t o  higher and higher order in  l / m  

by kinematics a t  P, = 00, we make the  ansatz 

a rc  t an  
k are expansible in power series in  m'l, s t a r t ing  i n  order 

Thus in (2.4) we can take S1 and S2 as being 

Taking into account the conditions (2.7) 

zz V t 
m 
2 + -  + .  0 . . 2 s1 = - 

m 
(5.2) 

and f i n d  we can satisfy the angular condition with 

(5.4) 

giving 
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( 2  P, + P, 2) Px 

2m2 
+ + . . . .  Y 

(, p, + pz z, PY + . + 
2m2 

(5.6) 

(5.5) 

-is2 -is2 -is2 is -is* 
2 u(2) e obtainable from , - e  Y e  , e 2 

is2 w i t h  -e x e 

(2) and u . these by the  parity operation and the exchange of ,Q n* 

W e  can calculate, t o  order l/m, the operator that, sandwiched 

between a meson of spin 9 and i t s e l f ,  gives  the y-component of its 

"anamalous" magnetic moment (for our purposes, the difference between i ts  

The operator is  the M l  t o t a l  magnetic mcment and 2 9  Bohr magnetons). 

a t  = 0 and i s  given i n  our representation by 
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(5.8) 

between s-states . 
To obtain the y-component of the t o t a l  magnetic m-nt Operator, we add 

our "normal" magnetic moment, which is 

t o  order l / m ,  and obtain 

+ .  . . . (5.9) 

between s-states, 
which is  jus t  what we expect for two free quarks. 

N e x t ,  we can calculate the ax ia lvec to r  coupling constant 

"renomalization" (as compared w i t h  the  value i n  the U(G)-symmetric 

S ta t ic  l imit) .  We nutice that between an s-state and itself the axial 

vector part of the aperator 

(5.10) 
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and we see the analog of the mechanism by which we believe the nucleonic 

value of 

around 1,2. 

- G A / F  is  reduced frm 5/3 t o  the experimental nuniber, 

The series expansions (5.5) - (5.7) may be replaced by the exact 

values of the transformed operators, as determined below by the covariant 

formalism . We find 

1 ) (1 - 3) = ( x +  2 + Py’ 

-is1 (2, P,) Px e isl 
2 x e  

m +Px 

W + m + p ,  
( 1) - u  y 2(W+Pz)(W+m) 

, (5.32) 

(5.13) 

and so for th ,  These emessicms are not particularly perspicuaus. 

However, they mise naturally i n  the covariarrt f o r m a l i s m ,  which we 

proceed t o  use. 

We note tha t  OUT covariant wave equations (4.1) - (4.3) f o r  t h i s  

problem are 

(5.14) ( i  Y 2 

n * P *  = 0 

(5.15) 

(5.16) 
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We can convert these equations t o  Dirac equations for two free quarks by 

performing a Lorentz transformation an the  7's. 

13'~) = 1 when the whole system or 

Dirac equation for the f irst  quark, we want @(l) = 1 when the f i r s t  

For example, we now have 

P E 0 is at rest; for a f r ee  par t ic le  

Quark i s  at  rest, or P/2 e n = 0. Thus we construct 

2 with W = /m2 + .rl , and observe that it satisfies 

f r ee  par t ic le  Dirac equations for  the two quarks. 

t h a t  the current operator Giar i n  (4.5) for t h i s  case is 

It i s  clear, then, 

while the axial vector analog is the same operator With 

We can now carry out the indicated operations and calculate any ya* 
quantity in the  theory, including the transformed "rest" operators as in 

(5.12) and (5.13). 

yar y5 replacing 
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I have presented a rather ambitious program; it is not a t  all clear 

how much of it can be carried through successfUlly. The essent ia l  point 

i s  that we write down a large number of relations that we believe t o  be 

exactly or nearly exactly true ( r e l a t iv i s t i c  kinematics, dispersion rela- 

tions, current algebra, etc.) of the huge space orf a l l  hadron quantum 

states ,  and we try t o  satisf'y as many of them as possible in a t iny  space 

of functions af m e  or two three-dimensional variables and a few spins 

and isotopic spins. The unanswered question is: 

t ions can we sa t i s fy  in such a l i t t l e  space without, so t o  speak, burst- 

ing it? 

