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Abstract

Ip fhis paper we‘discuss the electromagnetic field, as
pé;turbéd by a prescribed current. All quantities of physi=
cal interest in various situations, eigenvalues, eigenfunc-
tions, and transition probabilities, are derived from a
general transformation function which is expressed in a non=
Hermitian representatidn. The problems treated ares the
determination of the energy-momentum eigenvalues and eigen-
functions for the isolated electromagnetic field, and the
energy eigenvalues and eigenfunctions for the field per-
turbed by a time-independent current; the evaluation of
transition probabilities and photon number expectation
values for a time-dependent current that departs from zero
only within a finite time interval, and for a time-
dependent current that assumes non-vanishing time-
independent values initiallyband finally. The results are
applied in a discussion of the infra-red catastrophe and of
the adiabatic theorem. It is shown how the latter can be
exploited to give a uniform formulation for all problems

requiring the evaluation of transition probabilities or
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eigenvalue displacements, © =" - 3
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INTRODUCTION

We shall approach the general problem of coupled fields through the
simpler situation presented by a single field which is externally perturbed.
In this paper we illustrate the treatment of a Bose-Einstein system by dis-
cussing the Maxwell field with a prescribed electric current. A succeeding
paper will be devoted to the Dirac field.

The solution to all dynamical questions is obtained by constructing
the transformation function linking two descriptions of the system that are
associated with different space-like surfaces. Thus, for a closed system,

the general transformation function can be expressed as

(5o |Sim) = & (S 1)ra | e )ar]s!)
where the 2/3 are a complete set of compatible constants of the motion, in

terms of which the energy-momentum vector 73, can be exhibited. In the &

representation, the effect of an infinitesimal translation of < is given

b
(Y| ¥ s) -4 (6o | B IE | v's

i B de (Yo 6 's )

where
! /
P.-Rw) |
Accordingly, if U, is parallel to o; , and is generated from the latter by

the translation )K,t, we have-

(ro|o'"a) = dir' a"f}-ﬂf(i EJX,L),

-

and . , ”
(S a8, o)+ ,2 (51 ”‘7“'(""']3’* X )ly'187).

| (1)
This shows how a knowledge of‘thé transformation func?ion that relates two
convenﬁently chosen representations on parallel surfaées yields all the

eigenvalues and eigenfunctions of EZ .




Another illustration of the utility of transformation functions
relates to the situation in which the same system is externally perturbed,
in the interior of the space-time region bounded by &; and J. . The
transformation function (¥'ag; [y "d:) , inferred from the knowledge of
( g,IO‘ I S " 02’) s then ylelds the probability of a transition from
the initial state Y "to the final state &,

, " 1
(a//)a,/’):/(a/(f/fo-;)/ (2)

Representations of particular convenience are suggested by the
characterization of the vacuum state for a complefe system., The vacuum is
the state of minimum energy. If this natural origin of energy is adjusted
to zero, the vacuum can be described as that state presenting identical
properties to all observers,

R -dy %-0
and is therefore independent of the surface TO". Now, if the general field
component %{is analyzed into contributions of various frequencies, ;(72 )

we have

[:('/a: }) ;] ’7~ ;(f” )

When this relation, involving a positive frequency, 71‘>Lh is applied to
the vacuum state vector, we obtain

Ry V)= -1 (0 )

Hence

= >0,
;(7; S;L C> / 7Z (3)
since this state, of energy less than that of. the vacuum, must be non-
existent.

A 51mllar dlscu351on yields

i[/ Zf,'O £ €9
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which is the statement adjoint to (3). The vector g% is thus characterized
as the right eigenvector of the positive frequency parts of the field com-
ponents, ;K‘g), with zero eigenvalues, and QZ appears as the left eigen-
vector, with zero eigenvalues, of the 2f , the negative frequency parts
of the field components. It should be noted that the decomposition into
positive and negative frequency parts is invariant under orthochronous
Lorentz transformations. The complete sets of eigenvectors of these types
will evidently be of particular value for the construction of energy

eigenstates.

THE MAXWELL FIELD

Elementary descriptions of the electromagnetic field on a given <~
are provided by the alternative complete sets of commuting operators, the

transverse potential /Qk(X), and the transverse electric fieldl Fzﬁ,(x).

When no confusion is likely, we shall not employ the more complete notation

(T
E)(Z) (X) , which indicates that these are the transverse field com-
o .

ponents, relative to a local coordinate system based on O .

-

Following the suggestion of the preceding section, we employ, instead, the non-
+)

Hermitian operators, o (X) and f74 (X) , which in the absence of

an external current, are the positive and negative frequency parts of /z:g(X7.

The transverse field equations, for zero current, are

=, Au= Fon,
30 Foa= 95 An = W Fla

~ where W 4 as a coordinate operator, is defined by the matrix

(Il x) = [SL2) ) eep (4 B (X-K'))

whlch is symmetrlcal and p031t1ve-def1n1te. On wrlting
F(‘f‘) /[_—'()

fi;é B =)
+)

/q,z@" -r/:],? )




where (i)

Fi)zt,bw/qh
ok

= i-(F;‘i if i,bd /7&.),

)

the equations of motion assume the form

t) )
aoFo&)=+’(’wE—k,

which, in virtue of the positive-definite nature of w , confirms the inter-
(t) '
pretation of f;e .

