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This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
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NEUTRON DIFFUSION IN A SPACE LATTICE OF FISSIONABLE
AND ABSORBING MATERIALS

ARG HR TN
TARRYOM R

By R. P. Feynman and T. A. Welton

ABSTRACT

Methods are developed for estimating the effect on a critical as-

sembly of fabricating it as a lattice rather than in the more simply
i mterpreted homogeneous manner.

In experiments with critical assembhes it is often convenient to
fabricate active material, tamperlmaterial and absorbing material,
such as boron, in the form of blocks or slabs and then to assemble
these blocks or slabs in the form Iof some regular space lattice. From
the point of view of a theoretical treatment it would, of course, be
preferable if the assembly were c'omposed of a homogeneous core and

a homogeneous tamper. If the d1mens1ons of a unit cell of the lattice

‘(}A
!!

are small compared with a neutro
be considered as practically homo
purpose of this report to develop 1
tice size can be before a serious ¢

[mea.n free path the assembly may
geneous and so treated. It is the
n?atlhods for deciding how big the lat-
leparture from homogeneity is

introduced.
We propose to discuss the following idealized case in some detail.

T Soppose we have an infinite medium in which fission, elastic scattering

and absorption can occur. Supposg 1::h:at neutrons of only one velocity
are present in the system and thail: tho neutron mean free path is
1ndependent of position, it being equal to unity with the unit of length -
used. We then assume that f(x) the average number of extra neutrons '
emitted per collision, is a function of position which varies per1od1ca11y

.. throughout the medium. Specifically, 1 + f(g) will have the form:
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The function u(x) is assumed to have a space average value of unity so

that 1/x is the space average of tl}eitotal number of neutrons emitted

on the average per collision. We defme a unit cell of the lattice by
three vectors a, b, and ¢ and make'the statement of periodicity, that:

wx + 1a + mb + nc) = u(x) S (2)
where 1 ,M,n, are integers. With these assumptions we can then write
Cimovie the followmg integral equatlon for1 the neutron dens1ty zp(x)

MP(X)—(i/47r) f dx’ ]iu(X)w(X) (3)

If Riis any displacement which keeps the value of p(x) unchanged
then we can rewr1te Eq. 3 as:

SN TR

SRR ST ‘ v IX+R X' | .
AYp(x +R) = (1/4m) f dx’ T;cl_f u(x’) v(x’) (4)

If we now displace the origin of x by an amount R and use the periodicity
of 1, we can rewrite Eq. 4 in the followmg way:

e-kx-x1,
\p(x + R) = (1/4m) f dx —Iz u(x ) P(x’ +R) (5)
l i i
Comparing Eqs. 3 and 5 we see that 1f ;b(x) is a solution of the integral
“equation, y(x + R) will also be a soh!1t|10n
) If, as is usual in the theory of r{netals we properly choose the

o elementary solutions of the integral Eq. 3, it will be true that for some:
k:
J(x + R) = elk'R y(x) (6)
i
So that:

. d)(?_(_) = elkex ¢)k (E)

b - . e - T I Ty euE

. T [
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W,‘here?urn's P
¢ E+R)= ¢ (x) | (7)

A general solution of the integral equat1on can of course be built up by
superposing solutions of the form,Eq 7.

The'vector k is of course analagous to the wave number of the
asymptotic infinite medium solutlonI of the integral Eq. 3 in the ele-
mentary case where- u(x) is constant ‘In that case ¢ (x x) is of course
constant/also. We shall find it convenlent to deal directly with the

periodic function ¢, rather than with the neutron density itself. To ac-
Skt comphsh this we: substitute Eq 7 in Eq. 3 and obtain:

el |

A¢k(§) elkx — (1/4m) f dax’ I——Tu(x ) elkx’ ¢k(x’) (8)
which is conveniently rewritten:
-I x|

T g (%) = (1/4m) f i e— eik'(X B p(x) ¢, (x') (9)

This equation is seen to be an intég‘rél equation for the function cpk_(x),

the kernel of the integral equation containing the over-all wave-vector
of the solution explicitly and belng Hermltlan if the propagation vector
k is real.

