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"~ ABSTRA

The arguments léadingvto the formilation df'theykgtibnﬁP}ipciple

for a geperalvfield are presénted. - In association with the complete reductiocn

" of all numerical matrices into symmetrical and anti-symmetrical parts, the

general field is decomposad into two sets, which are identified with Bose-
Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of

fields is inferred frdm the fime,réflection invariance requirement, The con-

‘sistency of the theory is verified in terms of a criterion involving the

various generators of infinitésimal~transformations. Pollowing a discussion
of charged fieids, ihe'electréﬁagnétiC”field is intrdduced_to satisfy the
postuléte of génefal gauge'inﬁariénce.- As an aspect of the latter, it is
recbgnized that tﬁe electromagnetic field and chaigedjfields are not kine-
matically'independént. Affar;a discussion'of the field-strength céﬁmutation
relationé, the "independent d&namical vafiables,df the electromagnetic field -
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are exhibited in terms of a special gapgé.




sy )

The genersl program of this series(l>is the constfuction of a

(1) Part I, Phys, Rev. 82, 914 (1951)

theory of quantized'fiélds'in terms of a single fundaméntai dynamical principle.

We shall first present a revised mccount of the develbpments contained in the

initial paper.

The Dynamical Principle .
N The transformation fuﬁctions COnnectihg various representations

haye the two fundamental propgrtieé.
@mf)_ -» 5@\@’3&@’(@‘ 17
(oi Iﬁ) (B ) )

where .gtiﬂ symbolizes both integration and summation over the eigenvalue
spectrum, If .~éde'l@9 is‘any infinitesimal alteration of the transfor-

matlon function, we may write .

{(4\6)*”““%%@'@) )" | (1)

-which serves és the definition of.xhe 1nf1n;te51ma1 operator C(‘hﬂie

The requirement that any infinitesimal alteration maintain the multiplicative
composition law of transformation functions implies an additive composition
law for the infinitesimal operators, =

F R

If the & “and @‘b representatlons are 1d°ntica1 we' 1nfar thqt

fWaw =0

b

‘which expresses thc Fixad orthonormality requirements on the eigenvectors of

a given representation, On identlfylng the c& and Zy representatlons, we

learn that d’Wﬁa‘ = _"J‘(Ad(a

i
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The second prope,r'ty of trans.formatiion' functions implies that

(R G| ) =L (B @m
-L(Bf{k/@“ l4')

Il

11

or
oy = §Wap
the infinitésimal operétors;,-dflﬁkﬁ ~ are Hermitian,

The cf]V;@ possess'anothef additivity~property referring to
tha composition of two dynamically indepéndent systems. Thus, if I and II
designate such systems,

(dzdz | 6; @r) (cf;/&;_)("(g

and if {W.((& (,rh/d ,B are the operators characterizing infini-
tesimal changes of the»separate transformatioﬁ'functions, that of the composite
system is ,QFM@ T 0('de-,{%4£

Infinitesimal alterations of eigenvectors that preservs the ortho-

normallty properties have the form

f{*)ﬁLP(“)Gq)
ff(o(’)'; —(,G %("T')

where the generator Ciﬁ "~ is an- 1nf1niteqimal Hermitlan opnrator which posesses

an add1t1v1ty proparty for the c-ompos1t10n of dynpmlcally 1ndependent s,}stems.

‘ .

If the two elgenvectors of a transformatlon functlon ars varlad independently,

5 i

the resultlng chenge of the transformatlon functlon has the general structure (1)

wn flhp = Gum Gyl
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The vector

[ 22083 d”?(* ) =
.can be characterized as an eigepvector cf the.operetor set
F-U-iG)al1+4Ga) = o -d
) i TR ’
with the eigenvalues A . Here . '
= = [ a1

This infinitesimal unitery'transformation of the eigehvector ﬁDY“') induces

= (I-¢ Gqx) f‘“’)'

N

a trensformatlon of any operator : such that

(4| F ) = (4 [F13")

We write thls in the form

ZIFIR) - (RIF1) = SN

or, in virtue of the 1nf1n;tesimal naturs of the transformation,

Js [ Flan) = (CITFI<"),
where the left side refers;toethe change in the eigenvectors for a fixed F,
while the right side provides'eg_equivalent varietion'of the opsrator ¥, given
w  dF= F-F=4[f6]
If the change consists in tce altereticn of some parametar oy

upon whn.ch tho dynamical’ variables depend, and whlch ms*y occur explicitly in

',t—f% FoF)
F JF e%;,

N

F, we have

where Ai; Fi a 1s the total alteratlon in F from whioh is subtracted

~/
Z} F , the change 1n F assoc1ated w1th the exp1101t appearance of / ’

. 1 oo Vo
since tho 1atter cannot “be produced by an operator ‘transformation, We thersby

e

obtain the "equation of ‘motion" with respect to the parameter { ’

-3~




(G F=0rF +4 [F Gl -G
For dynamieal s&stéms obsying thé postulate of locai action, com=

plete_descriptions aré profided by sets of physicaiAquantities, i, ’
associated with spaue-llke surfaces, g . An infinitesimal alteration of
the genural transfor'natlon function ("g ? O—I € CT ) is characterized by

[(Flam18m) = i Ea|dwnl o), (4)
_ H3re the 1nd1ces>1 and 2 refsr both to the choice of a conplete set of com-
muting operators ff and tq-the spaca-like surface .<f' . We can, in

particular, consider transformations betwzen the same set of opsrators on

different surfaces, or between differsnt sets of cpmmpting operators on the

A =/ P oo
sams surface, as in ar(f O'“/So ’J‘) = /'(fo— /(f‘W/SQU'/ (5}

One typa of changa of the gensral trensformation function consists
in the 1ntroduct10n, 1ndepnndent3y on &, and on CT}., of infinitssimal unltary
transformatiqns of the operators, including displacements of thess surfaces.
The transfofmations.will ba generéted'ﬁy opsrators &, ana ’(51, constructad
from dynemical variatles or ¢, and O3, , respéétively, and

| i = 6. -6, ~ (6)
When ths transformation fuhétion'connapts two different sé£s of operators on
the same surPace, whichlafe sﬁbjectéd:ts infinitesimsi tranzformations gencra-
ted by C: and kl? respaotively, we hﬂva, r=f°rr1ng to (5),
W= 6-G N 2
Slnce phys1cql Dhenom°n° at dlstinct polnus on i spacu-l ke surface are dynaml-

{,

Cﬂlly 1rdependent, a gnnarator Girmust hav3 the addltlva form
5 do Qo)(xn: {dc-,, (X)

where CLG' is the- numerlcal measure of an ulevant of spaca—lika area and




(Ei,(l) is to be regarded as ths time-like component of e_vector in a
loeal coordinate system‘besed‘on J in ordsr to give the surface integral
an invariant form.-.If.one can interpret (E;¢ayon CTi‘ ,Iand on 0, , as
the values of'a vector defined.at:all points, the difference of surface inte—
grels in (6) can be transformed into the voluﬁe integral
5M1:furdx/a Gux , (= Yhoxw )

| A second type of transformation function alteration is obtained
on considering that the tranefofmation conneoting fﬂ , G, , and 5;192,
can be constructed through tha interﬁediary of an infinits succession of trans-
. formations relating opefators on infinitesimally neighboring surfaces. Accord-
" ing to the general add1t1v1ty proparty (@, |

dwl~§dbé+dao’ |

where 'C(‘V£r+d¢-,o— . characterlzas a modiflcation of the transformation
function connecting infinitesimally dlffering complets sats of opsrators on
‘ths infinitesimally separated surfaces 0 and CT"‘*CiCT' "If the choice of
1ntermedlate operetors depands contlnuously upon the surfacse, we shall have

| § Wor,& =0,
and .referring again to the dynamicpl indspendence cf phenomena at points
separatﬁd by a spaco-llke interval, with the consequent additivity property,

we ses that ({§bvé”+dg') will have the general forn

chvde & 'fu *(dg" .d\ae(")

{W.l }5 @u&ﬁ(x | (g>

Ve

Tharafore

. The comblnatlon of these two types of modificatlons is deseribed
by JWn, = 6 G +[ (dx)Jﬂ(A))

which involves dynamical veriables on the surfaces 95 , O3 , and in the
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interior of'the-volume bounded by these eurfaces.'.On the other hand, we can
write this as the’ volume integral \

d/‘b‘/n‘ [(a’x) B{‘f(x)-:—a,,‘ 'G“(),(')]"
which indicates, conversely, . that any part of C[;{%k) ’ possessing the form
of a divergence, contributes only to the generation of unitary transformations
on ¢ and T