The canonical form of the infinitesimal generators
65=fdd' (’ Fo-ﬁ)orlqk
GF =fd0‘ A/‘ J/::&)

can be extended to the generators of infinitesimal changes in the non-
(t)

Hermitian operators 0t 9 in the sense of the transformation equation

G-G= §W)

Thus

G. - do (A "”+/-?"’)(JF;Z)+ S Fon
oo 2 B SRl AR AR ALET)]

G (do DA Sl A o 2 As For + AL 4“))]}
.which yields

GFH [dd' ,2,//,,‘ é"/:-&u) 2.1[6[0'54 w O(\Fﬁ)

and

(+) ¢~)
hﬂ -) 3 -t
G = [ IFoa 24t Fox w'dFg |
F-()
The commutation relatlons on g implled by these generators, are

[F";)(x)) y (X)] [Fé (x), :; )(x')] 0,

and

)- ’ (T)
(e, 2 A 00 <[, 1AL 00 % &)




‘The latter can also be written

(T)
[EZ)UO, oem] L (dre (XleX)) . (4)

These operator properties can be verified directly from those of /2;4 and /ze

It should be noted that there exists some freedom in choosing the

generator for a given set of independent variables. Thus,

Gre = [do 2 Ae IFL"

(+)
is also a generator of infinitesimal changes in f; s since

G G * (b 2R GFLL 2 i ) G
| + - #)
§[+Sdo For “ + For ],

Vi

I

Similarly,
G = [do 2 A S Fou
Fe

is an alternative generator of changes in F;& ,

/
- - (-, - (s’
Geo = Gro = §[-+fde Fod w Fon'].
The eigenvector concept can be extended to non-Hermitian opera-

tors, with some limitations. We introduce the right eigenvector of the
(+)
¢ ) on g ,

Fow Y(F e) = FBdw YFey),

{-)
and the left eigenvector of the complete set, E;g (x) on ¢ ,

- R -/
3 (F"'c) okl = (F ) For

In virtue of the relation
(+)

-)
Foa ) = ok (x) )
these eigenvectors and eigenvalues are connected by

F(Fo5)= PFe)!

! ¥ ! (5)

<)/
F;;'(,\f): FO_& X)

complete set of commuting operators, F;
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However, the right eigenvector of the Ek and the left eigenvector of the
t .
F- ") do not exist. This can be inferred from the commutator (4), in

the form

(T
VRRPS I R _ .
[ E@ (x) ) /L:,e ("')] = ':'zlj (J/;/z %/wlu)f'))

where
>/

- )
/ ( )(x).: Fm@ (X) - /_:4, (X)

ok
When applied to the hypothetical eigenvector ?(F“/) this relation yields

R g0 BE) - Saar) B

The contradiction between the negative-definite nature of the operator on
the left,'and the positive-definite character of the numerical quantity on

the right establishes the non-existence® of S?(Fb ) s and similarly,

2
It is evident from the discussion of the first section, that this is rela-

ted to the non-existence of a state with maximum energy.

ot B(F%) .

Let us consider the significance of the change induced in the eigen-

/ )/
vectors ?(FMO—) and @(F_( U') by the respective generators

GF"‘*’ and GF(-) ', according to the mutually Hermitian conjugate
santions, S Y(Fe) = L G T(F7e)
FPFUe) = £ (F ) Geo

/ +)! ' _

Now E/(FM )+ J%(F( ) ) . is the eigenvector of the

“+) ) : ' )/
operator set F- CJNFT- s with the eigenvalues f:_ .

(+) . :
Since the é;FgQ are arbitrary infinitesimal numbers, this vector is also

- (+) o m/ +)
the eigenvector of the Fo/? with the eigenvalues + JFO( .
(*)' . : .

Hence the alteration of the eigenvector QJ(F is that associated with

+) -/
the change of the eigenvalues by 5Fo . A similar statement applies to J@(F‘é—)
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The relation between the elgenve(ﬁ OTS SP(F _ and E’P(F +o-)

’ which are affected analogously by the respective generators

C:’Fm and /GF“” s can be deduced from
EBEL) = i o) FF5) o
. oy G - f’F F“), ) 5{(10‘ (*) - ) _‘P(FG

namely,

By - s (fdr B FL ) HER)

! (+)/ ) (6)
= (- fdo Al Fod) P(F '),
The adjoint equation reads
(=)' (=)
B(Fe) - oS Fod o foa”) (P 7 )

s up (i fde AR ) B (F o

We shall now discuss the Maxwell field under the influence of a
prescribed current distribution ;ELX) . It is convenient, initially, to
describe the relations between states on the two arbitrary plane surfaces,

S and d75 , by means of the transformation function
(8)

(F | F )= (8 (F) "2 (F ).

The dependence of thls transformation function on the eigenvalues E:,,éJ

Ud'
and FTQ(&) is 1ndlcated by

I, (FO|Fp )— MWFEIN G e -G F&) .

F-
< 2i (F GG de SRR, - (o SRR F o)

while an infinitesimal change of the extexnai current produces the alteration
4

d«J /(F(-)’ “_—u)' ) (F“’llg (dx)JJ;uq IFH%I-,), (10)
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The current variations are subject to the restriction

UETL =

Accordingly, if we rewrite (10) in the notation
‘ /
</&J;(m>/(/;-z-ﬂo_”—<+)’\) -4 (FOL / (x) F"g-;)} (11)
we are at liberty to add an arbitrary gradient to /7 CX) Since this
coincides with the freedom of gauge transformations, we do not indicate it
explicitly.
The advantage provided by the transformation function (8) rests in

the possibility of combining (9) and (11) into

d"( 1-)/ F“’ ) ’
_[ L_‘do; ﬂJ)I(%J) ;Lfdg- Cr“l;*)l(dyéJ;)B /( )/ /F(,,.),)’
which possesses the formal solution “

(FH/ /FH)'%) ) / 12
IR AR 5 W5 (o loa) 2

The problem is thus reduced to the construction of the transformation func-
tion referring to null eigenvalues.