In order to illustrate the general method of procedure, and for use
in investigating the approximate methods to be developed, we will solve

, l
a simple problem exactly. We ass’umfe for uu(x) the following:

pE) =1+ a cos (2rx/a) = 1 + (a/2) le'z”i’i/a + (a/2) e-2mix/a (10)

a It is also convenient, but not essentia}l to assume k = 0. We then wish
to find the value of A required for cr1t1ca11ty as a function of @ and of
a. As usual in a plane problem, we s1mp11fy the integral equation to
the following: ’

o) = (1/2) [ ax’ B(lx - x'l) %) ¢ (x) (11)

| f

~We now expand ¢(x) in a Fourier series and obtain:

N =
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o(x) = 2 ¢Ne21rmx/a o (12)

=-%

We substitute the expression (Eq 12) in the Eq. 11 and obtain:

NZ ¢ e2inx/a=35 6,(1/2) [ ‘dx' E(lx ~ x'|) e2rinx’/a

)

+(a/2) 2 ¢y (1/2) J dx Ex- x’|) e2m@+1)x’ /a
(/)% bn (1/2),/,.[% ax’ E(|x— x'|) e2mn-1)x'/a(13)

The integrals appearing in Eq. 13 can easily be done and we obtain, by

shifting the summation index n:
. |

D ng, e2mnx/a= 53 (6, + (@/2) dy_q +(a/2) §y,q] e2minx/a (14)

n n P .

where

tan -1,2m/a

n = 27n/a (15)

| \
From Eq. 15 we finally get the fol‘;lo,wing recursion relations for the ¢n:

Mdn = A (8 + (@/2) 9y + (@/2) bnvy] (16)

If two of the neighboring ¢, a}é specified it is clear that we can
solve for all of the ¢y. In general, as the magnitude of n gets very
large ¢, will increase without lim1t If the value of X is properly
chosen, however, then ¢, will conyverge to zero. Since the ¢, are the
Fourier co- eff1c1ents of a smooth functlon ¢(x) the ¢, must converge

-to zero for large n if we are to halve a real solution of the integral
equation. We can therefore proceed by assuming that ¢, is zero for

- ~sufficiently large n and determlnmg A from this requirement.

We notice that Eq. 16 is unchanged by the substitution of —n for n,
and we can therefore argue that the solutions of Eq. 16 must be either
even or odd in n. The odd solution can be ruled out because it would
require that ¢, be zero, which implies that the neutron density aver-
ages to zero. We therefore lose nothing by assuming that ¢, is equal
to ¢_,. Consideration of Eq. 16 with n set equal to zero yields the

"' condition:

] l B - - . R :'—> » N é- ¥ :
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X ppr="rgdy +VaryPj
or
(X — Xo) o = argpy

¢1/ by = Q — Ng)/axy

We then write the re‘rﬁ"iiﬁi"ﬁg"’e‘quafién's (16) in the follbWing form:

AN o N =
b1 ) o) = 2 b2

For convenience we abbreviate the co-efficients as follows:

vy = ag¢g + byy

¢2 = agdy + bys etc.

(17)

(18)

(19)

We then divide all of the equat1ons by ¢ and call the ratio ¢,/¢y ~ Ry,

where Ry equals unity.

We now solve these equations for' R, by assuming that all the ¢,
beyond a certain point are equal tc]) zero and then taking into account
more and more of the ¢,.IIf we f1rst decide to neglect Ry and all Ry

beyond, we obtain: | |

Ry =2

If we now neglect all Ry except Ry and Ry we clearly obtain:

R1 = a4 + b1R2
R, = agR4
whence:

ACTUAL MS PG. GALLEY NO) %
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Ry = a;/(1 — azby)

It is then easily seen that inclusion of higher and higher R, will give
values for R, that are successive approx1mat1ons to the value of the
continued fraction:

FINS N
_ a
a2b1 o

1- a3b2

R1:

IR SR
CARRY OV TR

a-— a4b3 (22)
We now insert the values wh1ch we have for a, and bn and set the

resulting continued fraction equal ;to the value of R, given in Eq. 17.