how many crf these rela- 

Actually, we can t r y  t o  add more relations and calculate more 

quantities. We can introduce not only the strong carpling constants of 

vector aml normal axial vector mesons, but a l l  strong meson-meson-meson 

and baryon-barycm-meson coupling constants and attempt t o  satisfy all t h e  

superconvergence relations,  not only the  ones tha t  come out of V and A 

current algebra. We can go even further and introduce the coupling para- 

meter Babn(t) 

generalization of the coupling canstant 

tions among all the p 's  and thus t o  calculate all the B's .  

duce the divergences of the non-consenred currents h, z-, 3&, 

and 3& , and postulate the obvlous commutation relations between these 

and the charge densities. These give t'good-bad" commutation relations at  

P = O D ,  

t o  sat isfy.  Fina l ly  we can t ry ,  especially with the covariant f o r m a l i s m ,  

of each Regge trajectory n t o  particles a and b as a 

gabn and t r y  t o  satisfy rela- 

We can intro- 

5 

which we can multiply by Pz t o  give a f i n i t e  l i m i t  and attempt z 
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A 

t o  calculate the decay amplitudes of pseudoscalar and vector mesms into 

lepton pairs, i.e., the matrix element of 

pseudoscalar mesan or  of Zia 

3b between vacuum and 

between vacuum and vector meson. 

Since we do not know how many "truths" can be packed in to  our s m a l l  

representation, it is not clear in what order t o  proceed, which relations 

t o  satism first. For example, instead of t ry ing  t o  solve the  meson 

problem With a given M operator f i r s t  and then imposing t he  bootstrap 

condition later (e.g., that the vector form factors  have poles a t  the 

negative mass squared of the vector mesons), we caetld try t o  write f irst  

bn, and en are suitable operator functions of' k /k where an, 

then impose the current algebra afterward. 

of current algebra appear as conditions on the vector meson coupllng 

constants; the relevant supercmvergence relations are autamatically 

inc lded  . 

and lx ly '  
I n  t h i s  way, the  sum rules 

Another track tha t  future research can follow is to develup the  

covariant formalism Rulther, especially by writing the charge density 

commutation relations at  

already been written when sandwiched between states of spin zero. 

Pz = 00 in a covariant manner, as they have 

kmwhile, let me make a f e w  concluding remarks about the  m o s t  

straightforward approach, namely t o  solve the nm-cuvariant form of the 

problem for same simple, nm-trivial M operator, calculating the unitary 

transformations 

Consider, for  example, the meson problem with an approximate guess f o r  

the mass operator like 

eis necessary i n  oxder t o  sa t i s fy  the  angular condition. 
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i 

A 

Now we m y  ask what conditions are imposed on U by the requirement t ha t  

we be able t o  f ind transformations 

that r e l a t iv i ty  and the current algebra are  satisfied. 

case U t 0 is aJ.l right, but that i s  trivial. What potentials U f 0 

are allowed? 

i n  connection with Foldy's suggestion (Phys. Rev. a 275 (1961)) 

solving the r e l a t i v i s t i c  two-body problem "directly", i.e., in a form dth 

a l l  extra miables eliminated and enough Foldy-Wouthuysen transformstions 

performed t o  reduce it t o  a s o r t  of Schrlhinger equation w i t h  two-component 

spins. Our suggestion is similar t o  Foldy's in form; we impose in addition 

the substance of the equal-time cornnutation relations. 

eis with the right properties 60  

We know tha t  the  

lhere has been much discussion of essent ia l ly  t h i s  question 

of 

I n  cannection Kith Foldy's work, it has been alleged that his  farm 

adds nothing t o  the  richness of field theory and that the only potentials 

he is allowed t o  have are those coming frm the F-W reduction of the 

r e l a t i v i s t i c  exchange of various quanta. 

fo r  example, suitably transformed by F-W methods, i s  allowed, and is  

presumably allowed for us as w e l l .  

velocity-dependent terms i n  the exact U, of course.) 

do not require that our guarks be real and separable, it is possible that  

we are permitted a much wider range af' "potentials", perhaps even 

including things like the harmonic osci l la tor .  