. The fundamental dynamical principle is contained in the postulate
thet there exists a class of transformation function altsrations for which
thevcharaoterizing.operatore .':cffﬁvﬂm are'obtained by approoriate variation
of a single‘operator LV4Q y -

Fwa = &wa) . -

Of course, this principls must be 1mplemented by the explicit specification of
that class,

The operator Lv/z , the action 1ntegral operator, evidently pos-

T o y
sess the form l"/'l IG‘-.. (dx) ag( )

The Hermitian requirement on (f‘ W 1s satisfied if Wi is Hermitian,
| which implies the same property for Efi(i) s the Lagrange function operator.
In order that relations between states on. 0’: and. G" - behinvariantly

characterized, the Lagrange function must be 8 scalar with. respect to the

transformations of the orthochronous( )Lorentz group, which presarve the temporal

|
i

order of T - - o '34 {,

' (2) This name was suggested by R.’Ji‘a Bhabhe, Rev.'Mod Phys. 21, 451 (1949)
and CT}_ . A dynamical system is specified by exhibiting the Lagrqnge

l
function in terms of a set of fundamental dynamical variables in the infini-

tosimal nelghborhood.of the pointf.): . Contained in this»Lagrange function

b




ﬁill_be certaipvnumefical parameters, which may‘be functions of X . Aﬁy :
change ef these parametors ,modifies the stfucture of the Lagrange function and
is thus an alteration of the»cAlynamical system. Accordingly, infinitesimal
changes of the dynamical system afe deecribed by |

d Wy = _g tde) &€ ¥
‘where d & :f(f(X’) , and the numerica_l parameters are the object of vari-
ation. This form is in agreement with (8) For a fixed dynamical system,

M‘l  can be eltered by displacing the surfaces @5 , a3 , and
by va‘rying the dynamical variables contained in the Legrange function, The
_ transformation function. ( Je,IO’, /Jp:ﬂ) describes the relation between two states
of the given ,'system so that. a. ehange'in. tha trans'format,ion function can only
arise from alterations of the states on | o and gL . Hence,
for a fixed dynamical system we fnust have

Cf~LV{L = (E;,“ GSL 7 o -

whare d\h/n. = f( b‘//'z) and - the objects of variation hare are G, , CTZ ’
and the dynamical variablss of which 5€ is a function.

The latter statement is ths operatof erineiple of stationary’
action, it asserts that Lﬂ/CI must be stationary with respect to vari-
ations of the dynamicesl variables in the infcerier_ of the _i‘égion defined by ‘

(7-‘ - and d~ ', since C;;- ‘;andi i <25; ohly contain dynamicai
variablesl. associated with the bounda‘ijriee' of‘ the,? regioe. This prlnciple implies
equations of motion for‘the d&nemieai‘§aria£1es; that is to say, fleld aquations,
and prOV1des expres:ions for the generators: -Cg é and <E>;_‘ . The class
of var1atlons to which our postulate refers~can now. be defined through the

requirement that thls informatlon concernlng field equntions and infin1t651ml

unitary transformations be- self-consistent

-




There exists much ffeedom within this class, as may be inferred
from the remark that two Lagrahgs functions, differing by the divergence of a

vector, describe the Same‘dynamioal system. tfhus;
L =L(x) -0 £.0)
yields : o '

.".\/&4;' = LN/:;L. - (’\A// \ﬂ/el > R _ (K/)

where, on each surface,

= [l = [ dr ¥,
Accordingly, the statlonary action principle for '\A/;a. . is satisfied if it

is obeyed by Lv/ 2 since

J \?a = g G;
Here,
W, =G, -6 S, = G-

define C;; and (%i » which are new gencrators of infinitesimal

unitary trahsformations on '07 and 75  , respsctively. The latter
equatlons possess the form (7), and thus characterlze transformation functions
connect;ng two different representations on a common surface. Indsed, with a
suitably elaborate notation, we recognize in (9) the add%tivity property of
action oberetors,' . ’ o ii  o g = ' '

. il .

: ")
where, for example,

,1
W = - \/g g 2 \}/“

and

' -/\/ o= ‘
e 6’ B q 0
To be consistent with the postulate of locel action, the fisld

i
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6quations must be diffarential equations of finite order. One can always
 convert such eqﬁations’into systems of firsf order esquations by suitable adjunc-
tion of variables. - We shall designate ths fundamental dynamicalbvariables that
?bey first order field equations by ')C,,‘(;X) , which form the com-’
ponents of the general field opsrator ik; (X) . With no loss in genar-

ality, we take :k: (X) to bs a Hennitién‘operator,

)( (x )C ()(,

| If the Lagrange function is to yield field equations of the desired structure,
it must be 1inear_1n the first derivatives of the field operators w1th raspect
to the space-time coordinates, Furthermoré, if these fiesld:equations are to .
emerge as explicit equationS'of~hotion for field compoﬁents,,that part of the
ﬁagrange function containipg first coordinéﬁe dérivatives.must be bi-linear in
‘the fisld componenté. With thgse preliminary remarks, we write the following

gensral expression for the Lagrange functlon,

N

N SAVERS |
: —r s ——— . - \ . \
A 2 (X« )V‘A;’,L- (/M ){x ()/b /( >§//{ ) - H \///' (/g)
in which a matrix notation is employed
A ‘\, 5 — 3\ -
b D X = X (4 3, .
The derlvatlve terms have ‘been symmetrlzed with respect to the oparation of

. integration by parts, a process which adds a,divergence to the Lagrange function,

and is thus without offect on the structure of the dynamical system, In order

7 : . , 2
that / be a Hermitian operator, the general function 3;{; ‘must possess
this character,

[
. ./ e i .
) I / sy \ ! o ',{,- // 7 o ,‘X
I L= L |
s ] . N

and the numerical matrices ./ =07 22 fx = g'(q "7 _/,ﬂmmst be Skow-

vd 4 , ,
/TA, J s ARt T A Y
Hermitian, = ) ‘




7

o AP | |
ane - '}‘//u... - ‘—/4///,4, ) A = o ...

Although Qe are: 1nterested in comnlete dynamcal systems, it is
advantageous mathematlcally to employ dev1ces based upon the properties of
external sources. Accordlngly, we add to (10) a term des:Lgned to describe
the ganeration of the fisld / <X> by an external scurce ¢ ()() , which

is to be regarded as a field quantity of the same general naturs as ,}, (/\) ’

of, = “_"* ’J> //)/{/ -+ Z/j ¢) (’//

Sowree u/
This is a Hﬂrmitlan operator if J—? is a Hermitian matrlx,
) - N2
B =12,

For the source concept to be meaningful, all components of ;(, must occur
coupled with the source components in (11), which requires ‘that (5 tbea
‘ non-singular numerical matrix.

An orthochronous Lorentz transformation

induces a linear transformatlon on the fleld components,

vo=) K= g

where  / must be ‘a real ma,tri_x,

P ;o | T | )
to maintain thé Hermiticity of //}/ '+ The scalar reguirement on V,’ is

3 V K] k (] " ’ "4—
satisfisd if JL?/ is a scalar,

AL r = % //C)

-

and if

~10=




,shall suppcse thet the souree . possessos the same transformation properties

=
[0]

 &s the fisld, The condition for the source tsrm of the Lagrange function to.

be a scalar is then given by
. 4

~ o o . R 2%
[ 55] =43 . Ve

Note that /‘/ and ZE; also obey Eqgs. (12) and (13) respectlvely, and
s

o

that these equatlons can be combinad into
-
L (ﬁ M /Z—— /(,(,7/(6 )/)
in view of the non- 31ngular character of /Q? .