We thus obtain the following secular equation for A:

KA — >t0 o Al
v a>\0 2 X — >\1
1 az Al Az
AA-—N ANy
2 .
a Az K3
‘ 23
-7 5 Xy X — Ag (23)
This may conveniently be rewritten/in the more symmetrical form:
L N N »
T XA A— N |
. 2 P
a )\1 )\2 1. |
1 IX—xr—n 2 l‘ (24)

For a given value of the A are
then given A can be found by a smal].

d

continued fraction in Eq. 24 fortunate

etermined. If the value of « is

amount of trial and error. The

ly converges exceedingly rapidly

fqr reasonable values of a and a. | |
We should make sure that the Eq. 24 gives A correctly in the limit
oo =0 or a=0. If either a or a approaches zero the medium approaches

I8
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homogeneity:andxx should _approacﬁrl :‘unity. If a is very small Ay will be
equal to unity and all the higher A, will be zero. Equation 24 then re-
duces to:

A=1+(a?/2) A/(A = )\) (25)

From this we see that A approaches unity as a approaches zero. It is
furthermore clear that if a approaches zero, Eq. 25 will again hold
and A must again approach-unity so‘that we have verified that Eq. 24
has the correct limiting behavior.

We now wish to work-out an approx1mate procedure for calculating
A, which will be reasonably accurate and simple for an arbitrary func-
tion u(x) If the wave vectork is real Eq. 9 can be arranged to have a
Hermitian kernel. We multiply each side of Eq. 9 by Vu(x) and rewrite
it as follows:

Ay (%) Vux) = (1/47) f
x elke &%) Vu(x)ulx’) ¢ulx’) Vulx)  (26)

This equation can be derived fromf a simple variational principle and A
can be written as the maximum of the following expression:

L-z

fdxfdx' gbk ) (x) 1/41r)' - < elke (¥’ -x) b (x') ux)

Jdx ¢¥(x) ¢k(x) 2 (27)

The maximum will be reached when ¢ is an actual solution of Eq. 9.
If the variation of u(x) is not too violent, ¢y (x) will be approximately
‘constant. We, therefore, place, ¢k(§) and ¢k(§) equal to unity and -
investigate the agreement between the value of U thus obtained and the
correct value of A. It is, of course, clear that the value of U thus ob-.
tained will always be lower than the correct value of \. We write X for
this approximate value and obtain:

rr - |x-x’| )
fd?_{.fd_}f’ (1/4m) ﬁz:_z',l‘z elke(x’-x) p,(z) p(.)-(_’)

[dx p(x) (28)

A=
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Eachvintegraloin-Eq. 28 is taken mlre{r all space. The result of the inte-
gratlon over X’ in the numerator v?nll be a function periodic with the
per1od1c1ty of the lattice. The 1ntelg[rat10n over X in the numerator and
denominator can then be extended]over a unit cell of the lattice.

In order to obtain the expression (Eq. 28) for A in a somewhat.-
more usable form, we expand p.(g)! in a Fourier series:

- 2 ugelkx . (29)
K L .

SR

—_—

The K form a denumerable set and are of the form:

ol Ko = 21(p@ + B + 1) | (30)
Here p, q, r, arefintegers and o, B, 'y' are the defining vectors of a
lattice in K space. This new 1att1ce is reciprocal to the lattice defined

by a, b, c, in the X space in the followmg sense:

g-g:goc:o anzi ' (31)
and cychcally for 8, y. The conditions (Eq. 31) are obviously satisfied
by the choice:

b
a -

(32)

c
a= =
— X

Io’| X

©)

and similarly for 8, and y. Any K sat1sfy1ng Eq. 30 has the property
that: N

K : (1a + mb + nc) = 27x (an integer (33)

|
K- (1a + mb+nc )
L
|

on (Eq. 29) is periodic with a

[

... Therefore, every term in the expan
ot period1c1ty which is that of u(x).
o We now insert the expansion (Eq 29) in the Eq. 28 for A. It is
necessary to remember that:

—[x—x’ -1 .
| tanT | Ieﬂsv_:_ (34)

(1/477 f dx ,lz elkx = —I—k_l.;__

¥l
!
!

