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I. CURRENT ALGEBRA AT INFINITE MQMENTUM

Let us summarize the discussion in the first part of this work on
the use of equal-time commutation relations of charge densitles at
infinite momentum, We consider the épace of all quantum states of hadroms,
to all orders in the strong interaction, and with weak, electromagnetic,
and gravitational interactions treated as perturbations. We assume the
validity of equal-time commutation relations among the time-components of
vector currents ?ia(x) and axial vector currents }ias(x), with
i=0,1, . . .8, such that only ~-functions appear on the right-hand
sid_es and no derivatives of 5-functions. We sandwich these relations

between hadron states of equal momentum P in the z-direction (with

erbitrary finite P and Py) and let the common value of P, tend to

infinity.
In fact, we work with transverse Fourier components of the charge

densities:

ik *x ik x
- 3 wl 5 - 3 L 5
Fi(vlfl) =[x e ‘?io ? Fi (»%E-.L) =/ax e ""rio
(1.1)
where }gl is in the x-y plane. Thege operators, by virtue of our
assumed commutation rules, have the commutators
(Fs(x)), FylkP] = 15,4 Flk) + X)) , (1.2)
[F.(k), F.O(k')] = if,. Fo(k +k) (1.3)
s AN EE A RS = ijk "k ‘=1 T =l ’ .
[(F.%(k,), F.O(k)] = 1£,. F(k, +k') (1.4)
i W1/ Ty Wl - ijk “k'i T AL * *
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y’ Pz = w):

its helicity h (effectively equal to J, since P - with P, Py

Now we label each hadron state by its momentum (PX , P

finite), and an index N that includes all other labels, such as mass M,
internal angular momentum 9, parity £ , etc, We then find that the

matrix element of Fj_(}? i) or Fis(wlg ;) has the property
(8, n', By IR () N, 0, B = (Rt R (k)] ), (L.5)

S
(N, n', By IR k)l N, B, B = IR W), (2.6)

that is, at PZ = @ the matrix elements are independent of the sum
Pl + P of the final and initlal transverse momenta and depend only on
the difference iji - 31 , which equals k L by momentum comservation;
thus we can write the matrix elements in abbreviated form as in (1.5)
and (1.6).

The analogue at PZ = 0 of the angular momentum J of the system
at rest is easily defined; we call it 2 and it is made up of ?z Eh

and 9}{ and 9y defined by

(Wt gl My =t 1g,0 ) s, (W 1G] M) = (nt gl ) oy

(1.7)
vhere (h' | ¢ | n) and (n' Ile h) are ordinary Clebsch-Gordan
.coefficients. A state of intrinsic angular momentum 9N then has,
at Pz = 0,

2
4 In, n) = Gy (Gy+1) [N, n) . (1.8)
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The operators M (mass) and a (intrinsic parity) have similar behavior:
MM, By = M N, ), 2, ny = @y N, m) . (1.9)

We now establish the angular momentum and parity properties of the
operators Fi(rlv{«_l.) and Fis(}.&ﬁ according to relativistic kinematics.
Since the Lorentz transformation from’rest t0 a fixed momentum Pz in the
z=direction depends on the mass M, the angular properties of the matrix

elements of Fi(}g ) eand Fis(;g involve the initial and final masses

N,
M and M' respectively. The conditions imposed by relativistic kinematics
turned out as follows., First of all,

' M'-M k
1.0 s msmemat— -
<N h Iexp {l g» (arc tan ] arc tan "‘T'"‘M M)}

M'-M X
Fy(k)) exp {-1 9, (sxc tan "= + arc tan g }| M) (1.10)

hes |4¢ | <1, and the same for F,°(k)), with k taken in the

x=direction., Here the matrices gy act only on the initial and final
helicity indices h and h', and the rotation angles depend on the initial
and final mass eigenvalues, M and M' respectively. The parity and time=-

reversal properties are reproduced here:

in 9y in 9y

Fi(k) even under F e and 7 e ,

(1.11)
in in
Fis(k) odd under £ e gy and even under 7 e Iy .

We repeat also the properties under k-reversal:
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Fy(k) + F;(-k) has A¢ even , F,(k)-F(-k) bas A4 odd ,

4(

5 5 5 5
F,7(k) + F,7(<k) has A¢,  even , F,°(k) -F,°(-k) has AQ odd .

Finally, there are the conditions on |4 (| for the coefficient of kI

when M' - M = O (the allowed multipole conditions) and, if we want to

- include them, the forbidden multipole conditions to each order in M' - M,

These are mentioned in the first part of the notes, but we shall not use

them explicitly; they often come out automatically.

(1.12)
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II. RELATIVISTIC REPRESENTATION OF CURRENT ALGEBRA

We have postulated that, to all orders in the strong interaction,
the set of all quantum states describing hadron systems with a given value
A of baryon number, at Pz = o0, constitute a representation of the commu-~
tation relations (1.2 - 1.4) of the local algebra of vector and axial vector
charge densities. We have seen also that, defining angular momentum 2
and parity & for these states, as well as a mass operator M, the angular
relation (1.10) and the further conditions (1.11 - 1.12) are obeyed exactly
between every pair of states,

Dashen and I now propose to construct smaller mathematical represen-
tations not only of the current commtation rules but of the whole algebraic
system composed of F,(k ), st(}f s ? , @, and M. The purpose is to
describe approximately an idealized infinite set of meson or baryon states,
including the well-known low-lying bound and resonant states, and perhaps
including all well-defined resonances. At very high masses (many BeV)
no doubt the description in terms of such resonances is highly ideallzed,
but over the first few BeV the resonances may well be a good approximstion
to0 the real situation in which complicated continua of many particles are
involved., So far it has been our experience that subsuming these continua
in a set of resamances gives a reasonable description of meny phenomena.