We shall write3

The dash is omitted, since there is no distinction between the eigenvectors

\P(F (”0—) an /Y(F(+) ) ’ fo; zero eigenval.ues.v
(om|om)= 24 (ib:)

AND

(o | A, W) locn)/(om/ooz = (A, ()

In this notation, the dependence of the null elgenvalue transformation

function upon the external current is described by

(% (x)) (ﬁ (X))

,OI‘

$V5 = (50 § Tw (A, )
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in which we have extended the integratioﬁ over the entirety of space-time by
supposing that the current vanishes externally to the region of interest,
the volume bounded by &7 and 93 . According to the operator field equation

.QVF;V = _atﬂ/""éﬂa)’ qu = J;L

the numerical quantity (x))obeys the differential equation
M

—51 </Ci/4~>+ 9,443\/ </Q’V> = ‘],;¢ (14)

Now the gauge ambiguity of ‘</1u> is completely without effect in (13),

since gz;' ’Vanishes on the boundary of the extended region. Therefore,

for the purpose of constructing ‘\Vz, we can replace the differential equa-

tion (14) with

- oy <HM> = J,w (15)
We are concerned with the solution of this equation that is compat-

ible with the boundary conditions
‘ (=) >
= P 2 g
< /:;—0_)(1’9) o, !

Py ] bR
<Eo)(f¢) 07.
which follow from the nature of the null eigenvalue states on Qjand T3 .
Since the current vector is zero in the external region, we can rephrase
these boundary conditions as the requirement that the field shall contain
only positive frequencies in the domain constituting the future of o5 ,
and only negative frequencies. in the region prior to 03 . This excludes
a possible homogeneous solution of (15), whence
o . ‘ ,
- c =X ] (X

(AW = (" cdx) D.(x=x) J, ),

ﬂ .
in which I)+(x-x') is the Green's function defined by

2% 1y = -x!
SOV Dax-x) = dx-x1)

together with the statement that it contains only positive frequencies for

(16)

xo > X; , and only negative frequencies for X,< X: .. It therefore

satisfies the temporal analogue of the outgecing wave or radiation condition
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familiar in the spatial description of a harmonic source.?

Green's functions of this type have been discussed by E. C. G. Stueckelberg,
Helv. Phys. Acta, 19,242 (1946), and by R. P, Feynman, Phys. Rev. 76,749

(1949).

The expression of (16) provided by

(%J;(X')) (A - (%J (x))(c%\ﬁ/ (x") ) Wa
= day Di x=x)

indicates that 'I)Jx-XQ is a symmetrlcal function of X and x! .
Accordingly, the integral of (13) is
o}J(X)

V" f (dx)(dx‘) J (x) D, (x-%

apart from the additive constant which is the value of y@ for the isolated

(17)

electromagnetic field (JL =(3) . It is an advantage of the representation
we have been employing that this integration constant has the value zero,
Indeed, the null eigenvalue states of the complete system provided by the
electromagnetic field with no external current are just the ¢°- independent
vacuum state, whence
T =0 (0T |oan) = |
Wo =0

The differential operator appearing in (12) has the effect of induc-
ing the substitution )’ —_— ) S
g, (x) = T, 0+ l[ G wa) Fuy’ () "d;z(""“?) Fuv  (x)
in \dz + Here ér(X,G) represents a one-dimensional delta function, which
is defined by

S(alx) é;(x,g-) -Euof/ = ( dt‘i" (X)

Hence

il ) = ele W),
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:“\If;re W, + 2 do; (x) </4 (x)) f m(x) <Avm/\

- noAay @) |
g G- ’/ (x7
| Y e+ olO“LdU" (X/D
+ R/Ldmfaf‘c; =0 Dex) i (’ff, | [
;L/fdo;§d¢ E;( (x) D Lx-x) fon X _' (18)
] Y ’
The f?’-?LIOWil"g symbolic form of the Green's function ])+KK‘X,)
| D+(X_X,):4£,Lw o (=4 W Ko =X, /)J(ﬁ i)/ (19)

shows that / ')
|, -1
, !, -y :-,L(X,W X
Xo"_Xo‘ :D+(X x') 2 o A
which identifies the double surface integrals, referring to a single surface,

in (18), with the factors appearing in (6) and (7). Our result is therefore

expressed more simply as

(F-c y! ‘F—w' ) L@/V(LW) | (20)
%i»;h—\f +2fdo Eff(x)/? <x) 9) fd‘r S (A
-L/L”‘O‘»f;%' gy Dy tx=x) Fylx')

A

In parficular, "
A+
J;‘:D'. (F_h I’- ) : o F/*I’ |
=%[—L//Lg_do;%_f‘®'ﬂ ) Dt (21)

APPLICATIONS

- . Y
Explicit forms of the Green's function ~J)+»(X‘X>Ere required for

further work. The Fourier integrai version of the three-dimensional delta

function in (19) yields - AR (xX-x') Xo >y,
JapiflA8) L e (22)
+(X‘X)"5: (Q_,n.)a Ko Q-Aﬁ(l’_)('/_) X, 4 Xp/
where /

bo = &/
is a positive frequency. The invariance of this structure is more evident

in the four-dimensional transcription

D (x-x) = /d,/-z) ar(fw £4, % (x-x')

Tam)?
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. /
in which the integration is restricted to positive frequencies for X,>)X,
and to negative frequencies for X£<< X; . No conditions on the domain of

integration are involved in the alternative four-dimensional form.