8
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andvalsmthate u;‘(= U since pu(x) is real. We obtain:

-K’

_1 ’
« o-1K'x o-ikex K oxrikox tAN K’ + K|
fd"f?;??“ ; e % e

Tax 5®) (35)

We call the volume of the unit cell V and remember that the average of
k(x) is unity. Also we have:

fei(li_"_@-gd_:gzo K=K’
=V K=K’ » (36)
Eduation» 35 then becomes: )
I3 an”! |K’ + K| Vi

L 2k TR T KK

B A"
or

-1
_ 2tan” |[K + k|

Since the average of u(x) is unity, g is also equal to unity. We can then
write Eq. 37 as:

- -1 |

2 tan !
tan”" k| 3 , (38)
W &M TR

The quantity A is, therefore equall to the value which it would have

for homogeneous system plus a pols1t1|ve correction, due to the inho-

'mogemtyq This=saysyin other words, that 1/(1 + ) is greater for

criticality in the inhomogeneous c%ts:e or that 1 + f is less, which
implies that making the material non-uniform increases its activity.
It can be seen in the following way! that this statement is correct.

Consider a homogeneous mixture of fissmnable and absorbing ma- .

terials combined in such proportmlns that the mixture neither absorbs

_.,hor reproduces. If we take the same materials in the same proportions,

ACTUAL MS PG, GALLEY NC, __
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but inrthe form -ofran 1nhomogeneous 1att1ce rather than a mixture, we
can make the size of a single piece 'of the fissionable material such
that this piece will be super- crit1ca1 This is, of course, an extreme
case. The slightest disturbance of the homogenity will increase the
act1v1ty of the system. This will be so since in the homogeneous ar-
rangement the absorption of one ne1|1tron yields one neutron on the
average. In any inhomogeneous arrangement the neutron density would
be higher in the places rich in flssmnable material than in the absorb--
ing regions. This means that'a larger fraction of neutrons will be
absorbed in fission than prev1ously and the system w111 be supercritical.
The expression 38 gives a value of A, which is too:low. Therefore
{svovee the correction tolthe homogeneous value of A is certamly pos1t1ve but
- ~somewhat larger than given by Eq. 38 —'-i- .
The'expression 38 is convenient but has, thus far, no r1gorous
foundatmn ifk is not real. We proceed to derive this equatlon in such
a Way that the restriction to real vahies of k can be removed. We can
write Eq. 9 as follows:

Stk

SO o) = (1/4n) )fdx [ax & I)_{——Ilz et (-3 M) (x) ¢(x') (39)

We also write the integral equation ‘fo‘r ¢n in the case where the vector
k has the opposite direction to that 1n Eq. 39 and u(x) is equal to unity.
We write ¢ = ¢ and A = Ay and obtain

o(x) = (1/4m); f dx’ % e-ike (¢ %) (1/2g) do(x’) (40)

We multiply Eq. 39 by (1/Xy) ¢y(x)! and Eq. 40 by (u(x)/2) ¢(x) and inte-
grate over x. We interchange the dummy variables x and X’ in the
'1ntegrat10ns on the right hand s1de of the first expression “and note that
the right hand sides of the two exp ressions are now equal. We there-
fore obtain the exact equation: o

.f dx [;—o—@] $o(x) ¢(x) =0 Q | (4ﬁ1)?