If we find such small representations of the algebraic system, with
very few degrees of freedom, we may suppose that all or nearly all of the
baryon bound states and resonances belong approximately to such a
representation in the same sense that the lowest ten baryons with
J = 3/2Y velong approximstely to the 10 representation of the U(3)

algebra of the F,(0). In fact, the state n (1675) 1is bound and
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perfectly well-defined, while A&(1240) 1is a very broad resonance that
actually represents a chunk of (nN) continuum; nevertheless, the decimet
approximation has been highly successful. In the same way, we have hopes
of describing all or most of the baryon resonances in a useful approxi-
mation as belonging to a single relativistic representation of our
algebraic system, with a small number of degrees of freedom, rather than
the huge representation to which all the states, including all the con-
tinua, actually belong exactly,

To represent just the commutation relations (1.2-1.4%) with a small
number of degrees of freedom is trivial, We could take for the mesons,

for example, a representation corresponding to a mathematical quark and

antiquark:
Fylk) = == e *Tpoe ’
1) (2) .
A K, A, -ik, « x/2
PSx) . i (D) s e N () [ x/
i 2 Z 2 z ’

where X is an ordinary three-dimensional space variable operator (it could
even be two-dimensional, since k, is two-dimensional), the ki(l) are
the nine isotopic matrices of a 3 representation of U(3), the Ai(E) are
the matrices of ai§ representation, and the cz's are just the Paull
matrices of two spins of 1/2 each. The minus sign in the second rela-
tion is natural since the axial vector current behaves oppositely under C
to the vector current.l’2)

To represent the system of F,(k,), F,2(k)), ¢ @, and M is
somewhat more complicated. We must make‘ﬁ three-dimensional in order to

accammodate ﬂ, which we can take to be the ordinary expression
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2..”“ + 55— 4+ x X P , (2.1)

vhere p is the momentum conjugate to x. Parity is trivially represented:

P . - (-1t , (2.2)

where L(L+l) 1s the eigenvalue of “Iﬂag = (x X g)e; the extra minus sign
cames from the intrinsic parity of quark and antiquark. Charge conjuga-
tiog)c takes ?\i(l) « - 7\1(2)*, X e - X, g(l)e* g(e).

We now take & mass operator M that commutes with 2 and P and
with charge conjugation. M cen depend on X, D, g(l), 3(2), 7\1(1), and
7\]._(2). Thus the whole spectrum of the meson states we describe, with
thelr masses, spins, parities, and charge conjugations, is specified by

the operator M, with its eigenvalues MN and eigenfunctions \Lho )

Mig, = My ¥, . (2.3)

Finally, we must make Fi(}»{- and Fis(}M: J_) obey the angular

N
condition (1.10), which they will not do in general if we take the simple
expressions above, We must perform a unitary transformation on these
expressions in order to accommodate the angular condition., Dashen and I
thought that a single unitary transformastion would do the trick, but it
turns out that two different ones are necessary:

7\1(1) ik -x/2 -1, 1S ?\1(2) -ik - x/2  -18

is
1 -l 1 2 2
Fi(k) - e =— e e + e 5 € e

(2.4)
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18 Ai(e) (2) - x/2 -8

2
5 g, e e s

(2.5)

where Sl and Se are so adjusted that we still have both of the first terms

in (2.4) and (2.5) commiting with both the second terms, just as we do for

Sl’ 82 = 0, We must now further adjust Sl and 82 so that we have the

angular condition (1.10) satisfied. The parity and time-reversal pro-

5
perties of Fi(gl) and F, (51) are guaranteed if we take S, and 5,
(which commute with 92) satisfying
ix 9
5,55, even under e 'V (2.6)
and
in
81,8, even under 7 e py . (2.7)

We shall see later that there is one trivial mass operator, namely
M= 2\/m? +-£2, corresponding to a free quark and antiquark, for which
Sl and 82 have been found with the required properties. Let us suppose
that there is a class of M operators, including some with discrete spectra,
such that we can find Sl and S2 with the necessary behavior, We then
suggest that one of these allowable M operators will give a good descrip-

tion of the meson system, including all or most of the well-defined
excited states.
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The eigenvalues MN give the masses of bound and resonant states;
the corresponding wave functions th(f) give the angular momentum and
parity of each state, as well as the isotopic spin and strangeness, and
the value of C when Y = O, We can calculate all the Regge trajectories
on which our mesons lie by solving the eigenvalue equation (2.3) for
non-integral values of J.

All the matrix elements at P = o of the operators Fi(gl) and
F15(§ |) are found by sandwiching the operators (2.4) and (2.5) between
Wg'h' and WNh‘ Thus nearly all the electromagnetic and weak form
factors between meson states can be calculated. All pion
couplings to two mesons can be calculated in the PCAC approximation from
the matrix elements of Fis(o) and similar techniques can be used to
calculate certain other meson couplings approximately.