For an 1nf1n1t651mal Lorentz transformation

- X —_ l % ~ — 5
&“*”"V& c}%?’XW“%'éu y <§;V """ 7
the matrix ﬁ. can be ﬁritten.' A
/ = - / - , )
=/ T N S/-l- L4 _ / / 4)
- where _
IS > o (' . - ) ) _ . - ) -
\2 o — V’MV } /(/(-/‘V o U/ s . (i/ 5/

The.infinitesimal version of (13) ig’
) o=/ 7

- V/OL:/ @ \) b . ‘ "‘3/1.4 T

or o ‘ '

///( C )
v ~ ‘b/t (b)d//«?/)
in which the complex conjugate Statéménts }efar to the components indicated

in (15). Similarly, |

)y//" 57//\ ' ‘/‘V/\ /« (ft«A ’7 '-Ci:”"%\ )) (M)




and

=/ L -y
!/_.‘/, /)V/J, \~—- / /C‘/,(P\ d,_) ;/ A/{JZ /j rr/\>

J
da
If one views AK::(}_lQL,/Qb’S?as 8 ficld in the original coordinate system
i ’ P/

-

and thus subject to the same depsndance upen that coordinste system as A ’
it is inferred. that

e : :
C - : o
Rk L= L a ,/;’," YA C

For infinitesimal transformations, this reads
- - - -~ -
f . ] C L - < N N N c
’L“‘g‘%v ) SA d T C/(“N Dup T Gen Jun * &1’/‘/\ T s T Gy
In performing the variation of the action integral, we shall treat

the two types of quéntities, coordinates and field variablss, on somewhat the

same footing, although the former are numbers and the latter operators. We

L

introduce an arbitrary variation of the coordinates, J'X , throughout

AL

the interior of the region, but subject to the conditicn ttat the boundaries
remain plane surfaces, i j _ | : (7,7)

G X, # Dy 0K =0, \
on ¢~ and @, . Tho field components )Z;,(}) are depsndent both
upon the coordinate system and the "intrinsic field", Under a rotation of
the coordinate system, the field components are altered in the manner described
" by (14). Accordingly, we‘write‘the generallvarlutlon of the fisld as ths sum
of an intrinsic fisld,variatioo; and'of'theivarlation induced by the local
rotation of the coordinate system,i 5 ? ' : |

Jz) = 4 X - (4 (e dX) G 2

vwhere the antl-symmetry of.\/bul, ensures that only the rotation part of the -
_coordinate displacement is “effective:. For tha source field, a prnscrlbed
function of the coordinates, we have ”; |

S = dxe € )

N
J

~12~




We also remark that 3 _

d(dx) = (dx) I dx,
and ' _ .‘. | :
d(du) = = (dudx,}a,
whence C o - _
4 (2 %)*‘ e OCH) = (D dx Ly x. (9

The Lorentz invariance of cli. produces a 51gn1ficant simplifica-
~tion, in computing the contribution to <§-<;l?‘) from the éoordinaté induced
A, we#e gnti-symmgtrical and constant,
its coefficient in the variation of the Légfange function would vanish iden-

; ’ 4 C
variation of ;2: . Thus, iquic aXx

"tically, save for the source ‘term since the rotatnon 1nduced changa of ;- is
not present in (18) Accordingly, for ths gnn ral coordinate variation of
(10), thers :emains only those terms in which 59 Cﬁ&( is differentiated,”
or occurs in the dilation combinatidn, Ciu d/XL'7g c) C,){ . Both

types are contained entirely in (19), which leads to

c\((i,)—~c‘f *z‘(fu,ffx 7‘"‘7/0’-*') ’Z//Zua;,]’&;),%}j}
Qe d VL LS, S A2

/

M@JXN?PS WX - z/,ﬁf)

In virtue of the symmetry of the second derivative,

( )e I, J)« )&Z(’/ %Sf,{ﬂ)z o

[ = (.t d, +a,\ JM)) KO Sunt ST A2
49wﬁaaﬂ¢ﬂm¢A Sr A

13-




~ where the last step expresseé'the result of an integraticn by parts, for
" which the integrated term‘vanishes, since the dilation tensor is zero on
tha boundaries (Eq. (17)) Colloctlng the coefflclents of G)c cf: 2

into the tensor 7;; v we havu

VC((W/' f (4/)(‘[0‘0‘4’) > /(/)/4 J'y'z/) 2y :/
whare

L e e -7
‘L:,"_i_,(f 6;«,?2 —/Ko/n,ﬁf)*’aq /\/ e dpy) P //))
and we have employed a notatioﬁ for th§ symmattrical part of a tensor, ’){]
| _ oy \
‘K%Z‘ C%p) "‘ ;Zf (;fig C%» 7‘-}Vi, €§47> .
B Tha_expreséioﬂ for cfcif ié
= . ) - - -,
4oL v?f/g-’.,o,&z——g XA ¥ -5
A**/‘(Jld.?f' p(’ﬂ’l '“’/‘/‘d /Zﬂ/) }’:L . EBR)
,La)(,,[o,\)/‘,// jd-JZ)v’ :L)J. |

Hence, on applying the p“ln Ju’e cf statlonarJ actinn to coordinate and

' field variations, separately, we obtain

dp 7, = 4L ZBJ f#— EZ)

A

_ and ' (2/)

SH= ST 7 2:}/ TZr 4(SLIE+ E LY

while. ‘the surface terms yield, on Qf' -and qg;'" » the 1nf1n1tes1ma1 gener-

ator

G - f w "(Z/gcbii-Z-% TXA. ) 4 7,;;%]

-




The operator 7—[ Ab is an arbitrary, invariant function 6f the
field X . If its 'vériatién is to possess the form (21), with
_appearing ‘on the left and én ﬁha right, the latter must possess elementary
opefator proepertiess, cvha‘r;ac‘tveri\z ng the class of Vﬂrlntlnns to which tha
action principle 'refers;' _T'hus,f we shcu.ld be able tc displace d ye entlrely
to the left, or to the right, in the structure of cg;‘;/ ,

S H-= ){(c‘ /) = /orﬁ/)or,z)
" whlch defines the left and rlght derivatives of. ﬁ with respact to ,Z, .
In visw of the ccmp.Lete symmetry batwaen left and rlght in the process of
multiplication, we 1nfer~that the expressions w:Lth J/—Z on ths left
and on fhe; right are ,' 1n fé«ct, identical. The fisld eq@atidné, therefore,

'poséess the twb equivaient’_ forms '
2 A D K = (9 Hox) -5
) X2t = (I H2) - 213,

o

and {5 can be equivalently written
~ . : v
- -~ - ) ' . r
[ [x A 8%+ Lo 5]

‘ | | (22)
. :V/"“O/J:[_' f Z/‘f/ul + Z:‘V d X, 7

In keeping with the restfiction of ths -sta“t'ionary acticn prin-
ciple to fixed dynamical sys.tems‘, the extsrnalwsqur’ce,has not been altered,
If we now introducs an infinit_:ésimal vgriati_bn’ of 3: ’ énd extend the
argument of the previous paragraph to J ? : | ‘, we dbtain the tﬁo

equivalent expressions for the change 1nduced in M& 5 ‘

S W, frc/x)ofga?z f (dx)y&fg’

“15-




The corresponding modificetion in'the'relation betwesn states on ~ and
on. Uy can be\ascribed‘to the individual states only if one introcduces
a conVentioe, of the nature of a boendary opnditioﬁ. Thus, we may euppose
that the state on 7 vis4ﬁhaffected by verjing the externsl eource:in
the region between 7" . and o . In this "retarded" description,

J% vag generates the:lnfiniteéimal’transformation of tha stats on

Qf' . An alternative,'"advaﬁced" description corresponds to — dg 7

generating the change in the state on O, , with a fixed state on 7

2
These are just the simplest of possible\boundary conditions,
The suitability of the designatiocns, retarded and advanced, can
be seen by con51der1ng the matrix of an operator constructed from dynamical
variables on some surface ,0" intermediate between 7 and Ty .y
(5| Fel TG )= Jees s S IRy IS e ).
An irfinitesimal change of the scurce g produces the following change in

the matrix element,

i IS G)=(8G)(pHT)r ¢ g b m)ﬂm)rff +2)/$%)
—(fr/(ﬁ f’(r)f'c(/‘(f)df )/JOL )

in which we havs allowed for the possibillty that /:(a‘) may be ex-
plicitly dependent upon . the source, and 1ntroduced a notation for temporally
ordered products, The matrlx element depends upon the external source through
the operator f:(b") ’ and the elgenvectors on g~ " and ' Zz' . One
thereby getsivariops éxpress1one fonﬁ<d§ /T&~9 » depending upon the boundary

conditions thatfare adopted;; Thﬁs, if thehetate oni‘ 2z is prescribed,

’J
‘I

Se (r_zﬁ'w)f—(a-),u(nf)JfA/a)--u/% F(r) @3)

-

we find
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‘which only involves changes in the scurce prior to, oron 7~ ., The

opﬁosite convention yields the analogous result

J%F(d‘)J,.’:JF(J‘)vu(/’/V’") hu)-cF{/)(m/*
:C)F,C“fr)-c[ﬁ(a‘)Jh ]

Note that . ’ ‘
Nl { 7 = '/ ~ 0; A )
S F@O] - &F@)], =dF g W]
The operator: C; © of Bq. (22) eonsists of two parts,

where E , .
Gy = [d7 EATE == [dgr Ty x
- and o .
~ — . I : _Z‘ 7
G%yx :3“/;/€:; 2;41/’Gf;1, = Sz,’tf * &-%;“”'{;“"
| The latter form of éEJ - is a ccnsequence of fhe restriction to plane