)= [(dk X'
D) - [ 48, e 24

-\t
We shall express the tensor Green's function, cg;v’D.'_(x Y) ,

gE»+ 0,

with the aid of four orthonormal vectors associated with each plane wave,

$ = < e, (rk) e, (rk)
MV A=l
We choose the first two vectors to obey the conditions

y=ha! M, E0k)= kiCudk)=0 |
in which VWAV is an arbitrary time-like unit vector,
My =

The remaining two are given explicitly by

e (3k) = Mu+ faufim, ey)  Ma €.3&) =0 |

and

E k) = A Tu.

Thus, employing the three-dimensional form (22), we have

dtz T t
M

For applications referring to parallel surfaces, there is a useful
alternative form of)yg, which corresponds to the construction of <f1u>

in the radiation gauge common to both surfaces,

<,q°<x))r3 = ([ edx) Dx=x) Jpx)

(T)
</440<)> f (dx') D+Cx;-><‘) Jp ()
where

€£)(X y{) = <5\(xo"XE:) £E>( X )

-1
i) (X xﬁ) (ZQE)/|K Zg
Thusy ﬂdx)(dx)[j;,‘ .0 v j X') = J(X) ﬂ(*’-x)](x') ] (24)

The direct proof of equivalence with (17) employs the expression for the
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longltudlnal current,

Jk (x) e f(o(xo Dx-x) o Jo®?

and the identity | ’ @O(,,
"’ -y -
Dx-x) = Dx=x)+ 9o f(o(x ) Dix=x?
+
The latter, incidentally, can be expressed in the symbolic form

=l p =AW Yy ~ X -
i\,(b\) e W‘ 0 XOlé‘('&_{,): w 2J<xo_xol)a‘(£_£,)
3020 w2 e X gy | 26)

Zero Current

(25)

We shall use the appropriate form of the transformation function,

(21), to illustrate the construction of the eigenvalues and eigenfunctions
of fi for a complete system. It is supposed that the surface J7 is ob-
tained from T3 by a translation )(, which brings the point ‘lef Ty into
the point X,. Since the surfaces are parallel, and the eigenvalues refer
to transverse fields, one can write (21) as

=’ u-)' =)/ X~ )IE‘ ,j
(F o ) ea/v[qlfdcr (X)(f D( x) x|
With the tlmenllke vector 7), identified w1th the common normal to both sur-
faces, we see that the eﬂ(m) y ):/) :L, 3) are pure space vectors, while
the fourth vector possesses only a time component. Furthermore, the first

two vectors are orthogonal to 7% s which the third vector parallels. Hence,

). >Xo ; (CS/\MM :D_,_(X x)) "~
0( & ’
=,

= 3
Tam) 4 :
where we have also replaced the integration with respect to f%tw'a summa-
tion over cells of volume (dﬁ),
P~

On defining

- ' "
o @) = ( “4) @) L&kr Foox) ek 2R9M )

(27 *o )
and

Y AR (XX )
a;z(ﬂ)_ ((d&))} ,{Z‘,)wg_do_z A ) g k) F i) )
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)

which are correspondingly constructed linear combinations of the /pm on
. (+) '
g5 » and of the E;/m on g, , we obtain

o
(F o =) / (+)) 5 = %%_ QA%X a/‘)’k:]

(~)/ (+)!

7Tu,/v[€ Qe Oa
R

) A feinéx {d_;/')/n (aﬁ.)///n

or T M=o (/y)/)‘/; (44/)’/1, }
y/ ( (*7}?}7
) 3 T G | B R0

A comparison with (1) shows that

—P,L = 7,3(’”) = % Man Ry ;=0 hd,-- , (29

where, in particular, ‘

’ P

Pa = % wy R, 0,

and that ‘

<F—(—)//m)__ 77(0&“”}47

M W‘I) Ya

é+)t) - (58*”)'¢’

(A F) = T b

The occupation numbers 7%5 provide the complete set of constants of the

)

motion.
Note that if the eigenvalues at corresponding points are in the

relation
F—l-)/ [

m oW
we have

A
(-)/ _ (+
Ah = C(/Mzz

and therefore (H" ¥

)= ()

as required by (5). With the knowledge of these simple eigenfunctions, one
can construct eigenfunctions for any other fepresentation of interest. We

can also present. our results.without reference to a representation. On re-




18

marking that the vacuum state eigenfunction is

(Fol0) =1,

we can write *) ” p é*;/ “)

" N ) ( [ (cr))/
(F+)q-//n0') ,\,4 (ry]/)/ /0) O_/h7£ (M)
Therefore, ) )ﬂq

= (oo
%(fmr) ZZ._—_——(’”")/'» % )
an

oyt (@e)”
Po'< B, T 22

are the eigenvectors of the state with photon occupation numbers, 77A4

Time Independent Currant

In this situation,

=) (X)
L () (L A |
the energy operator?% is still a constant of the motion, and its eigenvalues

and eigenfunctions are obtained from the transformation function that charac-

terizes the time translation

7—= t/ —tl
where t,and tiare the time coordinates that labelo;.and g3 -

On employing the form (24) for m.x\_le get

Wo= -E0T +4 f (o €l ] o J 0 S ot Dy (e = D x-x") j
Ehu 4 de)(dx ) Dox-xr )