Finally, we can look at the resulting form factors and see if all
the vector current form factors exhibit poles at the same set of negative
values, - (p,nv)2 of -51?' If they do, and if the axial vector current
form factors all exhibit poles at the same set of negative values,

%)%, of k%, then we can impose the bootstrap canditimm by

- (u,
requiring that these values agree with the calculated values -~ (MNV)2
and - (MNA)2 of the negative squares of the masses of the vector and normal
axial vector mesons with the appropriate isotopic spins, strangeness,
and values of C., In this way, if the formalism permits, we can find the
conditions imposed on the mass operator M by the bootstrap requirement,
and perhaps nearly determine its form,

If the form factors can be made to exhibit the right poles, then

of course the formalism gives definite predictions of the coupling
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constants of all vector and normal axial vector mesons to all pairs of mesons,
even without assuming the validity of methods like PCAC. The bootstrap
also requires, of course, that the meson-meson-meson couplings determined
in this way be totally symmetric in the three mesons and we must see if
the formalism can satisfy that, too,
It is easy to see how to apply our remarks to the baryon system.
We take a three quark representation, with two coordinate operators
described by x,, X,, and x; and the constraint X, + X, + X5 = 0. The
two independent coordinate operators belong to the two-dimensional

representation of the permutation group on three objects, the one given

by the Young diagram | . The angular momentum is represented in

the obvious way

(2.8)

H

j} ~ 91/ * Op/p * Gz *

and the parity by the total orbital parity. The mass operator M i1z iInvariant
under & s 9 , and permutations of the three quarks and depends on 35'5 )

g's, and A's. The current algebra is represented as follows:

1s. A e K1) g 15, A3 g L 4B g
F.(k,) e + 2 e b T e Ta4e 2 A e b T e °
it-1 - 2 2
1s, 7\1(3) 1 - 53 -18,
+ e 5 e e ’ (2'9)
5 5, A (v o M -as)
F.7(k,) - e e e e
1 Y=L 2 Z
(2) (2) _ a (3) (3) _
+e 5 o, e e +e 5 o, e e
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5 and s3 are adjusted so that the first terms commute with the

second terms, and so forth, and so that the angular condition (1.10) is

where Sl s S

obeyed., Again, the parity and time-reversal properties of the currents
are guaranteed if S, S,, and S, obey the conditions (2.6) and (2.7).
Again, we have no idea how wide is the class of mass operators M
for which all this can be done, but we hope that it includes one that
gives a good description of the baryons. Once again, the spectrum of
states, the Regge trajectories on which they lie, the form factors of
vector and axial vector currents, and the couplings of vector and pseudo-
scalar mesons can all be camputed. We can try to impose once more the
condition that the operators F, (k) and Fis(;; ) have poles in k °
precisely at the negative squared masses of the vector and axial vector

mesons respectively,
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III. RELATION TO APPROXIMATE SYMMETRY

Iet us assume that we can find suitable mass operators for the
meson and baryon systems to carry out the progrﬁm outlined in Section II
and obtain reasonable agreement with experiment. What do we have, and
how 1s it related to attempts that have been made so far to describe the
mesons and baryons?

First of all, we have described representations in which the higher
states are given by orbital and radial excitations, staying within the
mathematical qq or qgq configurations, not by excitations of "quark
spin" and unitary spin, which would correspond to configurations like
3aaq or qgqqa and higher. Thus we are ignoring all baryon states with
SU(3) representations other than 1, 8, and 10, and all meson states with
SU(3) representations othér than 1 and 8. So far, there is no very con-
vincing evidence that resonances with such exotic properties exist, but
of course there are continua with such values of the quantum numbers,
and there may very well be some bumps or even genuine resonances., Such
resonances could be described by other representations, but our formalism
is approximate in that no connection of the usual resonances with these
"exotic channels”" is permitted.

Second, our resonances &ll have zero width to begin with and their
decays are described in perturbation theory, using the coupling constants
to n, p, etc., determined by the formalism., This is a considerable
idealization, especially for the very high states, which are probably not

well-defined at all,
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Third, all current sum rules, including the Adler-Weisberger rela-
tion, the Bjorken-Cabibbo-Radicati relation, etc., are obeyed exactly in
our formalism,

Fourth, if we wish to introduce antisymmetric temsor currents,

I/

v’ we ma.yydo so, At Pz = o, the components with non-vanishing

matrix elements are 7, ixo 2nd 7. ixg (Which become equal) and 4. iyo

and 7 1yz (which become equal), We can define

; .. e LR s , (3.1)

b'e
Ti (k) iyz

n

X
(k) -f T, e & T g% , (3.2)

and postulate that these together with Fis('_}_c J_) and Fi(}g |)s obey the
commutation relations of & local "[U(6)]w" at P = . The operators
1,%(0), 7,7(0), F,°(0), amd F,(0) then form the algebra of a regular
"[u(6) ]w" at P = oo. There is a natural "home" in the theory for the
representation of these additional operators. For instance, in the

baryon representation we can put

1)
is ?\( ik, - x./2 -iS
i YWl 2 b ¢
(2)
15, N (2) ¥ x/2 -i5,
+ e o e e
2 b4
3) |
1. A ik - x, /2  -iS
+ e > 4 0'(3) L -3 e O , (3.3)
2 X
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etec. We can then see if the sultable commutation and angular relations
hold; presumebly they do, If we wish to estimate the "magnetic” couplings
of the vector mesons by means of an approximate "PCTC" principle, we may
do so,

In any case, whether we use U(3) X U(3) or [U(6)]W at P =00,
we can see the relation of our theory to the notion of approximate sym-
metry. Suppose that we can write M = M(O) + Ml, where M(o) is
completely independent of spins and isotopic spins, while Ml can be
treated in some reasonable approximation as a perturbation. Then in the

limit of ignoring Ml, M is invariant under the group U(6) X U(6) with

generators
A A A, o A, o
z —éi- + z —éi and z —-i-é-"—“ + z 12
quarks antiquarks quarks antiquarks
(3.4)

and under orbital angular momentum_g. The mesons belong to the represen=-
tation (6, §) with different values of L and with parity - (-1)°,
while the baryons belong to (56, 1), (70, 1), and (20, 1) with
different values of L and parity.