Space-llke surfaces, 11m1t1ng dlsplacements to 1nfinitesimal translations amd
rotatlons,

qu,-iyftjuv»g,e,. |
with the associated cpefatore, the ensrgy-momsntum vector

=R R L
Iy = V/O/gz:.£:*7"'/

v
and angular momentum tensor
= ay
Jor =S |
/Mf\/%”f S f\v X /fi/u
The opei-ator _ G dx | ev1dent1y generates the inf‘lnltesmal

transformation of an eigenveotor, produced bv the displacement of the surface

a7-




-

to which it fefers. ‘With the notation S '
. L7 '1" ' . 7 N
& ¥(s7) = (€, Jy +4 Sur L Y (TT)
we have

Fh VGO =) R L= B

and

A

4 i _ , , ,
5 /uv (s f) 9’6%) ¢ duy F(ST)= Jur HST)
If f?(p ) is an arbltrary function of dynamical variables on ¢~ , and

possibly of non-dynamical parameters depondent on ¢~ , we use the notatiocn

@) =6 o+ B ) FCT)
F(a‘) = (&, Jv + & S d")p(f)i

to distinguish between the total change on displacement, and that occasioned
by the explicit appearance‘of non-dynamical parameters. on referring to Eq (3),

we see that

4, F(f).. C) Flr) + c[/—fé‘) /Dj |
y ) = Juun F) - L PO, Tun ]

" The pfoper interpretation of the.genératiné operator -C;bﬁz can
be obtained by hqting ifsxeqﬁivélencg with an apprbpriately chosen infinitesi-
mal variation of the extefﬁal éoﬁrcei Conszder the fol]owing 1nf1n1t981mal
surface dlstrlbutlon on the negative 81de of - D

Eég ){;)JZ f(X(O)} P | . (;2'4)

which is not incompatible w1th ths op“rator propertles of these varlations.

-18-




We have assumed, for simplicity, that the squation of the surface ¢~ 1is

X(o) = O. With this choice, ’ :
Jg{"//.‘z fJa‘Z)ﬂo,dZ (a:b'
‘The change that is produced in ¥  cen be deduced from‘the variation of
the field equatlons E ' g ..
: . /. i . - -
2 A D de B= (G HY ) =-155¢
| =, SE S,

Evidently thers is =a discontinulty in é’ Z -, on crossing the surface
distribution Jf whlch is given by o ' \
a)d(o) d/ Z] DV(O)J'Z’ ‘

In the retarded descrlption, say, d} Z is zero prior to the source
bearing surface, so that the discontinuity in é% l is the change induced in

% on (the positive sids of) T . Thus, the surface variation of
the external s_ource simulates the transformation genereted- by & S in
which '7((0) % on (7 1s replaced by

Ao :Z :’%(0) £ * 74(0) J?,Z o . (=5)
= %(o) z ‘_ 7/(0)' JZ

The matrlx )¢(01 has been retamed in this statement ‘gince it is
a smgular matrix, in general The number of components of : that appear
independently in (25) equals the rank of‘ the matrix g// o) * arx'.l thls is the
number of independent. component fieldhequations thet p;re equatlons of motion,

in that they contaln time-like derlvatives. The express1on of (25) in terms

of the generator- GJ’% .s S - B )

v*[%‘fo) Vl, Gszz /_::2{../4(0.) g k. | | . (&é)

s

Tt
R,




" The factor of 1/2 that ‘appears in this result stems froh the treatment of
all components of )ﬁ?o) /Zﬁ on the same - footing, we have not divided them
into two sots of which one is fixed and the other var1ed If /A is an
arbitrary function of ,)9?0)';2: on G 4, we write,

[/‘ 53%7*4(&’/?) = o # J)/()Z

When the field equations that are squations of constraint prcve sufficient to
| express all components of ;Zf in terms of ’&?b) ;Zf , Wwe can extend (26)
into ' o o
L%, G”‘j ¢ 3 é;f’( )JLZ
of course, ona must distingulgn-between these variations, in which only thg
)Kéb) A are independent, and the independent nariations of ail

cqmponents of | y;Zﬁ ‘ wnichiprqduce<the equaticns of cnnstraint from the
action principle, : |

| In order to facilitate the explicit construction of the field
commutatiqn'relétinns, Qe shali introduce a reducﬁbility hypothesis, whiéh is
~associated with the Lorenﬁz invarianﬁ_process of sepnrating the matrices

)YCL ’ ﬂf? 1 into s&mmetrical and anti;symmetrical parts, We -
‘reoquire that the fisld and the source decompese inte two sets, of the first
kind Z ¢) -, and of the second klpd, 51/ 77 ',

as a, concomltant of the decompcsition

)d_/{u(%_ () 067_8()7‘_6()

X

e

() (1) (r) ’,‘
/M;f%e pm—ﬁ o S
‘“Yz);; /2) (z) . ~ ;,‘v‘ ,

220 =




The matricgs- of the first kind are real (/4,.—, o, 3 _) , and tnose of the
second kind are imeginary. 'We shall not write the distinguishing index when
no confu51on is possible

According to this reducibility hypothesis, the field equations in

the two equivalent forms

| 2 )%u, - = (C) .f*;‘?jk—) 43>§?
~2, d = (37//0?7/)-/3?

" separate into the two sets

24, 9 P = (CHLP)- B ,(N//a@) (o Hip),

and

2N, ¥ = (d]//cW/) Yot/ ( o H/o¥ )=~ (‘)r}//asﬂ)

Furthermore, the generator .
gy [IT AL =SSy EVE
decomposes into 6—@ *G'c(‘/’ , where

Gyp = Sdr @A dP = fo/f(m,w/ﬁ

and

c __/’dd;y/)%o)‘cr%:vfa/r(*)_a(o)cfg//) ¥ (27)
d¥
These results reflect the form assumed by the Lagrﬂnge function,

;¢)/ /L:¢§+/[Y‘)¢ e 7 - }Www)
g’@? ¢?+~L[776' v/

The equivalence between left and right derivatives of the arbi-
trary functicn :;/’ , with respect to field ccmponents of the first kind,

and ef the two expressions for GJCP ’ shows that Cf p commutes




with all fields at the game point, It is compatible with the field equations
to extend this statement fo fields at arbitrary points,

L0, J@u )_7 [ wix) J{DC\”U—

provided tho source components are included

[ §(x),;f¢(x’)w7:[776v),J?’”')]: 2
It follows from (27) thai,the<felainn between . .¢7‘ and 'cf‘9V is one
of’anti-commutativity. The opooeite sigus of the left-aud right derivatives
of «]%/. with respect to. 3 is then accounted for by
L@, S¥&I]= S, Jvxdf =0,
provided only that jQ/ " is an even function of the variables of the

| second kind, The inclusion~oflthe sourcescomponente’
o~ : AN . \ Ve —_
e, d¥ 6] = §zi) S¥007=

ensures compatibility with the field equations. We have now. obtained the
explicit characterization of the class of variations to which our fundamental
postulate refers., .

4

. Let us also notice that

W = A (c/x)z///fcff f(cu)(@cr{)z
, i

t C oL/ i h
decoxuposes into O{, Lq,; 4 017 Ma; .y where

Wiz = 4 <o’)<)¢f5c5f
47% f(a’x“”/j)c)?_d f (o) (- /Scﬁ;)%

72

r (c/x) (55¢) <f)

ﬁ

and:

We can conclude thet source variations havc the same operator propertles as -

|

fisld varlatlons, as already exploited in Eq (24)

The operator properties of ;zy}o) ;23 ~on a.given U can

=22 -




now be deduced" from (26)-, . with ‘the results

[)V(o) (7?()() ¢(x’)></(o)~4 = 2 /dro) J (x =x )
[74(0) ¢(x) ¥ x) Aeord = (28
?(7/(0) #ix) éb(x)ﬁ'(o) f* c -ﬁ;{—‘)f,.‘,),‘orf -x7),

in which Jd‘ ( X‘- )(’) . 4s the three-dimentional delta function appropriate
to the surface (7‘ e The numerical forms of these commutators and anti-

- . commutators ensures their. con51stency with the operator propertles of

(S_ 74(0)¢ and . Cr/{(o) % o The dynamicel variables of the first and

second kind thus describe Bose-Einste‘in and Fermi-Dirac fislds, respectively,

which are unified in the general fleld Z .

()

Since the rank. of the entisy'rm\etrlcal matrix >¢/b ) is

necessarily even, there are an even number of independent field components

)

of. the first kind, say 277 ). One cen always arrange the matrix )¢0
/
(1) -

rows and colunns,

| | . | (
We shall denote this non-singular sub-matrix of dimensionality 2 M ") by )%

so that all olements are zero beyond the first 57, M

, and the associated independent components of ¢ by ¢ .