According to the symbolic form (26) _ /' p -3 -x&d/Xa“*Ey
(tdrdet) Der) - D] = [F 7 200, [ £ gy
- aw (-2 ) Six-x)

so that,

. - ~AwT
e BT ekafd d, W -2 T)
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Furthermore 7 4 | F4 W (X' -ty)
| / L w—/
£ A 4 & VALY

xo=ti: CHa0) =

| = rwr-e* ) G

and ¢ (K ~ts) ,

Xo=ta ! A = f Ak F 4w g (X
< pwr (- ) T

The transformation function (20) is thus obtained as

(FOI F%) | pp[4E0T-2 ﬂdﬁ)/ﬂ')’ié‘“’"lﬂ———'ﬁjw (BF-2iw] 27
(F (.L)//F(-f)’) (30)

in which we have divided by the transformation function referring to a

common sur ace, -/ e
(T o o o T D) L]

%[;[dc- F&,)/ /a:w]

It is evidently de51rable to employ a new description, charac- .

/
terized by the elgenvalues f:% ) 4 Where
—(#) _ - -/
Y S F FEAwW A
and
,L] ™ (¢)_ + w \7% (31)

|
w)/ &)/ )
The relation between the elgenvectors ¢ /and Sz7 f? can

be inferred from the generator

G’Em fdo 2 A" Fm /a’o*(:z A )Jp,ﬁ*’
GF“) ({\[qu-j'w-z (F—t+)+ (+))J

) +)
where we have maintained the symmetry between FT A FT( that

accompanies the substitution ;]i‘9 :Z; Thus,

PE D)) - o [T T, w2 (£ )] PFes
_ Q@/V[Afdﬂ‘(]; -2 (+)/ /06" J—w_ajjg/(/ﬁ—m
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F(Ey)- o di B et fr g, | 8(F)
In further confirmation, observe that , = ¢rr!
( (-)///_—-(1-)’ ’*7“[9-/‘”‘3‘ Fa—)w" ots J N .
sy gho b )
ap [ Tyt B [ B2 ]

which results in the same eigenvector transformation properties. Since
these conversion factors do not refer explicitly to the surface, the trans-
formation fuhction ratio in (30) preserves its structure on introducing the
new representations, Therefore,

(F =)/ //E'("// / ,ﬁ%\‘ (/t W/ . (32)

where

YW=-E@T- au [tdx) F -'e-wT/-éfH
)/
-Eo)T -~ L//do-fdo‘ F,( w0 D, (X-X’)/,-‘,; x).

n

Apart from the factor Z%ﬁf&vfé]ﬁ7:2 this transformation function
is identical in form with (21). The expanded ver51on of (32) is, therefore,
)/ / )/ - )/
(F%s| FY%) = ZKF in) g (=B T)(n] F )

where

YPOI:'E(O).P%M’\Q %"D ' : 77)/2:0/,)2-’._,.

and =ty ™M
— @) = —,T (O.——)
(/n,F- ) /\f‘ (’V),’)‘A\. )

= o N (&(-)I)M
(F 7o = T St

We see that E(o) is to be interpreted as the energy of the photon vacuum,
the étate of minimum energy, ’nAk=C’* W;th respect to this displaced arigin,
the energy eigenvalues are the same as in the absénce of a current. One may
say that the field /F:é describes pure radiation, which is without coup-

ling to the external current. Indeed, (31), written as
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(x) - "/W/ D x-x I

,Clqa2 (x)

represents the removal from /SQ(X) of the time-independent potential
produced by the static currept, which is allocated equally to fi{r)and to
fié_) . In view of this uncoupling of the static field and the radiation
field, one can assign momentum as well as energy eigenvalues to the radia-
tion quanta, as given by (29).

Time Dependent Currents

We shall now discuss the class of problems in which the physical
information contained in the general transformation function (20) refers
to transition probabilities rather than eigenvalues. Let us first suppose
that the current is zero onJ; , varies in an arbitrary manner in the region
between the parallel surfaces {7 and Oy , but again reduces to zero on Jj .
Thus, the physical states on Ui and U7 are those of the isolated electro-
magnetic field, and we wish to compute the probabilities of the transitions

induced by this perturbing current.

Now, p ["’/ /(ZX’)(f D(x—x'))(T)J'(x')
L [ £ T SR 22 L om 0BCrm BET
24 ;)&’ 4L& Y J:V« )

A
(T)

fo«cr F- %) { At m) 2 [ ., (x)/(dx')((}‘ D, - x')) T

) ) . *
ZE; Cy .Q AFX \;Z;A

T 2((0‘&) L /"“f(a(/()e M)Q-“‘*xju ‘, (33)
A\ (2T 24 g

an

)
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‘ . (=)' &)
The quantity‘)/’determining the transformation function (Fr //ff )

is thus obtained in the form

ol A BN ral gTtRha T*
W = M-— [ € Jr \7,\—&
+ /La;};’zfaé/\’, a,l;;’ 2" A X+ J

The transformation function then serves, according to

F() /IL—<+)/) Z (Ft)//n)(mq./w,o_)(fy) /F(-H)

/
as a generating function for (77CT7/'77 J= ) , from which the transi-
tion probabilities are found in the manner of (2).