With simple forces, the lowest set of mesons would be a (6, 5)

with L = 0+, corresponding to the known nonets of pseudoscalar and

vector mesons. The next set would be a (6, §) with L =17, glving
nonets of tensor mesons (observed), both kinds of axial vector mesons,
and scalar mesons, Examples of the last three kinds may have been

detected experimentally, We can refer to the mesons we have listed so

far as lSO and 381, then 3P2’ SP 3P and 1Pl nonets. The

1 o’
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first Regge recurrence of the lSo mesons will correspond to 1D2’ that

of the 381 mesons t0 3D3, etc. (The Regge trajectories passing through
3D2 and ‘3Dl have no physical particles at lower values of J, where the
trajectories correspond to "nonsense'.) If the forces in the mass operator
M are mostly ordinary forces, we will have "exchange degeneracy", i.e.,

the Regge trajectories of even and odd signature will nearly coincide, as
they seem to do experimentally. Likewise, spin-orbit forces will split

the trajectories for different orientations of L and §‘apart, but in the
limit of U(6) X U(6) symmetry they are degenerate. We can think of S, P,
D, . . . crudely as lying on a single "trajectory". The next "trajectory”
corresponds to the first radial excitation, and gives us again a full
panoply of S, P, D, . . . states. This is repeated for an infinite number
of radial excitations or "trajectories”, the later omes being, no doubt,
not very physical, but the early ones corresponding, we hope, to observable
trajectories and observable resonances,

Now the baryon ground state, in the limit of U(6) x U(6) symmetry,
is certainly a (56, 1) with L = O'. Taking the simplest point of view,
we suppose that the wave function of our three mathematical quarks is
always totally symmetric (rather than antisymmetric, as it would be for
real fermionic quarks)., The ground state wave function is then an overall
s-state, as it would be for forces that are mostly ordinary. Above it,
we expect to find a (19, &) with L =1  and, indeed, all the negative

parity baryon states lying reasonably low can be fitted into the 2P

X \ 1/2

2

and P3/2 singlets, octets, and decimets and the Pl/2’ P3/2, and
uP octets that are predicted by this assignment. Other configurations

5/2
that may lie low, with ordinary forces, are another 56, L = d+,
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+, and a 20, L = 1*. e

270, L=0, as6, L=2", a1, L=2
56, L = o* 1o doubt contains the first Regge recurrence of the ground
state,

Now the symmetry under U(6) X U(6) of the mass operator and the
meson and baryon spectra, when we neglect the perturbation term M;, is
by no means reflected in an obvious way in the matrix elements of Fi(gl)
and Fis(gi), i.e., the electromagnetic and weak form factors, or in the

matrix elements of T,(k ) and T,”(k|) either. Indeed, let us con-

N
sider the algebra of [U(6)]w at o, composed of Fi(O), Fis(O), Tix(o),
and Tiy(O). In the limit of neglecting Ml, there are still the unitary

transformations elS that make these operators different from the

corresponding generators of the [U(6)]w subgroup of U(6) X U(6).

For example, for the baryon, we have

(1) - (2) )
is. A, -is i A -
FiS(O) ! L cz(l) T, S 12 cyz(2) . 15,
(3) -
. eis3 7\12 cz(s) . 18,
(1) (2) (3)
A A A
£ 12 cz(l) + 12 62(2) + 12 cz(s) . (3.5)

The operators S vanish only when we let all the masses of all baryon

states be equal and furthermore let the common mass value tend to .

Only in such a drastic limit are the generators of the [U(6)]w sub-
group of U(6) X U(6) (under which M(O) is invariant) equal to the

generators of [U(6)]w at PZ = 00. Only in such a drastic limit are
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the representations of [U(6)Jw at P, =@ pure. Representation mixing
of [U(6)]w at Pz = @, giving, for the nucleon; - QA/GV £ 5/3 and
anomalous magnetic moment # 0, is compulsory as soon as we have reasonable
kinematics and the S operators are nan-zero. Experimentally, of course,
the various contributions to the Adler-Weisberger relation show how there
is extensive representation mixing at P =, with Fis(o) connecting

56, L =0

to 70, L = 1 and to other states.

It is probably useful, in fact, to consider first a mass operator
M(O) symmetrical under U(6) X U(6), giving a degenerate spectrum but
still a great deal of representation mixing with respect to [U(6)]w at
PZ = 00, and then to add the perturbation M(l) that causes spin-orbit

splitting, octet-singlet splitting for the spin singlet case, and

violation of SU(3). The operator M(o) may be very simple, especially

in the meson case. If 1t turns out to be an operator allowed by the

formalism, we might try MO = 2a2 + o2 + c2 x° , so that IF, in the

U(6) X U(6) 1limit, is just given by the Hamiltonian of a three-dimensional
harmonic oscillator. The result is to have "trajectories" for which J is
perfectly linear in M?, all with the same slope, a situation that is not

s0 far from the experimental one,

If such a trivial M(O), with some simple perturbation term M(l),
explains the meson spectrum and is comsistent with the formalism, we must
still ask whether it obeys the bootstrap conditions. Our program is
hardly one with an unlimited amount of freedom!

Now let us ask how our program campares with the work of those
who have tried to fabricate mesons and baryons as realistic bound states

of real, heavy, fermionic quarks and antiquarks. First of all, we know
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that, in the sense of dispersion theory, the p, for example, is mostly
made up of 2x, KK, nw, NN, =%, etc., etc., and so, even if real heavy
quarks exist, the configuration of real quark and real antiquark con-
stitutes only a minute fraction of the p state. How, then, could such
a realistic configuration describe in a good approximation the behavior
of p? Thus, without prejudice to the question of whether real, heavy
quarks exist, we can say that trying to meke baryons and mesons mostly
out of them means facing same really unpleasant difficulties that we,
with our mathematical quarks, are free of. Another feature of the
mathematical quarks is that our model might be consistent with the boot=-
strap.