YA

The fi;ét éomnutatlon relatlon of ( 2 8) can then be written

[0, 2 (x>j~.__’“ ,(,)’a (r-x).

The matrix /_’)’(2)- , associated w1th Femi-Dlrac flelds, is antisymmetrleal

end non-singuler.' Hencse, the total number of f'ield components of the second

2).
kind is even, If we allow for the pos51bility that )¢() may be singular,
2
and armnge the rows and columns 50 Jthat the non—smgular sub-matrlx ﬂ( ))
4‘ ; 0

is associated with the indepsnd ent components y/ C ., we obtain

§‘/’(“,jf“’)f =cod A dx x)

-23-
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which requires that the roal, symmetrical matrix ii:%%m} be pcsitive
. P %

~ definite.

We shall argus that the number of independent field components

: ) . /~ ‘ /4(2) ~ (2}
of the second kind, the dimensionality of (07, must be even, as N

. , . 4 (2
Lot us imagine that, by a2 suiteble real transformation, Ve is brought

into diagonel form. If the mumber of components in V/ is odd, the
: . AAN

prcduct of all these compogents at a given point cbmmutes'with ,:t; at that
point. Thus, as far as tha\algsﬁra of.operators étva given peint is concerned,
this product is a multiple of the unit opsrator (the necessary commutativity
with \+/ at o£her points-on O can always ba achieved), which

, e o
contradicts the assumpticn that all components of \f) are independent,

The relation between invariance undsr time reflection, and the
connection between épin and statistics, may be noted hers. Tho time reflsction

’ transfcrmaficn
X = "X"f ] X”z‘ 'X&
4 :
induces a transformation of the field

xX-L, X

such that _ S
> , :
AL A,
and C

’ ~ ° 1 N “ ’ i
E% i = Sy 4 [ A

N - . . i - *oh

- . - N i

- ; y

L{

However, this preéerVatioﬁiof>th% formg?f the Légrange function

| ) o B . 3 ' il
is only apparent, for fields of the second kind. Since (-4 )/ﬁ,ﬂ is a

-2~




non-negative matrlx, one can only satisfy the first equation of (29) with an
imaginary Lw » which producss skew-Hermitian field components ,Z,l” .
But the invariancevof.the Lsgrange function is‘not'tﬁe correct criterion for
invariance unaer time rsflection.' The réversal‘of ths time sense inverts
the order of and T, and thus introduqes‘a minos sign in the
action integral,,which can only be compensated by‘ohanging the sign of

in (4). We shall describe thfS’as a transformationvfrom the algsbra of the
operators ;: | to thevoompier‘oonjugate algebra of opsrators ;zf*'.
Since the linear transformation designed to maintain the form of

£ (4’. 0.8 ¥ Ji.¥has effectively replaced with I/(;o W) g

the criterion for invariance reads

i@9¢,AwA%W)
(o

The derivative term in 351 is indeed invarisnt since the matrlces A
() :

and /Qp. are real and imaginary, respectively. We describe this by

Li¥)

dﬂ(ﬁggﬁ" ‘;V du¥).

-gaying that the theory is kinsmatically invariant under time reflection., In

order that it be dynamically invariant, 711 " must be‘such that
: ¥ ¥ ¥ -
Hs, i)' = H(¢,%f)
Since H is an evan function of the components of Ll/ , the

latter are to be paired with the aid of imaginary mntrices, characterlstlc

of the, variables of the second kind The source term is 1nvar1ant 1f source
and fleld transform in the same way., §, : {1
b |

- The. corralatlon between spin and statlstics enters on observing

that an ihaginary | L~q~ is charac?eristic of half-integral spin fields.
t

‘We can prove this by remarklng that all the transformation properties of l.

i
|£ . l

are satisfled by -

25




-_ W»S,qL Qz“'g"' - ,2." ﬂg"/L N

1]

L,
where L ‘ is the' matrix describing the reflection of the first space

.“ /
axis, The latter form is a consequence of

-1 .
L, S,,_, L, z 'S:q v | A ‘ ,
The essential point with regard to tha reslity of LH is that S,.,, = r'LS.o

is a real matrix, whence ‘ | ,
e l”“ So‘l

L-.,, A _L, = L‘l

‘Now S,.,' must possess the same eigenvalues as. ) 5:: 'sa&, which implies
thatv' L., is real for an integml spin field, and imaginary for a half-
integral spin field. The requlrement of time reflection invariance thus
r'estricts fields of the first (B,E.) and second (F.D.) kind to integral and
half-integral Vspins s respectively. This correlation is also satisfactory in
that it'identifiss'the doubie-falued,'halfrintegral spin fields with fie;ds_”
of the sacond kind, of which =~ & 15 an even function.

We have introaucsd'several kinds of gensrators of infinitesimal

‘trsnsformations. A criterion for consistency is obtainad froh;the.alterna-
~tive evaluations of the commut»at-or of two such generators,

[G.,Gu] = 4 ($G.), = i (66, ), |

namely

(IG), +(JC> Jo 0

As a first example, we consider the two generators

GJ‘x i £, R @) gf“ J (f)

and

G. - g"}mxaﬁ

ds




fin,,;thé retarded’ description. In‘pi‘eparét‘i.on**for the tast, o remK“EAat

P(O“)«-PO‘)4f!dx)QT
o j("(” 183? thjl)’ :

and that

S, @) - J f ldx) QAM
e .«’(0"‘) [Xaal o Xv_- aAT;#A * 7/:" —7:”"] .

!

Since o | +
T, - T, =-<+(EBS.AL - XS,.B§),
we have ] X +LS‘“})§
| - (ou) T gld” ’B:B x“a v
., @) J,uv F(xd - A, ;ﬁ s M)g Bl]

‘I,n the abserice of an external soﬁ’.rcje, 7;, v is symmetriecal and
divergenceless, and Pv ,(»Tuv are 'conse'rvied,‘ For: gimplicity, we shall confine
our verification to the situaticn of no source, in which the infini-
tesimal ;E  is distributed in the.region befwe;an 0> and

& o Hence

[f"(a~)- {‘;(qx}QXBd,E

‘and .
J @) = r*ﬁ*ga.
The cons:Lstancy requiremént o C o

(8G,,), = {0 (cm BJ? ECRE
then damands that ' "

’(JK) gax+”ﬂv(x Q\I.XC)#""'g,av)L )

S

(dx} (XAQV:XQ“ r,.e, v Z,Bcff

'(3'0)
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“which is indeed true in virtue of the equivalencs batwsen (d",(,) ,
‘ ' : ' ~ ; o : ' .
induced by the displacement d X, , and A (x) - Alx), induced by the coordinate
transformation ’xﬂ = X,..,‘*d"xh .
- Alternativs forms of P\, - and’ J,w are convenient for teste

ing the cons-istené of ¥ and . - The following rsla-
g y G& G(” ~+ The following

tions derived from (16), . |
.os erive rom ( )! ! ,(,l(/q g,uy -)/4y x)/\'{ ?

XA ul —-}Cﬂubw‘; s
kA /(.C)»Xﬂxtl ‘aK(A Suv - ﬂ»’q )l;

H

enable us to write 7;. Y as

Ev = f&,-—%/lﬁ,;%l’ ka HAX ) ’Laa_"/d“” +‘Futh )

whare ,.,L]
A = Rua T “ L (2’9( Av) +2’S'\lvﬁﬂ) ey
AMYV “

i &[S 1(94)4/()1 + (9. 7’%1) S,uvl]

and

ﬁw‘

In virtue of the antisymmetry of- /Oa,a. \% in the first two indices,
3,\ Rauy 1is éutomatically’divex:génceless» épd Advées not contribute to the

encrgy-momentum vector 2, , SRR . |
(de [£ 4, - £ (LA - X )+ L ],
~but does enter in - | ‘. | | |
< (do, [-4 XA, (x ay Xy O Hsﬂ )( |
+ 4 (x, - xvaﬂ;s,w)z/u AR N Ol
+f(d<r K < don 1) L

~28-




vThe cqmpénen’ts, of P_V “ in & local coordinate system are
R):§HOI71'XHM)rmK. - L(eBX+ 1 B3 ]
= {0(0- [~ Xﬂro;-al&) X + ﬁf“‘{).j )

whlle those of J; are'

J{a)l’z/ = X, PJ.) {da‘ Xy, [H~—-{X,/b’ o) l Q(“ZH“}) -(?B/hlB?)j
- ‘”L §d0- k {A"’) (o) (&J + 5(«:)(/;) /}M) }l
(dU‘ [qula/ (XM) 9(2) X(”)Ql&) + 4 S(&)(l))x +X(U ﬁ)a)m X(e)ﬁ,,u,)]