The function ¢o(§) is really constant and can be taken equal to unity.
We obtain:

siarao e &7

o R
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This gives a simple expression for *M except that an exact expression
for ¢(x) is necessary. We proceed by approximating ¢(x) by a method
of iteration. We insert a constant for; cp(x) on the right hand side of
Eq. 39 and take the result as an 1mproved expression for ¢(x). This
g1ves

ot

|
bx) = (1/4n) [ax , ,z etk () () (43)

r
tif- ‘lll<

We then insert the Fourier- expansmn Eq. 29 for u(x) and do the indicated
integrations. This yields:

o-lx’

00 = T uglt/4m) e fLax FEFC R
K
: x b k+K
AL _E“' eiKX anle l ) (44)

We then insert this in Eq. 42, together with the Fourler expansion Eq. 29
for u(x). This yields:

ek A
n k+K Tt : AW
xozzu*,ux—rﬁ%maifdx eMK-K)x

1|k+Kl dx elKex
?“K |5+_1§| —m

A=

(45)

If the integrations are then extended over a unit cell with V equal to the
volume of the cell, we obtain:

—

L

L
i

. S I
” tan‘|k+K|T" ;
b -V o
N2 R x’iﬁx’f llerKl ,?,' a
k+K |
?“K |k+K| Vog
s tant! [k + K|
ME, ' K+ K (46)

1 lkl .
- T

N -
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Remembering that Ao = T ahd Ho = 1, we finally obtain:

K

_W!'*‘_K]_ﬂ : 1 (47)

This equation is formally identical \;mth Eq. 37 but there is now no

restriction to real values of k. If k |1s imaginary, however it is not

clear that the true 1 is higher than that given by Eq. 47 If the accuracy

of Eq. 47 is good for real kK, however we would expect| it to be good for

1mag1nary k. Suppose we-assume k —»1 h where h is a-real vector. In -

Exrovee Eq. 47 |K + - k| means the square root of the scalar product of the vector
with itself, not with its- complex conJugate Remembermg this, we

obtain:

SINK

= Zl Izi:an ‘\/(1h+K) ih+K) ,
. Yh +K) - (h+K)

_Z” |21:an iV(h - iK) - (h—iK)

Nih 1K5 lh 1K5

_ o tanh™! V(h —iK) - (h—iK)
2 ekl Vh—iK) - (h— 1K)

(48)

This sum is obviously real since u*K = M-g/. It can be written:

_ tanh™! Inl , 2 4/ tar tanh"iw/(h iK) - (h — 1K)
bl g ‘luKl / m iK) - Th—lx

tanh™! \/(h+iK) (h+iK) tanh—x lhl

- VIR - B+ 1K) lhl

) -1 =
> wKFR{“’“‘h ”@*‘*—‘”}.’, ' 0

In Eq. 49, R {w} means the real pa‘rt’ of w. The principal branch of the
function tanh™! i-is always required. |
We now wish to check the accuracy of Eq. 47 by comparing the
value of X calculated by the exact Eél !24 with the approximate value of
A. We assume, as we did in the derivation of Eq. 24 that k is equal to
. zero. The symbol used in Eq. 47 now are specialized to the following:
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px)=drkancos: (27x/a) = 1 + (a/2) ;e-;é”ix/a + (a/2) e-2mix/a

Ho=1

W= a/2 [K_{| = 27/a

by = /2 |K.1| = 21/a

Hg= 0 otherwise o (50)

SinK

Equation 47 therefore yields:

-1
gt A= 1+ 2 (02/4) ta_néw(zanﬁzz 1+ (aZ/z) Aq (51)

CAIRYOVER

'vawe aséume (a2/4) A/ (0= Aq)] )\2/()\'_ A9) < 1 in Eq. 24 we obtain:
A=1+ (a%/2) M/ - ) . (52)

In this eduation A will be nearly uﬁity; and if we assume that Ay is much
_.innxless than unity we obtain:

RN A B

A =1+ (a?/2) A (53)

which agrees with Eq. 49. The vaﬂidity of these approximations can be
seen from the following examples.| We write X = 1 + AX and calculate
AX for various values of a and a by Eq. 47 (or Eq. 51 for this special
case) and by the exact Eq. 24. We also give (AX)/a?), which is inde-
pendent of a in the approximation lei‘a,ding to Eq. 47, and may be ex-
pected to be nearly independent of! @ in reasonable cases with the use
of the exact Eq. 24. vl

AX A Ax/o? AN/ a?
s, Eq. 24 Eq. 47 a o Eq. 24 Eq. 47

0.000500 0.000494 0.1 | 0.2 0.0125 0.0124
0.00316 0.00310 0.1 | 05 0.0125 0.0124
0.0125 0.0124 0.1/ 1.0 0.0125 0.0124