We are free also to treat potentials that rise to infinity, like
the harmonic oscillator case discussed above, We are free to treat the
3q configuration in the baryon as symmetrical, without having to worry
about real particles obeying unusual statistics.

Finally, our formalism, assuming it works, is consistent with
relativity, whereas the heavy quark bound state calculations are done,

typically, in a non-relativistic manner. In the next section we shall

even present a covariant formslism describing our meson and baryon
representations,

In practice, the work done by the realistic quark investigators
on the structure of the mass operator M can often be taken over by us,
especlally for the mesons, but the‘calculation of form factors and
coupling constants requires the relativistic operators S and we believe
that most conclusions about form factors based on a naive quark model

mist be wrong.




IV, COVARIANT FORMALISM

It is not difficult to present in a covariant manner the relati-
vistic representations of local current algebra that we have discussed
for baryon and meson states. Let us comsider the meson case first.

We want a relativistic wave function to describe an idealized
infinite set of mesons, consisting of a commutable infinity of O  states,

a countable infinity of 1~ states, etc. All these states at rest, with
masses MN’ correspord to the degrees of freedom represented by two spins
(and two unitary spins, one quark and one antiquark) and a three-dimensional
relative coordinate., Relativistically, we must describe at the same time
the same states moving with any momentum‘g and having energy S? + MNQ.

To obtain a covariant wave function, we generalize each spin 1/2
variable to a four-valued Dirac index (call them @ and B) and we generalize
the internal coordinate x t0 a four-vector x. let the four-dimensional
coordinate describing the position of the meson be called X. Then we have
a meson wave function ﬁaﬁ;rs(x’ x), where r and s are three-valued
indices acted on by the matrices %i(l) and Ai(g) respectively. We let
the Dirac matrices 7u(l) and 7v(2) act on the indices « and B
respectively,

Now, to compare this formalism with our earlier work, let us expand
¥ in a sum over states labeled by N and h and over states of motion
labeled by a momentum 3:

(W),
R
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wnere P (") = (2 .+ 2 et us now isolate the terms with P = O,

describing all the various mesons at rest. We want to have in this case

the internal wave functions th(ﬁ) that we discussed esrlier. Since

th is to be a function of a three-dimensional coordinateyi, we want to

have the §'s describing rest-states obey 5%— @ = 0. Covariantly, that
)

gives us the equation

P § -0 or 2 2 ¥-0 . (k1)
1] 7

Since th is a function of two one-component spin variables rather than
two four-component spin variables, we want the ¢'s describing rest states

to obey B(l) $=¢ and 6(2) p = §. Covariantly, that gives us the

equationsl)

(7, S smF =0 o (1o .irpimyg -0 , (h2)
n

(7u(2) 5.}5{—“+M)ﬁ=0 or (172 Ppamg = 0 ,  (.3)

where M is an operator on the internal coordinate x and on the relati-
vistic spin indices @ and B and the SU(3) indices r and s. For the case
of rest, M is a function oflﬁ and two two-component spins and two sets
of A matrices, The manifestly covariant form of M must be such that

(4.2) and (4.3) are compatible with (4.1)., For example, if the rest form
2 .2
X

of M (as discussed in the previous section) is 2\/32 + p2 +C , we

may write M covariantly as
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o
where we recall that the internal four-momentum % > is orthogonal
13
to Pu by (k.1). A term in Mrest of the form g - L can be represented
covariantly as a term proportional to
5 (x -X'PPG) a
a 2 ’
o8 p? /g

And so forth. To some extent, the mass operator is defined implicitly,
since P occurs in the formula for M, but that is not serious and the
rhysical content is clear when we look at the case of rest and obtain our
old formalism,

The equations (4.1), (4.2), and (4.3) are a combination of familiar
tricks, the writing of spin triplet and singlet as the direct product of
two gpins of 1/2 and the writing of an infinite number of states of all
angular momenta in terms of a wave function with an internal coordinate.
The latter trick has been discussed by Yukawa and his assoclates for more
than 15 years. There is no real physics in the equation, except the
specification of the masses and spins and other quantum numbers by the
operator M, Any assembly of meson states with these masses and quantum
numbers is correctly described by Egs. (4.1) - (4.3). Nor is there any
real physics in what we do next. We write a general expression for the
matrix element of a vector current between two wave functions. This
expression allows any form factors between any of the states, campatible
with relativity and the usual conservation laws. It does not place any
dynamical restrictions on the vector current matrix element. For con-

venience, we work 1in momentum space, using the variable n conjugate to x.
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The internal wave functions P(ﬂ) are simply generalizations to the

¢Nh
case of motion of the rest wave functions th(p) written in Fourier

transform, We normalize the §'s arbitrarily by the condition

J aﬁhP ¢NhP (s + P) dun = 2 MN s (4 .4)

where the double bar means hermitian conjugation and multiplication by
B(l) 8(2). Then we write the matrix element of the appropriate Fourier

component of the vector current as

(n'h'P' l?ial nhP) « T—L_ fd)’“sr J8(x+ P) fdl*x' Jo(x'+ P')
P_P!
0o O

5NlhlP( G ()'4"5)

ix ¢NhP ’

where G, is a sum over Ai(l)/e and Ri(g)/2 times all possible

W

ia
; . s o (1) (2)
independent vector operators, such as Yo 0 Yy o

(2)
p | K

>
Flren', n' e k, sk, k2, , ﬁ'g), where we define k

a} a)

etec.,, times Lorentz-invariant functions

P' =P and

it}

bear in mind the conditions n«P =0, n'+P' = 0, We may write formally

8 Fe(ﬂ en', t'+ k, % Kk, k2, ﬂ2, n'2)

G = i

1o . (%.6)

Z
]
We now have a general wave function describing mesons with the right
masses and quantum numbers and a general covariant form for all vector
current maetrix elements between pairs of such meson states, We can
impose current conservation where appropriate and we can introduce a

similar formula for the axial vector currents. Nothing controversial
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has yet been said and there is so far no question of consistency.