(a»m

The quantity . f),”, is e¢losely related to the infinitesimal
expression of the scalér character of - H y .
H(X-iten SuX) - H(X) =0 - '
We can, indead, conclude that o

f =0

if H is no mere than quad'ratié in the components cf various independent
fields., We shall also prove this withcut the la‘t‘ter restriction, but, for -
simplicity, with the limitatiocn that there are ne equa_tibns of constraint,

The commutatioﬁ relations edﬁiﬁalen’c to (30), EK ) ij = (:")3), X ,

[X 'J:) = '/ ) X,u X),/)/A*/LS-”V)X )

-imply that : EETE

]Sk
NAV = ‘J;(v"x/‘e+ XVP

where

29—




This enables one to express the scélar requirement on 7*( in the form

CH M, ] =0
The components

/ /5/ (Kr& X(&) fT(A/

ﬂ70)(&)

do not invelve tha unknownl _ffo"é) « According to cur simplifying assump-

tion of no constraint squations, the commutators (anti-commutators) of all

7

field components at X and X contain the the thres-dimensicnal delta

function é;(x-x') _ ,'and tharefore vanish when multiplied by
xﬁ)- X;4) . Furthermore,
| ‘ Yoo | i = oy H, } (x-x
[H(“,X”")J/{(«:I s ( C /X 6@( '
and . C

. » : . - . ()’ H p ) —~ ) N
o[k Hio ] = 4 02 FAR) &g tert
 from which wé obtaln "‘

| M/ / ) _ = 0

IuH« /i’mu)j = '< 4 OJ(A*

With this information, the proof is easily extended to all componants of

fg - : . The consistency of the generators. (:irx and
A% ] | ‘ . s )
CJ{ { requires that | ' o -
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(do* (Xu0y —KVBM +z‘~),ab))( ot/io) Cs\l

or dk_ e

g "v )dT c)k 2. /qw/ X ) ' ~

Xk
which can now be verified from the expressions (31) and (32), with '(fm(&/

- I

Charged Fields

Our censiderations thus far specifically exclude the slectro-
magnetic field (and the gravitational field). We introducs the concept of
chargs by requiring that the Lagrange funétion be invariaht'under constant

phase (special gauge) tranSformatibns, the infinitesimal: version cf which is

N=(1-idNEJL
Here (Y)\ is a constant, and é? . is an“imaginary matrix which can

be viewed as a rotation matrix reforring to a space other than the four-

dimensional world. Ths invariance rsquirement implies that

or
AR
(bE) = BE

and ‘ = I mk ’
eoe] (e8] e
fom V]

and that :

/,/((Ld/\é)() /’{(,U U

We now wrlte the- general varlatlon as

'5( - d- aﬂax)s,yx-m/w

(ﬁlA , character121ng a local phase transforﬂation, is an arbltrary '
functicn of X ", cnnsistent with constant values on and on 0T, ,

The additional éontribution to (Je) therebv produced is
- [ €
d/Lﬂ%qo_/\ £ (8 55/( YBEE)dA,

_31..




whare

f -:-»Mufl’
a .
is the charge-current vecteor: The staticnary action principle requires that

3. = £(3BEX-XBES),

#(
and ylelds as the phase transformation generator

< [da 4.d0 = Q)
where Cf? is ths charge operator.
The integral statemant darived from (33){
Q) - Q) = ((du <(YBEE-EPEX),

becomes the conservation of chargs in the abssencs Pf an external source. If
an infinitesimal scurce is introduced in ths rogion beunded by J and

(T; -, we then have, in the.retarded description?
- e o~
& Q)= - i [ dx) JEBEL
£ o;
[@_(0‘;}, C“Téfj - )

"

[ .

- .whence

"MDJ

This commutation relation also follows dlrectly from ths s1gn1ficance of

, [
\ii{ indicating the cons1stency of~th¢ 1atter_w1th <:54“
A : ‘

—~

We shall suppose that tha matrix = &j : is an olement -of the
; -t 4 : _ R )
algebra : generated by ‘iﬁs '4« ~ and 1;pcu . . It follows
that 6%‘ commutes with _'é; o i; and'therefoié that the latter is explic-

1tly Hermitian,

£'-¢
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Such an antisymmetrical, imaginary matrix poSseseee reelleigenvalues which

are symmetrically distribUted about zero; non-vanishing eigenvalues occur in

- oppositely signed pairs. Sirnce é; commutes with all members of the

above;mentiohed algebra, the charge-bearing character of a given field depends
upon the reducibility of this algebfa° Thus, if the algebra for a certain
kind of field is irreducible, the only mafrix cemmuting wifh all members of
the algebra is the symmetricai:unit matrix, Hence‘ lfé? =0 R and‘the field
is electrically neutral, ‘If,'however, the matrix algebra is reducible to two

similar algebras, as in -

)

/A 0\
A“-(O A/*)r

the matrix £  exists and Has the form (with the same partitioning)

O -~ .
E-e (; o) |
This describes a charged field, composed of particles w1th charges te ’

the eigenvalues of é? . If three siuilar algebras are involved; the
field contains particles with charges 0, te . ’

To present é? ~ asa diaéqnal matrix, we must forego the choice
of Hermitian field components. Thus, for the e#ample of a charged F, D, field,
where the field components decempose into un ) V%L; ’ cofresponding to the
structures (34) and (35),'the mutualiy Hermitinn conjugate operaters

v/;r jeu A l;l ) SP ‘ HV l' ski’ !
are associated with eigenvalues + €f ahd - respectively. On
introducing these field components, the derlvative term in the Lagrange func-

tion, the electric current vector, and the commutaticn relations, respectively

é-[‘ﬁq AMJQ”:%?'] f‘“,,ﬂ <9 V}:j ; - ‘(35)

:\ (37)

read

et \V//jﬂ” »"//V)
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A

| {A,a_, ¥, \7'/’”/711 .f* & - (38)

nd’ | :
DM AU | d. x5
oy S of ! L=< (K-X7 .
%ﬂ ¥ w ¥ (x') ﬁ(o: 77 "4;01 %-J s, l.*)( & /i(""-’ g‘) £ A v
o) Teer ) ! o

Y

1 N . . . V A ‘ . ’ 4—') /( e H-e'
Thare is evident symmetry with respsct tc the substitution Vi) R
. 8ince '\K,_) and %) are Hermitian conjugate operators,

we -can arbitrarily select one as- the prirdary non-Hermitian field, We shall

write

6—.’”«' :‘/-..z);&’
- o ¢ T
A

and
L./{;l = w»
This yields the following forms for (36), (37), and (38),
iy % L L)y ; '
HLY L vl 4B oYy, v ] , (31

é£[¢¢,w1

O
N—
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Tco expregss the now sli ghtly obscured symmetrv between positive and negative

!

charge, wa call W ) the charge con;ugate field

Ye(-8Y,

and state this symmetry as’ invariance under the substltution VJH Y/ e 9‘5

"L/O')

.




The matriceé J;.} /u:=0,~ 3 .obey
BB -
3& u

and
o~

-

Op = - b p ég~'

s ' ,

“since they are purely imaginary matrices. One should alsc recall that ”fs
is an antisymmetrical,; imaginary matrix, If we were to depart from these
special structures by subjecting all matrices tc an arbitrary unitary trans-
formation, we should find that the only formal changes occur in (41) and (42),
where the matrix &3 ' appears modified by an orthogenal, rather than

a unitary transformation. Hence, in a gensral representaticn these cquations

. read

where (: stlll exhibits the symmetry of fb, approprlate to the sexample of a

half-lntegral field, ~ C;
'The commutation relations (40) are in the canonical form which

corresponds to the leISIOn of . the independent field ccmponants into two sets,

such that cne has. vanlshlng antlcommutatcrs (commutators, for an integral spln

field) among members of the same set The generator of changes in’ y/
and . "y/ Eq. (27) in the notatlon of the charged half-lntegral spin

fieid eiample, is E
_ , r
6 ' = :’% [,(C}" (Wj/s} Y/ tj %51,,,_71’ /

v

AR, |
which can be deducted directly from the Lagrange functlon derivatlvp term (39) .