It is somewhat more convenient to deal with the elements of the

wizix (1] S]m!) = 2= ATOIN (0 migm) g T
folon, ) = [ 1S10)]

since they are independent of < and Q% , provided the current vanishes on
these surfaces. The following substitution, representing a transformation

to a common reference surface, (“l &Y “)!
-A o
_)‘ X (=)! & - Afa

A e ]
s <F(-"/mz(m/s/w(«'/ﬂ*“),

m,m'
. F (~)1
On picking out the coefficient of a particular ( ,/4?) o We obtain

(34)

the partial generating function

wao')E[ (=4 1)" pipo (- 4 ™' T*)] (29)

( na/)ia

— S (wiS/m) 1)

mi
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and, simllarly, . Y, - 2 F(-)/’m)(/n/g/m’ ‘
L[ W) 77[ ;,,ff) (. JJ ” ( <3)6>

Preliminary to a direct verification of the unitary property of
the operator S, we evaluate the imaginary part of \NG « According to (24),
‘ (r)
29m We = (@ x) LR Jopy (o m Dult- xS 3, 001

where, referring to (23),

9 D (x-x ')>(T) ) /
=),

a——

(1rﬁ Aho ,
This form is valid without restrlctlon on Xa - Xo . Hence,

L Qﬂn‘\V; = ;%% I:Igg,

Alternatively, the invariant expression (17) yields

290;«\.14/: = [(AX/(O{,X/) J;(X) 9”” D+(X‘X') \Z:(X') |

with

9”” D+ (X_XI) -
which can be written

Qywn)ﬁ;:' éi;Ik )
Here_ dé &x x ZL= Z ,J;h/
I,h' ((2”,))3 l{(d)e ‘7/:()‘1 Asha

in which it must be understood that the complex conjugation does not extend

4

J‘(dé) , eAéX e-/‘é/\"
(27)3 2ko )

to :I; s A';I; ° Thg necessary equivalence of the two evaluations indi-

cates the complete cancellation of the integrals associated with A= 3, and 4/,

Let us multiply (35) with the complex conjugate equation,
(-)/ -1
%_}V%- TI—[(Q AT ) wv(/{,a/ J')]
(m!)h (87)

- 5 (F 1) (1S ).
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and’ perform the summation with respect to 4} ,

(FIsTSIF ) )
T o [ 1713 (ars T )T ou T

! (=" (+)/
:ﬂw/v(a”‘”)—(/'— /F ),
Ak
whence
§'S =
A symmetry property of,s may be nbted here, The invariance of the generat-

ing function (34), under the substitution
(+)

(+1! -)/ s (
Qe = Q) (w/ﬂﬁ | s = a/m h/‘ﬁh .

shows that

m/s/m,_(m//s )77’(3'/;,-*)
which has the consequence
7}/‘(4» m') = 7?“(‘71;‘44 )
As an elementary application of the generating function, we place
’7°<A45 =0 in (36), which yields
nlSjo) = eep(aWe )T (=<d)"

Ad% (/) "%

pover < LU ap (-17]

for the situation in which no quanta are present initially. If we are |
not éoncerned with the polarization of the emitted quanta, we can employ

the binomial theorem to replace (38) w1th

pime)= I[ Gl op (Ta)]
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The general matrix element of fs is obtained as-

(m|sim) = WW/)W[ I mlg\r/")J

(™! 4711}9’
where the function fm /{ﬂ") ’ which is symmetrical in ” and ’77/, is
/

' / P
L e xme X ()" (1) e = X2 X (H) " (1) "™

4 ( My =mM,)

:(_') > e ! x‘m< (X) .

neé

In the indicated relation to the Laguerre polynomialss, P> and 77< repre-

° We employ the definition of W. Magnus and F. Oberhettinger, Special Func-
tions of Mathematical Physics (Chelsea Publishing Cbmpany, New York, 1949)

p. 84)

sent the greater and lesser of the integers 71 and 7', The general transi-

tion probability is thus obtained as

primens = T [t (171%) " )
¢ 2 (- /T/Q)J. (39)

In particular, the probability that there be no change in the numbers of

(7 Jm) - 77’[(/50) (/\T )ﬂ’/‘( *) ]

. /
Should the quantum numbers ‘Y and M be large in comparison with unity and
A= Nem '44 m/m( s for a particular mode of the radiation field,
we can replace the factor in the trahsition probability referring to that

made with the Bessel function asymptotlc form

[Ty (2m" 1T ]*
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One can devise another generating function for the transition
probabilities which has the further advantage of yielding the expectation
values of powers of the final occupation numbers. We first perform the

substitution

)!
Aa — Gas 4= Hs

in (35 where the );*5 are arbitrary constants. The result,
“ MV/ T [ L2t )™ e (A -AU*)J
(M) -

Yy (m=m1)) (/)')/S/m )(47 ‘| H)//
T [er

is then multlplied by (37) and the summation with respect to # performed.

This gives ‘ o » P 471//,:(1»))
2 g(F(v/M/)(m//gf/m)]é]'[%(qwm ))]{ /5/m")(

nn;m'

- T e [6 e (€70 ] o @ L) T T
N

which exhibits the same structure as (34). On confining our attention to

//
the diagonal matrix elements, /\é y we find

;ZA Z(//V/A)’(fn w))_jfv(m/m/ (77' Lef/(,t/m—rnl))>
—7]’[/_’:’, ((etd )(e“’/)/J'/ /L%((/f"' 11T/ )]

The right side thus serves as a generating function for the transition

(40)

. _ . <
probabilities if developed in positive and negative powers of the £ d;ﬁ °
~The expansion in power of the 3:& exhibits it as the generator of expecta-
tion values of all powers of the quantities ”Ak ~'”A’k .