Thus the positronium problem, 

(This would  give spin-dependent and 

However ,  since we 

Zachar iasen and I have begun a brute force attempt t o  find out 

w h a t  potentials are allcued for our problem by taking (6.2) and imposing 

the angular and CaMnrtation conditions on the unitarytransfommtions e is 
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. 

in power series in l /m.  h u m  the f irst  far orders in l / m ,  we should 

get a good idea of what restr ic t ions are  imposed on U. 

problem, we put 

In the meson 

and found 

-1 2 
z2 r-l dU/dr  x p + p x dU/dr  r z -”.- W . L I  - (6.5) 8 

The magnetic moment of s-states t o  arder l / m  and the axial vector 

coupling constants f o r  s-states t o  order l/m2 

Section V for f ree  particles.  

come out exactly as in 

For a similar baryon problem, we obtain corresponding results. 

Noting t h a t  In t h i s  case, say for the nucleon, 

obtain for the t o t a l  magnetic munelrt t o  order 

s - s t a t e  just the  sum of the Dirac moments of three free quarks of mass 

q 3 y  

magnetons and for  the neutron 

ment i s  not so significant as it loaks, however, since we can see from 

the  a x l d  vector coupling constant that the  expansion in  p/m is not 

% = 3m + 8( l / m )  , we 

l / m  fo r  an overall 

giving for the t o t a l  niagnetic mament af the proton three Bohr 

-2 Bohr magnetons. This excellent agree- 
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rapidly convergent. For we obtain for an overall  s-state, much 

as in Sectian V, 

and we see that t o  get 1.2 or 1.25 we need (p2)/m2 t o  be nearly unity 

and the expansion i s  not so good quantitatively, however useful it may be 

A 7  

qualitatively. (Here (p'} is the expected value of the square of the 

momentum of one of the quarks in  the  nucleon.) 
- 

Anyway, up t o  this order we have not found any res t r ic t ion  on U; 

we must see what happens in t h i r d  and f o u r t h  order i n  

are s t i l l  no rest r ic t ions,  then it is very l ike ly  that any potential  

w i l l  do. 

l /m.  Lf there 

As a final suggestion for -her work, may I say that perhaps we 

have introduced too maax variables in to  our meson and especially in to  our 

baryon representation. It i s  conceivable that we could hold fixed the 

radial variable in the  meson problem, thus abolishing the radial quantum 

number. 

drast ic  reduction of the number of variables, gett ing a much sparser 

level spectrum. 

us here, as always. 

I& the baryon problem, w e  m i g h t  be able t o  e f fec t  an even more 

Consistency and comparison w i t h  experiment must guide 
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1. Actually, I have treated bath mathematical particles as quarks, rather 

than quark and antiquark, out of laziness; I should have performed 

a charge conjugation transformation on the spin matrices fur the  

antiquark. 
5 

5 - Fi (kl) Hr 

In the notation of the Dirac matrices, - y5 = az uz 

2. The operator that I c a l l  Fi (lsl) here and represent by t h e  z-cunponent 

of a spin is  real ly  i n  the Language of previous work. 

and SO -y5 

and uz are eqyal when cyz = 1. 



L LEGAL NOTICE 

This report was prepared as an account of' Government sponsored work. 

Neither the United States, nor the Commission, nor any person acting 

on behalf of the Commission: 

A. W e s  any warranty or representation, expressed or implied, with 

respect t o  the accuracy, completeness, or usefuLness of' the 

information contained i n  th i s  report, or that  the use of' any 

information, apparatus, method, or process disclosed in th i s  

report may not lnfringe privately owned rights; or 

Assumes any l i a b i l i t i e s  w i t h  respect t o  the use of, OT f o r  damages 

result ing f r o m  the use af' any information, appazatus, method, or 

process disclosed i n  t h i s  report. 

B. 

As used i n  the above, "person acting on behalf of' the C0n;rmission" 

includes any emplope or cmtractar  of? the  COIxnission, or employee of 

such contractor, t o  the extent that  such employee or contractor of the 

Coxnission, or employee d: such contractor prepares, disseminates, or 

provides access to, any inf'cvrmation pursuant t o  his  employment or 

cmtrac t  with the COnrmission, or his employment with such contractor. 