Associated with the freedom of altering the Lagrange functlon by the addition

* of a divergence, are various expr6351ons for generatlng opsraters of changes

=35




in the field compenents. 'Thus, we have the following two simple possibilities

. for the derivative term and the associated generating'operator,

. ! /
&y J
and :
. ‘ /»;‘ \: \ I'/' }/ .'.,,"‘ .‘ {
7| Ve ! 7 )(k ]
LT -4 (cw gV ¥
\&;{ v ‘
Evidently <:%1W -y for example, is the generator of alter-
: VR
ations in the components v&o} » Wwith nc changs in \f £io . The

associated commutation relaticns,

r(a \f <T"‘V I = /“" el O(-L{/,

(NVJ- },y ) d‘# f f?() ’

are satisfied in virtue of (40), and, conversely, in conjunction with the
analogous statements for ‘ (:ség; 'y imply these operator properties of
the fisld components. The connecticn with’ the ‘generator in the symmatrical

treatment of all fleld componcnts 1s givnn by

- s . { -
CJW/(W/ . q(f\P "'"“jdw‘
which indicates the origin of the factor (1/2) in the ‘general 1“cx. (26)

_ The Electromagnetl Field

)
i
)

The postulate of generQI gauge ! 1nvnr1ance motivates the 1ntroduc-

tion cf the electromagnetlc fleld If all fields and sources are subgectad

~36-




N

to the general gauge transformation, V , ."Q' o
/X ,-‘?Hx)é /{' e‘m“" '
The Lagrange function we have been considering alters in the follewing manner,
-y
LK
The addltlon cf ths electromagnatic field Lagrango functlon, .
5 £ Y ;
=94 : R S T
‘Zjﬂvw - 124# } /% } f}i' 3 /7 ~) /4 } y pv oM .

provides a compensating quantity through the assoc1ated gauge transformation

Bo-AdN

The term 1nvolv1ng the external current \j}; is effectively gauge invar-
iant if
; —_
T — O
é%u Y U )

since the modification is in the form of a divergence. In the same sense,
there is no objection to employing a form of the Lagrange function in which

i . . . - e ard )
the second term cf (43) is replacad by 3?={<%“ fﬁu v /7» j’-

v

We wfite the general'variation of /Liaf _ invtho form
JIA ) =0 A, — (ddn) A,

:J%f%@dnadxf-é-xﬂﬂ’ﬁ

.which ascribes to /%}L the same transformation properties'as the gradiant of
a scalar, thus preserv1ng the p0531b111ty of gauge transformations under arbi-

trary coordlnate deformetlons. In a 31mllar wsy,;

5 (F ,{(— x)hv‘—(«) dXA)/',M.
W1th regard to‘the derlvatlon of the; electromapnetlc fleld equrtlons from the
acticn pr1vc1ple, 1t should be noted; that general gauge invarlance requiras

that the scurces of charged flslds dcpend 1mp1101t1y upon the vector potentinl

=37 -




A

! /u' . We expresls this depenf‘ence by

é Fix) = ‘/m/(”"c”“ 4, l") ) ’:’N x)
“8ince the infinitesimal gauge transformation, (’ H KRS, A » must

induce the change C\r‘f; AdNE f’ , we learn that

A (T8 g in ) = < £Fx1 Ttn-x)
One obtains the followihg ‘field equations on varying F,; vV  and /‘7 y

in the complete Lagrange functiom, . ‘ (4 b )

= \9/4 H\,«' - (;V /q,u) | (11 7}
;>v Fiav = <;€u '4"¢%A*'fiéz; !

= - | . | ‘I | | li % .
g =t (o [(S8 g 0] g b ,r l /4“‘“7

is the contributicn to the total current vector associated with charged field

where

sources. We derive from (45) that

()i‘f)(ﬂ—/t/z( bEX XBES)

But the total current vector is divergenceless in consequence of the electro-

magnetic fiseld equations. Therefore

D = ?BEX M%Ef)

which is in agreement with (33).
After. rembving the terms in O(ﬁn/m;) that contribute to the field

equations, ws are lef‘t with
5(» ':11104‘5" »ro ’%u{ ‘
R A g A £ )

- (Oxdh] LA, |

f~ f/C/ '+ / (dVU/A r(-‘X

o
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in which

288 By =-id2y, 0.E (%, ,.j -(§R. Z})/ 5JZ.

This term alters the field equations of charged fields,

274 (c) Z—IE %}hlf) (C}}/) ﬁf
(. Z~ ’:z‘{)?f,@ff)a’-/ﬁ = (5;)* §43.

We have anticipated that. not all components of o e commute with X .

The tensor 7/;‘.,, is now obtained as
7 . +9)
= ... iy _1§ ;
v = sk S £ 8t S g Fi 2 B
where |, stands for (20) y but wlth -F ~ the complete Lagrange

funefion. The acticn principle supplies the differential equation
- ~ e
a/-T “"(Zcf.?%g‘-f LERL)+ H. 2 L. (50)
- The divergence term in (48) yields the’ infinitesimal generator
639 ,:—J{c/ /—‘-V JF] ﬂa‘ ,ochfﬁ(%)) (1)
while the Lagrange function with the derivative terms (44) would give
GESF :/‘;{0—' J /:7 ‘ﬁlf Mo R) /g;;g) (s2)

The change-in the action integral produced by a var1at10n of the

external current J/;. is given by - N o

,&-f(dx)cffg

I J Je has the, explicitly divergenceless form

ST = Q& v =P (59

f where éN/u'y vanis(:ee\ on g- ‘and; a3 J ee‘find t?let-
= (g A L
{- Woz é (dx 3‘5-/%1’ ./Imzf,




which makes it unnascessary to introduce an external scurce that is directly

coupled to the field strength tensor C;“i’ .

The sp2cial nmature of the elactrcmagnetic.field(B)is apparent in

(3) Papers dealing with the situation peculiar to the electrcmagnetic field
are legion. Of the older literature, the clesest in spirit to our procedure
is that of W, Paﬁli, Hend, der Phys., Vol. 24 (Bdwards Brothers, 1943).

the form of the operator (53) gonerating changes in the local electric field
compcnents, Sincs cns of the fleld aquations is the equaticn of censtraint

9(;%) f[m(é) g“(o) *# é + —]— o (54')

the thres varlatlonscg 2 cannot be arbitrarily assigned; the electro-
magnetic fisld and chagégé fié1ds are not klnnmatlcally independent, This
is evidently an aspect of the gauge invariance that links the twe types of
fields. Alterhatively, wevseé-ffém (51) thst /C;(O) is not a dynamical
variable subject to indepéndent variations. But there is.na figld equation
that expresses /fy(cv | in.tefms of independent aynémical variables,

in virtue of the arbitrariness asscciated with fhe exiétence of gauge trans-.

urf'h?r'/’nore a z/czr/aj'/an aF Fowy 1n The Form of a gradienl, Thar 15,
formation ¢y1e1ds a generating ooeraéor which, in consequencs of (54) , nO;jaJ4jP

| TraAs-
longar contains electromagnetlc field dynamical varisbles. Thus, in eitherjform-
: ” R ‘ : a,‘hon

ferm, (51) or (52), there are only two-kihematically independent variaticns

- of the electromagnetic fleld quantitles.'

v

We now apply these generators to Heduce cemmutation properties

for the gaugs invariant field vtrength ccmponents. Acpordlng to the effact

,zg

cf a variation © L’(f’e) " upon the-local compc-nents of //:;v
we have %, -

d
u

,L(O)‘)%} ) \ ] : {)). ' .
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| 2y e od8AL )
Farior  Gom 1= Gy T 20 o) g

whence ‘ 7
[ v - e T . . —
and v
| (-%
. [/L(/é)(f) (X) (O3 (X )7“ ’(J(éz(/m) G}?) - ’(p)(m“%}d“
In using C;J/: , we must restrlct the electric fisld wvariation accord;ng
to ﬁ c( —_ ,
=0
) ~ toky
which is identically satisfied on WTiting
SE = ) Sz
(o)(B) ~ 79) © (4, ¢ ooy == B
‘This yields the form 0er '(f‘z/ (%) (P(%)
GJF = J" da ’Eé)(f) o kI8
The .expressicn of chqngﬁs 1nduced by cf
[ (%) )
(z%m) / a’/—‘]: o
F
[(0)(&) j'lc(m(-/é)
then provides the commutatlon rrop°rt1°s /
[(é)(p)()‘) 1 "oy} (x ) “0 I (57)

[F . (x) R,
(o)(%) . m( {X)j (J(zfé)(ﬁ) (w) J(fe)( )9(0)) ~(r-x)

where tha lqtter is. @qu1valert to (56)

: An altornatlve dorlvetlon employe an - 1nf1nitesimal chpnfe 1n the

external source, distrlbuted on (the negat¢ve side of) o )Q«)_.O ’

G”V’v—é‘/m' d()( )

v
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for which the associated geﬁerator is

G e
S = fO/fZ/ J“’”(&)(ﬂ) /(:;e){ﬁ) d/m(’o}(%) (0/’%1—/

' The alternation producad in the field ccmponsnts follcows from the field equation

—

(47), and the form of (46) given by
J /L vy T c> {2/* 7L o _éi;z'

s
Thus,
(SE = d M = -2, 4F o,
(0) (0)(9) toxpy) = (# )J(ﬂa)(p) V) JM‘%)W);
(e) (L) ~ ) (/;)(re/ 9("{’ S5 (o) )
which yields the follcwiﬁg discontinuities in Cﬁfili/ on creossing the surface

(0)(17) ] (f%) (#e)_(ﬂ)

oy 7 —
S s (ﬂ) J’W’(o)(&) B J(%) d/m(o)(ﬁ)

In the retarded description, thesé discontinuities are ths actusl changes in

the field components on O ., On referring tc the general formula (23), we

cbtain , ‘ - :
y Y ) Pt -
d(f%) C)/yh(fg p) /[/L(O)(A,)) GJ% ].z.
g 47 Py = E )
ﬂ) “ - O"*‘” -[/“ P
| (o )n%) (%) ‘r 0) " aye), Gy,
In visw of the. arbltrary values of crnnq on '67“ ’ these eduétlons imply

fleld strength commutatlcn relatlons, which are 1dentical with (55) and (57).