Now we want to introduce the algebra of charge densities at Pz = 00,
That can no doubt be done in a covariant manner by generalizing the qovariant
way we have introduced the same algebra between spin zero states. However,
I don't know the generalization yet., For the moment, let us put in the
algebra of charge densities at Pz = @ by brute force, We express the

current watrix element (4.5) in terms of the rest internal wave functions

WNh(Ep' We have

PG R L LR 91 S R s SR
NP T Vi, (&
V2 (M + M2+ P)

7) )

(4.7)

where ¥ is the ordinary function of a three-momentum and two-component
spin, but written as a function of a four-dimensional variable with
vanishing fourth component, and as a function of four-component spins but
vith B =1 ana 88 - 1 acting on it; the Lorentz transformation
A takes P into (0, 0, 0, M;) and converts n into (2, Pys Py 0). The

normalization (4.4) is now equivalent to a standard normalization
* 3
f ‘IIN!hI(B) WNh(E) d P = SN.N' 5 t . (u's)

Now let us take P - oo, We let P = (- k/2, 0) and

Bl = (k/2, 0). The Lorentz transformation A takes

2 2
(0, 0, O, MN) - (- k/2: 0, PZ’ MN + Pz ) and (Px: Poy P,s 0) ==,

while A' takes (0, 0, 0, M') = (+k/2, 0, P, \/M;f +2%)  and




(p;, p;, p;, 0) » n'. We consider only the time-component of each vector

operator eia and obtain effectively the operator

L@y B B s s
«h PO Pé

{5' (MN' + the +.§f2)

W o, @rewin® PGP p ey i P
B\l B e —
(2 (g + (M2 + PP

vetween BY) = 41 and ) - 41 and vetween 82 - 41 ana 2 - 41,

Let us call the result of that operation, between two-component spinors,

;. The expression (4.5) for the current now leads us to the result

3 3 %
(N'n' |Fy(x ) m) = [a%p' [a%P ¥ (p')
2 2 2 4Pux?
A 2 2 2 ., _ M2ExE M'eofak
X g ei Fe(k s 2 s B k px oM! Py k px M Pz’
2 2
M!S -k K k
' ' T ———— ! — ' - - t
Py Py + py py + oOMM! P, P, + o P, Py "N P, px)
k.9

where the quantities that appear as arguments of F are merely k?, g'a, ﬂ2,

ken',ken, and =xn'.x, expressed by means of A and A' in terms of p

WA

and p', in the limit PZ ~+ o, Taking a linear combination of the last

argument and the product of the two preceding arguments, we can write
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3! 3 * ] 2 2 1 ,2
(N'n' [Fy (k)] M) = [a7p' [ a'p ¥, (") 2 8, £o(k%, (R 2')°,

2 L] 1 " L] t L
(Ry f) ’ }El Ry,g ’ ,lf_L Ry B Ry P Ry 'P) \VNh(B) , (k.10)
where Ry is a rotation around the y-axis by the angle

M'-M k
§ = arc tan =5~ -arc tan pry (4.11)

while Rl'r is a rotation around the y-axis by the angle

M'-M k
' - R -
g' = are ten T arc tan gt . (4.12)

We need then only examine the trivial aengular properties of the various

ei to arrive at the general result that

14 ¢ -1
(N'n' e 9Y¢ Fy(k)) e %yjél Nh) has A9 =0, +l

(k

k, in x-direction) ’ (4.13)

which is just the same as (1.10).

The covariant formalism gives us automatically the angular con-
dition., The only problem is to impose on the formalism the equal time
charge density commutation relations é.t Pz = ®, by requiring that in
(4.9) the F

]
physical content of our work (the rest being largely kinematics) and

be such that the algebra is obeyed. That is the main
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the condition is non-trivial to impose in this language. In the earlier,
non-coveriant formalism the algebra was easy to satisfy but the angular
condition was difficult to impose.

In the next section we present the case of mesons made of a free
Dirac quark and a free Dirac antiquark, which has been solved exactly in

both formalisms,
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V. A SIMPLE CASE SOLVED EXACTLY
In this section, we describe, by means of our formalism, both
covariant and non-covariant, a trivial model of the mesons in which they
are built of a free Dirac quark and antiquark, each of mass m,

Let us first use the notation of Section II. The mass operator is

M = 2 yn© +p = 2 W . (5.1)

'-
We notice that in the angular condition (1.10) both arc tan h—d--k—l-ﬂ and

arc tan }T'%-_ﬁ are expansible in power series in m'l, starting in order
nY., Thus in (2.4) we cen take 8, and S, as being

0(1/m) + O(1/n%) + . . . .. ‘Teking into account the conditions (2.7)
and the manner in which angular momentum and parity properties of the
Fy(k ) amd F,°(k ) are affected to higher and higher order in 1/m

by kinematics at I—’z = 00, we make the ansatz

ct+

v
Z ZZ
Sl=-a-+ s (5.2)

=yl

and find we can satisfy the angular condition with

(1) _ _(2) - (1) _ . (2) . )
e ot )Ry -(oyT me )R R XRYR XD
z 2 ) P
(5.3)
(oy(l) Px B Ux(l) py) pZ z PZ 2\2 + 22 pz z
tZZ = 2 L —— L" ’ (5.“')