The alternative presentation of this result, .
T+ %)™ )Mf Tha L5 (- X 1712 e (X1T17) ]

supplies the expectation values of products successively decreasing by unity.

Thus, in the special example referring to the vacuum as the initial state,
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where

<7T(I+x) ) WW(X/J/Q)

we find, for a particular mode,

<Z_Z"_1-!Z}/>o '(T/)

which is characteristic of the Poisson distribution, The first two expecta-

-

tion values, derived from the general generating function are

<(’”Aﬁ'”’,\4)> = /J;:z/l (a1)

and

((mn =m4)") = {(Ma- ”7Af<3> + (2, 4/

We need hardly remark on the statistical independence of different modes.

If we are not interested in the polarizations ofvthe emitted quanta,
it suffices to identify the parameters distinguishing the different polariza-
tions,

: e = Ok
To obtain statements referring also to unpolarized incident quanta, we must
average, with equal weight, over the various polarized photon numbers that

are consistent with a given number of photons in a certain propagation

mode,
/

! / - : .
Nig * Nan = Mk
This can be accomplished with the. aid of the addition theorem for the
Laguerre polynomialsp The resulting generating function, without reference

to polarization, is

[77/,% (£ a/(m-m')ﬂyv(r", (77—%{41(41-47’)))
_ T [imwn~ L) (e Ly T) eep((e*2)L) ]
R

Some expectation values are

<(Mh-m2')>m, =I/\'




ov

28
A~
and ‘
/ /
(Mg A Ly M
For the second example that is concerned with thevevaluation of
transition probabilities, we suppose that the current is time-independent in

the vicinity of Q=

29 varies in an arbitrary manner in the region between the

parallel surfaces g7 and 93 s but again becomes time-independent in the
neighborhood of ; . These limiting forms, \2“—(5«’,) and \l:(é ’2)
need not be the same,

On each surface, we use the description appropriate to the current

on that surface,

(Fri) F ) = gl for B w2 R0 ool
(F o ) ey Lo o 120 w2 F’*" L A o) 3 Jal2) |

(42)

where
= (=) (=) -
fi;é, = F;;AQ +-35'L w=! ;L;(') s

F:— C#) éf) J.,L,M)" ;7—(2J

Were the current constant, this transformation function would possess the

form (32). Accordingly, it must be possible to express all additional con-

tributions in terms of the time derivative of the current. The manner in

which thls,?ccurs can be 1llustrate?/w1th he evaluatio -/

Cobr Bl SAyiniy = = (0 Fo o {;dnsfd ) & Duteex 4™ Ty

-/

LJO' Xy w"'Tu) *gf(o'ﬁfc’" (x)_D(X- y)aw™ Jix'2)
+ [ T [Tty Dy0cx') a3 Tate.

The térms containing J;(l) and J—(al) are cancelled on ex-

pressing (42) as a function of the variables f:;g and f:- o
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Carrying out a similar reduction of )Vb with the aid of (25), we obtain

(FOG I F %% )= sy [t Wo =74 [S( 2" By~ 10 Dy e-x) Bf"cx')
+ 24 Jggb‘ “”x)g(dx}) k-k') 4 w3, J;(xf}

da‘ g x)g. (k) Dy (x-x') 4 w' ), ]’(x)j

+24

)’E\h L[ o)L J; KR Tooo o) [ D tx-x)
+_'§°’(o(x)(a(x')a LS (x/w"D e=x') w9, o T

G (=) - ()
The introduction of the variables CLA& and CLAA , in

p

the manner of (27) and (28), brings this transformation function into the

form

(F i) F % ) g (4) T oupe [l An e R0

Y s (-)’ Aéx ;7— ,(@U')/ -K%Xuj—*j (43)

)
where
= (Adk) | ya 91 1kl
J;h= (2m)? ﬂo) _fz(k) emrk) € (/40)90 ];,,(,X) (44)

is expressed as an integral over all space-time by supposing that the current
in the extended domain exhibits the time-independent value appropriate to the
nearest surface bounding the region of interest. In order to present this

result as a generat'ng function for the surface independent unitary matrix
- A /
/ //n/) = AT, 1) X (4,)0_/47/0:)@ (%', 2 ) Xam

Pim) = E(0) + % Mg Ro

a further rearrangement of \df; ~ is required. Indeed, the first term of

this quantity is , %o " &a E{olxv
,_Lf,f(xo E(o/)(,,): -[i'/ E(o,1) 'tz.E(O/JL):] +£w ‘ )

The substltutlon —_— ) - /&X - (+)’
— e/ + ARX
Vothn _y &, a,, < - @M ,

)

now yields the required generating function

M,('(M)W[arw/ CL“”»A CL“/J /w(+)/3— ]
_ Z (F(-”/M)(”’/S/’”/)(m /F_(H/)/ | (45)

N, mn!
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where

My = f g}(o Xo 2, E(0,%) +% f_ Z(dx)ﬁx/)aoj;(7))r) w-/ﬁ/x-ww"c),fi@(%)
is such that _ N |
lefm My = %"/J;&/ .