We give a related prccedure which also 111ustrates ‘tha p0531b111ty -
'y ‘
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of‘eva_l_uatin'g eonutetors of field quantities at points in time-like relation.
The two field equations (4’7) and (58) can be combined;into_ (we incorporate
£, with J v

~ - )
A E‘ v =9 ’Lw) A 4"
A change in the external current, of.the form (53), yields

- a/\ \//‘IF a dhg\} + a J\j 5 a/\ OPN\),\ L} d,\d’/\]/‘“ (g‘?)

where, in the retarded descrlption, ,

S Ew - U—_ 04)() oM ’°'K("'/]\

" F (x) |

- - | f (a‘x) ﬂm(") /*(x X)"[F SRIYID
s | |

and /’7 is the diecontlnuous function_
-+

77 (‘X‘)")f:’ ,.Xz?))("
[+ ' * o !
:O) XO LXU

We have a similar expression for (5,; jv (x)

- 9
efficients of (5 MM((X ); “in (59) (our two treatments employlng external

.'_ Cn comparing the coe-

sources are thus distlngulshed by surface and volume distrlbutlons of ({ AVs

resnectlvely) , we find

= O K [F (x) me)] f»'1+ (X ) [ng Faudx)J# &
(‘fma,a, cﬁKQQ OFMQ d,‘_-*'cf aj;au -x)

fa(x )i il "’;
(_',( )br( ))El(“/
(09

X ¥ .
The value of 4 [F FK : 4 for equel times is then obtalned from the

coefflcient of the dlf‘ferentlated delta functlnn nf the time coordlnate, W1th

the ant1c1pated result

3=




- In the apprdximation that négleéts the dynamical relation bestween
currents and fields at points in time-like relatlon, the ﬁlfferentlal equation

(60) has the sclution, / (X x4 [TFT (% )‘! = |
(02)3 O owa,,aA g’Mg 3K+d‘ a 3')b4a""“") )

where [)nzt(x X~) - is the familiar retarded solution of
= . ~ ) '
- 9, Dwt =g (x-x'/.

Had we employed the advanced deécription, ~would be replaced by

.

+

_‘7 s where

' '
='l ) XD< X(; > ’.
and the advanced solution cf (61) would appear. Subtracting these two results,
we find

A[F X) /' MI)J ‘V C} dk JVNO#C)A Cs,t)ﬁ -Jx J a 3,\)_[)0’ X)

in which - ])(X‘X') is the homogeneous solution of-(61) provided by

]} = ])4L1 = Vodv.

The kinematical felation between the electromagnetic field and
charged fields, on a given - Q" , is most cleailj_indicated in a special
choipé-of gauge, the so-called radiation gauge,

A, =0 . - o)

"3.(&) H{&) o : o ' (
With this chcice, the constraint equatidn for tha electric field reads
'3(4)'f-to/(&) = ‘QM) /Q*lv’ oo I
so that the scalar potential is completely determlned by the charge density,
t) + 1)
jo(o* ) (x- X/(jm 4 / (X' ))

-
where% (X- X') = [(Xwe/ qu)j /l




Evidently,”’ H,O, doas not’ commuts writh_’t.he comgonents of charged ficlds.
In this gauge, then, the dependence of the electric field upon the charged
~ fiolds is made explicit through ‘tho‘decompositli'on of the electric field into

transverse and longitudin'al parts,

F(—O)(.ﬁ) “.. &,o, /qleg) (}(&)/q{a)

(r)
- F’CV‘&/ + ‘ll)’{&}

The inference that the transverse fields are the indspendsnt
dynamical variables cf the electromagnetié fi=1d in this.gauge is confirmed

cn examining the eratcrs G,j",q and CJ@'F . Indeed,

GJH = -fc{’)‘ :/m(k) e, /q(lz) (dJ‘ l(o)/&ldh’rh’

and

B (ri
(o < (dr EFuny Auns = A7 T A
gr ) |

in view of the transvsrse naturs of ,/q(ﬁ,,') , Eq. (62), Wo can now

derive the commutation properties of these dynemical variables from

y | T H ) ~ T )
Eq’/‘) g 6‘” -; 4D sy [ f;/ , Gdﬁ ] =0
LF . de] it J"roﬂ&z , [/5} &, G;, 7 =0 ,

inlk) .

on taking into acccunt the restrlctlons
a{i\) ./:/](A} a(z,) d Fto/(k) .
. '4 '« 1 3 . )
produced by the transverse nature of these quantltles. The Iéagrange ﬁmult'i-

rlier device permits us to deduce’ that

; ‘ —-" \T) 4 -' . a A #‘
/“' [HH&) (x) ) Ia)/{// X j d(&)u/ Or (X Y) ,p. (
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The divergencéléSS‘chéractef dflfhe transvaerse electric field supplises the

informatibn
P N 9 (
O X - X)
90 ey = (R
whence '
Y = 3
“fe) (4%) J«f {
The resulting ccmmutator
. o
‘* T) -
// = ey = 5, Y 7
H( D orcey X0 F demice 4y (x=x7 = Sy Dgy L k)

ﬁ-(éé&)(f) éﬂr (X~X/))(7)

/

is alsc consistent with the trénéﬁerse nature of /?7 '« The remaining

(%)

cemmutation relaticns are

L Ay 00, H (X)J [~ ")} SN

(Oj(f ) (C’)(,?) (X/ = 0.

We shall use the device of the external current to darive the
commutation relations between the electromagnetic field>tensor and the dis-
placement generators /ii . According to (49) and (50),

TR = (T g [ s Ao I e
S (T~ T (53 ) NC IR =N

o
in which we have 1ndicate only the “t8rms contalnlng the externaf/cﬁ?éoﬁ%~+/? ]—
We consider an infinitesimal change in the latter possessing the form (53).

In‘the ;etérded descripticn, the resulting changes of ffi and <€C;“1,

on 27 are - TR
;D( )-**JF?Q%)““JVV A AK
AR
Gy Jn (77) = A (c/x)[J‘J ;(’9?&& x ) B

7A‘F¥/7% e 44“ - CY/HZ\/“—'Fi/A :] :

When expressed in terms of the generator

- =h6=




-~

‘Gdﬂ ( (0‘]-—(‘1&/)!"“(
n ; |

tha following commutators-are encountaerad,

I iy 7. .
A ! ’FAi\; .'lwi, J = ()\‘_/ /.)Qi\ f
e o] "5"1:' b Eo-d F g -0
| ! - (X/,,al, ‘-X‘y /'AI’IAK (_j\/h 4 A (‘/4“ VA Cralyr™) A" ,'(.

APk Us Vj

ansion of ()1) tn include the

(r} _ e ,-ﬂ -V‘..'

Pw) = ;fz:{a‘ [1“ (/:i-;;m,/\ +--( /'/44’/4/; /‘( /( /4 ﬂ./( (A/ L& "’/4;),(
7
/

*L:J } /—l(ul B {" (f ‘\BI’ * /( BF/ ~

Tinaily we ramark btrat the axt

2lac uromagnutlc field, in the radiation gauge, 1s

and | ' N.- ) _ - -~ L
P ~fir B e} = A ADwd ]

4
In arriving at the expressiocn for

/i
fﬁo)

must bs taken into consideration, but prciuces no actual ‘

F)[o) s the nea~comnutativity of

with /(

contributidn. A variation of each of the inﬁcpenéent fields yields -
-f
._-,T) f‘X 2 A/U)L%c/ l

CSP,“ :}C/{\T [Jho/(d} 9 AM,} Cg/ﬂ;m) 9 uon,&/ |

which confirms the consistency of the translatica generator with the variocus

field variation ganerators.