“2Q =

is -18 P X (cr(l) - o'(e)) (3 cr(l) - 0(2)) P
1 1 Z Y Y ¥ ha Z
e x e = X === - o + 5
lym
(zp, +p 2)P
+ z ; = , (5.5)
2m
. (1) _ (2) (1) _ (2)
eislyeislzy_sz+Ux 0'x _(‘7’3& Gx)gz_z_
m 2m h_mE
(zp, +p 2)P
+ LA L b e 0 s (5.6)
2
2m
(1) (1)
is -iS o P. +0 P
o lc(l)e 1 o(l)+ y Y. X X
z z m
(1y 2, (1) _2_ (1) (1)
crz py + cz px + ax px Pz + cy P.'i Pz
- — 2 — + . 0 ’ (5.7)
om
is -is -is ~-15 is ~1s
with -e 2 X e 2, -e 2 ye 2, e e 022) e 2 obtainable from

(2)

these by the parity operation and the exchange of g(l) and [+ A

We can calculate, to order 1/m, the operator that, sandwiched
between a meson of spin 9 and itself, gives the y-component of its
"anomalous" magnetic moment (for our purposes, the difference between its

total magnet%; moment and 2; Bohr magnetons). The operator is the Ml
(k)
part of 1 —%—{;—L— at »151. = 0 and is given in our representation by




Agl) 18, . -i§ ng) s, . -is,
Mlpartof—ee -e-e +2e é-e

(7‘§_1) - ;\ge))(gl(rl) - dl(i))

= . (5.8)

between s-states.
To obtain the y-component of the total magnetic moment operator, we add

our "normal" magnetic moment, which is

1
e g
2 2m

to order 1/m, and obtain

D) o @

- _ Y 1
y-component of magnetic moment operator = < o= Y 3 o,

+ e e e e (5.9)

between s-states,
which is Just what we expect for two free quarks.

Next, we can calculate the axlal-vector coupling constant

"renormalization” (as compared with the value in the U(6)-symmetric

static limit), We notice that between an s-state and itself the axial

vector part of the operator

(1) (2)
A 1 -1 A 1 -1
jé e "1 Uil) e e - ’25“' e %2 0(2) e %2 (5.10)
Z
is Jjust
(1) (2) 2
A A (")
e e L, e

m
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and we see the analog‘of the mechanism by which we believe the nucleonic
value of - GA/GV is reduced from 5/3 to the experimental number,
around 1.2,

The series expansions (5.5) - (5.7) may be replaced by the exact
values of the transformed operators, as determined below by the covariant

formalism. We find

1
15, =15 5 {z 8} P,
e X e = |X + ——ea l - ==
m? + 2 + 2 W
_ Px Py

e W+m+p, (1--1-)?-)4-0 P, 1_55)
v 2(W+pz)(w+m7' W z é(h#pz)(wunﬂ W

+2) 5(2) P, c§2) o
* W T oW(wm) T SW(Wem ’ (5.12)
€ g e = W+ P, R P, (l tv ’ (5.13)

and so forth., These expressions are not particularly perspicuous,
However, they arise naturally in the covariant formalism, which we

proceed to use,

We note that our covariant wave equations (4.1) - (4.3) for this

problem are

R L , (5.14)
(1 7(2) . g + o + ﬂ2) ¥ =0 , (5.15)
n*P¥§y = O . (5.16)




We can convert these equations to Dirac equations for two free quarks by
performing a Lorentz transformation on the y's. For example, we now have
B(l) =1 when the whole system or P = O 1is at rest; for a free particle
Dirac equation for the first quark, we want B(l) = 1 when the first

quark is at rest, or P/2 + x = 0. Thus we comstruct

— 1 | 2
x=Tﬁ=JW§-PH”‘\/§: W*a“;-pi’()‘“@ § , (5.17)

2 2
7 bi¢

with W = (u° + »°, and observe that it satisfies

(1 7(1) . (-‘g +n)+m) X = O , (5.18)
173 E-n+mr = o0 , (5.19)
free particle Dirac equations for the two quarks., It is clear, then,
that the current operator G, , in (4.5) for this case 1is
Y K, (1) N K (2)
2
- 1 ————— L I, - ——— t . pred
Gia-i'l‘ 5 5(n 7 2)70: + =5 8(x ﬂ+2)7a T ,
(5.20)

while the axial vector analog is the same operator with 7 o 75 replacing
Y o We can now carry out the indicated operations and calculate any
quantity in the theory, including the transformed "rest" operators as in

(5.12) and (5.13).
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VI. OUTLOCK

I have presented a rather ambitious program; it is not at all clear
how much of it can be carried through successfully, The essential point
is that we write down a large number of relations that we believe to be
exactly or nearly exactly true (relativistic kinematics, dispersion rela-
tions, current algebra, etc.) of the huge space of all hadron quantum
states, and we try to satisfy as many of them as possible in a tiny space
of functions of one or two three-dimensional variables and a few spins
and isotopic spins. The unanswered question is: how many of these rela-
tions can we satisfy in such a little space without, so to speak, burst-
ing 1t?

Actually, we can try to add more relations and calculate more
quantities, We can introduce not only the strong coupling constants of
vector and normal axial vector mesons, but all strong meson-meson-meson
and baryon-baryon-meson coupling constants and attempt to satisfy all the
superconvergence relations, not only the ones that come out of V and A
current algebra, We can go even further and introduce the coupling para-

metexr n(‘t:) of each Regge trajectory n to particles a and b as a

Ba.b

generallzaetion of the coupling comstent g and try to satisfy rela-

abn
tions among all the B's and thus to calculate all the B's., We can intro-
duce the divergences of the non-conserved éurrents ﬁm’ ‘75a’ ¥6a’ .;«'70‘,

and gms, and postulate the obvious commutation relations between these
and the charge densities. These give "good-bad" commutation relations at
Pz = @, which we can multiplyv ‘py Pz to give a finite limit and attempt
to satisfy. Finally we can try, especlally with the covariant formalism,
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to calculate the decay amplitudes of pseudoscalar and vector mesans into
lepton pairs, i.e., the matrix element of 3&0? between vacuum and
pseudoscalar meson or of 3ia between vacuum and vector meson.