0.00270 0.00237 0.5 | 0.2 0.0675 0.0593
0.0165 0.0148 0.5 0.5 0.0660 0.0593

0.0629. 0.0593 . 0.5 . 1.0 0.0629 0.0593
©_0.00576 _ 0.00450. 1.0 0.2 __0.144 __ 0.112

0.0348 0.0281 1.0 0.5 0.139  0.112

0.126 = 0.112 1.0 1.0 0.126  0.112

- T .‘_]L+r_q_‘ LornEE L et

T [
.
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ccamvcItrigstorbernoticed that the ap;;rommate AX is always less than the
exact AA, as expected. For a lattlce with periodic length considerably
less than a mean free path (a = 0. 1), {(x) can oscillate between zero
and two (@ = 1.0) without 1ntroduc1ng any appreciable error in the ap-
proximate value of Ax. The approx1mate form gives a good idea of the
size of the effect even when the periodic length becomes a mean free
path.
It m1ght be expected that 1f p.(x) departs little from umty and has a

suffice. ‘This is not true and, in fact several d1fferent' values for A can

be obtamed by doing the- perturbatmn icalculation in several seemingly -
Carron e equlvalent ways. (It seems, in fact, that the calculation is essentially

second order and this canbe seen! from the following-considerations.

We write the equation whose kernel is adjoint to that of Eq. 9:

A?ﬁg(X) = (1/417) f dx’ llz e"k’(x' p(x) ¢ (%) (54)

u"‘.!. Plo,

and then change p.(x) to1+ Au(x) The eigenvalue will change to A + AX
where AX is given by the usual f1rst order perturbation calculation:

e-lxx'|

f ax [ax Filx) (1/4n) o & Aulx) oy(x)
T & 6.0 6, 59
We use Eq. 54 to do one integration and obtain:
RELY dx zﬂy Pe(x) Ap(x) (56)

dx ¢, (x) ¢, ()

-We insert for ¢, and qbé the unperturbed ?ﬁ{ and ¢1: which are constants,
and we obtain:

=0 (5')

The result of the first-order perturlbatmn calculation is, therefore, that
the elgenvalue is unchanged We must then go e1ther to a second order

R : el #r_ﬂh B

.
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o« We consider first a case with. p,(x) equal to unity (the unperturbed case) o
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should be pointed out that the ﬁ?s?tT order calculatlon W111 give correct

answers in problems where Ay is| not assumed to be zero on the aver-
age. It is only in cases where no change is made in the total amount of
active material that a second ordérfc‘alculation may be necessary.

The treatment which we have ldeveloped is certainly not capable of
giving the cr1t1ca1 mass of a lattlce\assembly It does lenable us to
est1mate the approx1mate effect of the inhomogenity. We can state
some obviously necessary and” obv1ously sufficient conditlons that a
glven assembly to essentially homogeneous We require that for the

: glven A of the core or tamper that: the propogation vectors of the
HEPSY infinite medium plane wave solutions should have magmtudes which are
essentially independent-of- d1rect10n* We further require-that thls mag-
nitude shall be d1fferent from that for the correspondmg homogeneous
medium by only a small fraction of 11tse1f We can further argue that
the effect on the critical size produced by the inhomogenity will be of
the order of magmtude of the effect,on the magnitude of the vector k.
I the inhomogeneities are not too large excellent approx1mat1ons
S Lo to the cr11t1ca1 mass of an 1nhomogeneous core can be obtamed by re-.
YT placing the core by an “equ1va1ent” homogeneous one. 'The “equiva-
lence” being determined by ma.kmg the homogeneous materlal such that
an infinite medium of it would have the same A for the important K
values as does an infinite medium of mhomogeneous material as de-
veloped by the methods of this report‘

Inhomogeneities of mean free path present problems which have
not been solved. Inhomogeneities in’ a system in which many neutron
velocities are involved present 1nteresting problems which have only
been partly solved in some espec1a11y simple cases.
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