The generating function (45) is identical in structure with (34).
Hence the transition probabilities and expectation valués are given by (39)
and (40), with J_A‘k replacing :};ﬁ . If the current iizero on
the boundaries of the region, an integration by parts reduces :EL% to
‘3;4 . Notice also that if the current is time-independent, (45) asserts
that
(nI$lm!) = & (')
attesting to the stationary character of the states labelled by the photon
numbers,

The Infra-Red Catastrophe - According to (41), the average number of photons

emitted into a particular mode is given by

L
als G8) Lo (it entm) & 2 g0]

?-53?73 ;Zéo

We shall now consider frequencies that are sufficiently low for the wave-

length to be large in comparison with the linear dimensions of the spatio-

temporal region in which the current changes. The average nuniber of photons,

of either polarization, that emerge in a range of such low frequencies i's
then
(44) L

(dk.,
k) L, (@230l s 2 [T g0 T 2l

which becomes infinite as the lower frequency limit approaches zero. Any

time variation of the current thus produces a logarithmically infinite
number of zero frequency photons == a fact well-known as the "infra-red
catastrophe”. Accordingly, we find a zero probability for the emission of
a finite number of photons. To avoid this type of statement we recognize

that in any experimental arrangement, there is a minimum detectable fre-
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quency, i%mqm;” such that we have no knowledge of the number of photons
emitted into modes with frequencies less than 7%o,on;n o If we sum the
general transition probability (39)‘over all final occupation numbers of
referring to these unobservable modes, we are left with the same expression
constructed only from the observable modes. The latter will yield non-
vanishing probabilities for the emission of a finite number of photons,
each transition probability being dependent upon 4%o,mdm1through the

factor

w5 (Tuf) -l g (e *aTml]

This quantity represents the probability that no (observable) photon will
be emitted, if none are present initially.

The adiabatic Theorem = This important statement refers to the situation

in which the current changes from its initial to its final value at a rate
determined by the total elapsed time T’-‘t:'t o We are particularly
interested in the limit in which T becomes very large compared to the
periods of all observable modes,

Roy i | 7

The above description of the current time variation is expressed quantita-

tively by

_atoox (6] e et
ﬂdx) €, (M) € “EK T 9,u(8), © =Ko Ta)/m
[ ) .
Hence the integral occurring in (44) is éésentially determined by

!
{ode %78 40

Now, accordihg to the Riemann-Lebesque lemmaé,

v

6 E. T. Whittaker and G. N. Watson, Modern Analysis (The Macmillan Company,

New York, 1927), p. 172,
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Lm / folde 2"4"7‘—6 9/(9),/ =0 (47)
J%é@t?ﬁﬁh only that

[do l9)] < oo

This suffices to establish that

Lm Y [* =0
T-x

If 6’14 (9) is of limited total fluctuation, the integral in (47) ap-
proaches zero as/(460-7—)-, , which enables us-to satisfy
= 12

Lom S [T =0

T Ik

without essential restriction on the spatial distribution of the current
(it must not be as singular as the gradient of a delta function). Under
these conditionsy; we obtain the probability zero for any change in the
phofon numbers, despite the alteration in the current.

This theofem can bé exploited to give a uniform expression for the
results of éll problems involving transition probabilities. Thus, in the
integration over the extended region in (44), it is supposed that the cur-
rent is constant in the exterior region. If werwere to replace these con-
stant currents by currents decreasing adiabatically to zero, at infinity,
the null contribution from the external region would not be affected. But
‘we would have succeeded in shbstituting for the original problem 6ne in
which the current vanishés dn the boundaries of the extended region. Ac-
cordingly, we can integrate by parts in‘(44) and regain the form (33), ap-
propriate to null currents on £he boundaries.' The most general problem
requiring the evaluation of transition probabilities between stationary
states, involvesvinitial and final currents that are time-independent with

respect to different reference systems. When modified with the aid of the




b DU N Y

33
adiabatic device, this situation also falls into the class of problems covered
by (34).

The adiabatic device is also applicable to eigenvalue problems., Thus,
we can use the transformation function (34), appropriate to zero current on
the boundary surfaces, to construct the energy eigenvalues for the situation
of a time-independent current. We suppose that the current, which is zero on
the surface (I;» , grows adiabatically and maintains a constant value be-
tween surfaces J; and {, , and reduces adiabatically to zero on Ug .
The designations CE;O refer to the fact that the adiabatic theorem involves ~
the limit of infinite temporal separation between Cao and J , and
between T and Oy o Then

(Mm% /m'dj&) =d(mm") va[/‘ W, +4 Fim) (Xa- x_w):],

where (reversing the integration by parts in the first term of (46)),

% = __j:z&()(o E(D)Xv))

and _ . .
MV(AM,):MV (-4 fé'%(Xa E(o,x0) W(—Affol(t:'fw) Jzt//\(—xjwa(xok'(, ))1

On recalling the composition property of transformation functions, we recqg-

nize immediately that

(mm/m’m)sJ(m,M’) %\,[;,L Eto (t-Ta) +4 P(m)()ﬁ—)&)j}

which shows that, in the presence of a time-independent current, the energy
eigenvalues of the radiation field are displaced by E;(Q)',

.The methods discussed in this paper and illustrated for the electro-
magnetic field are equally applicable to other Bose-Einstein systems, such as

the symmetrical pseudoscalar meson field.




	Introduction
	TheMaxwellFEeld l
	ZeroCurrent
	Time Independent Current l e