Since we do not know how many "truths" can be packed into our small
representation, 1t is not clear in what order to proceed, which relations
to satisfy first. For example, instead of trying to solve the meson
problem with a glven M operator first and then imposing the bootstrap
condition later (e.g., that the vector form factors have poles at the
negative mass squared of the vector mesons), we could try to write first
—3L (s +b k_+c k) ) (6.1)

2 2 n n Ix n ly

k
n

Fk) = z
iv-] n k|

where an, bn’ and cn are suitable operator functions of klx/gly’ and
then impose the current algebra afterward. In this way, the sum rules

of current algebra appear as conditions on the vector meson coupling
constants; the relevant superconvergence.relations are automatically
included.

Another track that future research can follow is to develop the
covariant formalism further, especially by writing the charge density
commitation relations at Pz = 00 in a covariant manner, as they have
already been written when sandwighed between states of spin zero.

Meanwhile, let me make a few concluding remarks about the most
straightforward approach, namely to solve the non-covariant form of the
problem for some simple, non-trivial M operator, calculating the unitary
transformations eiS necessary in order to satisfy the angular condition.

Consider, for example, the meson problem with an approximate guess for

the mass operator like
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¥ = k(o + 52+ U(]x])) : (6.2)

Now we may ask what conditions are imposed on U by the requirement that

18 with the right properties so

we be able to find transformations e
that relativity and the current algebra are satisfied. We know that the
case U = 0 is all right, but that is trivial., What potentials U £0
are allowed? There has been much discussion of essentially this question
in connection with Foldy's suggestion (Phys. Rev. 122, 275 (1961)) of
solving the relativistic two-body problem "directly", i.e., in a form with
all extra varlables eliminated and enough Foldy-Wouthuysen transformations
performed to reduce it to a sort of Schridinger equation with two-component
spins. Our suggestion is similar to Foldy's in form; we impose in addition
the substance of the equal-time commutation relatioms.

In connection with Foldy's work, it has been alleged that his form
adds nothing to the richness of field theory and that the only potentials
he is allowed to have are those coming frcm the F~W reduction of the
relativistic exchange of various quanta., Thus the positronium problem,
for example, suitably transformed by F-W methods, is allowed, and is
presumably allowed for us as well, (This would give spin-dependent and
velocity-dependent terms in the exact U, of course.) However, since we
do not require that our quarks be real and separable, it is possible that
we are permitted a much wider range of "potentials", perhaps even
including things like the harmonic oscillator,

Zacharissen and I have begun a brute force attempt to find out
what potentials are allowed for our problem by taking (6.2) and imposing

the angular and cammutation conditions on the unitary transformations eis
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in power series in 1/m, From the first few orders in 1/m, we should
get a good idea of what restrictions are imposed on U, In the meson

problem, we put

LD L@
5 = E— 4+ R~ 4. ... (6.3)
m
and found
1) _ (2) (1) _ (2)
(oY) - oy p - (D) - of®) p P, X*P+pP+XxP
vgl) - X X v = v N X _ ‘z 5 Z , (6.4)
(1) - (l) 2 2
L (D (o™ » -9, 2) D, . zp, P +DP P,
22 - 2 4
22t dU/dr x-p+pex daU/ar rt 22
- 8M . (6.5)

The magnetic moment of s-states to order 1/m and the axial vector
coupling constants for s-states to order 1/m® come out exactly as in
Section V for free particles,

For a similar baryon problem, we obtain corresponding results.
Noting that in this case, say for the nucleon, M = 3m+ d(1/m), we
obtain for the total magnetic moment to order 1/m for an overall
s=-state Jjust the sum of the Dirac moments of three free quarks of mass
MN/ 3, giving for the total magnetic moment of the proton three Bohr
magnetons and for the neutron -2 Bohr magnetons. This excellent agree-
ment 1s not so significant as it looks, however, since we can see from

the axial vector coupling constant that the expansion in p/m 1is not
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rapidly convergent. For 'GA/GV we obtain for an overall s-state, much

as in Section V,

- 2 -2 s o) (6.6)

=

and we see that to get 1,2 or 1.25 we need (22)/m2 to be nearly unity
and the expansion is not so good quentitatively, however useful it may be
qualitatively, (Here ( }32) is the expected value of the square of the
momentum of one of the quarks in the nucleon,)

Anyway, up to this order we have not found any restriction on U;
we must see what happens in third and fourth order in 1/m. If there
are still no restrictions, then it is very likely that any potential
will do.

As a final suggestion for further work, may I say that perhaps we
have introduced t00 many variables into our meson and especially into our
baryon representation., It is conceivable that we could hold fixed the
radial variable in the meson problem, thus abolishing the radial quantum
number, In the baryon problem, we might be able to effect an even more
drastic reduction of the number of variables, getting a much sparser
level spectrum, Consistency and comparison with experiment must guide

us here, as always.




FOOTNOTES

1. Actually, I have treated both mathematical particles as quarks, rather
than quark and antiquark, out of laziness; I should have performed
a charge conjugation transformation on the spin matrices for the
antiquark.

2. The operator that I call Fis(“lf _L) here and represent by the z~-component
of a spin is really - Fis(}g .L) in the language of previous work,
In the notation of the Dirac matrices, - 75 = az oz and so -75

and o, are equal when Q = 1.
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