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Errata

Page 3, 1lines 2 and 12 read "Coulomb",

o
Cep(T12)
Page 35, line 10 read = ¢ (7,,)
joikci 12
Page 43, Equation (4.33) reads:
- 1
12 T2z T31) = M1p(1 - G5+ 5 €5 Cps)

1

1 4
+ [€12 C13+ 3 (Cip + Cy3) Cps - 3 G2 G113 523]
Page 55, Equation (5 31), w(x) = n(x) + x %%)

Page 75, Figure 1 caption, read "defect" instead of "defend"
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1l. Introduction

Nuclear matter is a uniform system of infinite identical
nucleons, stripped of their conloub interactions. A study of
the properties of this system and in particular the evaluation
of its binding energy as a function of its density is a valua-
ble first step towards a theory of realistic finite nuclei
starting from first principles. For instance, the binding
energy per particle of nuclear matter should give the "volume
term" in the well known semi-emperical mass formula for nuclei,
which is experimentally deduced to be about 16 MeV. Further,
the experience gained from the treatment of the energy and
density of this many-body system should be of great help in
evaluating the surface, conlomb and other terms in the mass

formula.

There are several mathematical formalisms developed for
studying nuclear matter. A comparison of these and their rela-
tive nmerits is discussed by Brandow(l), The most successful,
and in many ways the simplest, theory is based on the
Brueckner-Goldstone(2’3) formalism. The Hamiltonian is split

into H =2:Ti +U; and Hy = EZ‘UE'—-ZZ(J{, where T; are the
(o] i 1 "zf )

kinetic energies of the nucleons, are the inter nucleon

Vs s
1
potentials and Ui are single particle potentials to be chosen
conveniently. It is assumed that there are no intrinsic many-
body forces. The grbund state of Ho‘is Jjust that'of a zero

temperature Fermi gas (it is non-degenerate) and the perturbed

-3~
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wave function and'energy are expanded in a perturbation series
in powers of H,. The potentials vij are used in the form of
their reaction matrices, and the resulting series is repre-
sented by a set of diagrams similar to the Feynman diagrams.
This formalism and the concept of the reaction matrix are ex-

plained in the preceding article by Ben Day.

Subsequent to the development of this well-defined forma-
lism, considerable effort has gone into evaluating the lower
order terms and treating higher order terms in a consistent
way. It appears now that the theory is approaching a satis-
factory conclusion, both theoretically and in terms of agree-~
ment with experiment. One of the significant steps in this
process was the development of the Reference Spectrum Method
by Bethe, Brandow and Petschek(h) which provided a relatively
simple and analytic method for evaluating the reaction matrix.
This also revealed several qualitative features with which
higher order diagrams could be studied. Such a study resulted
in another significant step, namely the realization that the
Brueckner-Goldstone series does not converge in powers of the
interaction or the reaction matrix, and that it should be
rearranged in powers of the number of ngéiedns involved.(5'6)
The evaluation by Bgthe-of the threé?bédy,enérgy to all orders
in perturbation lends supﬁErt toyfhe idea;thatvthe above rear-
rangement in powers of the densit& shduld converge for nuclear

matter.
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Complete calculations using realistic potentials with
tensor forces etc. have not yet been fully done. But the work
done so far reveals that the sum of the two- and three-body
contributions gives a binding energy of about 13 to 18 MeV per

particle at the observed density of k_ = 1.36 Fior

F
t’: 0.178 F"3, with the higher binding corresponding to 'soft-

core' potentials.7°8

There are reasons to hope that the cor-
rections to this, such as four-body terms etc. should not be
more than a couple of MeV, and methods have been suggested for
absorbing these. The experimental value for the binding energy
per particle is about 16 MeV. This is a fairly good agreement
for a theory beginning from first prihciples. namely an evalua-
tion of the energy of the many-body system starting from the
interparticle potential. In estimating the agreement with ex-
periment one must remember that the theory really calculates
the potential energy which is about -0 MeV for a typical
nucleon in the Fermi sea, and that the binding energy is a

difference between the large potential and kinetic energies.

It is hoped that the uncertainty (and possible discrepancy) of
about 3 lieV in a total of about Hb_MeV will be reduced by the
correction terms and by more precise}ca1Cu1ations with tensor

forces etc.

Since the Bruedkner-Goldstone formalism and the Reference
Spectrum Method for evaluating the reaction matrix have been
described in detail in the preceding article by Day,’ we will

proceed from where Day has left off. Thus Sec. 2 will briefly

-5-
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gather together some features of the two-body wave function and
the reaction matrix needed for subsequent use. Section 3 will
discuss the convergence prob}ems of the expansion and bring out
the need to rearrange terms in powers of the density. Sections
L and 5 will deal with.a method for evaluating the three-body
energy which gives the rz term in the new rearrangement. Sec-
tion 6 involves the tréatment of tensor forces, and finally
Sec. 7 will be devoted to the choiéé'of the single-particle
potential energies td be used in the theory. It is strongly
recommended to the reader to familiarize himself with the ideas

in the preceding article before embarking on this one.
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2. Some Properties of the Two-body Problem

The Reference Spectrum Method for evaluating the g matrix,
described in detail in the preceding article (henceforth re-

ferred to as A) can be summarized very briefly as follows:

The g matrix is defined in terms of the internucleon po-

tential v by
g =V -V % g (2.1)

where Q and e refer respectively’to the Pauli exclusion opera-
tor and the energy denominator 1n the Goldstone diagram. This
is essentially a two-body operator, and involves non-trivially
the relative coordinate r, the momenta of the two particles
and a parameter which depends on the other particles excited.
Let us define a two-body wavefunctionﬁf(?3 and a defect func-

o 2 —>
tion 7(r) corresponding to an initial plane wave state<ﬁ(r) by

y@) = (- 2y) $F (2.2)

s(v)= (PP ()
. Qg4 = Zuvyl(d) (2.3)
¥ 2 vre

The Reference Spectrum approximation,

and

-which uses a quadratic
form for the single-particle potential energies, amounts to
dropping the Q operator, and replacing the energy denominator
by —L-647+J§an coordinate space.- These approximatlons and cor-
rections to them are -explained in the original paper“ and in A.
Here m* refers to the reduced mass in ‘the Reference Spectrum

energj,}'z. a positive quantity, is the parameter involving

-7~
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off-energy~shell contributions from other excited particles,
T A ‘

and the factor-é%»is suppressed. It then follows from (2.3)

that - - , '

2 =) . _wE (‘F‘ 4/(‘?’) - (Vﬁ)]

CY—-Yﬂ)f(r) =~ (] ’ (2.4)

and the matrix element - -
(3] ¢y = Lk ‘?--/ko>
= KIS ("L”l) (2.5)

X
The g matrix element can thus be obtained by solving the dif-
ferential equation (2.4) as exactly as possible and using the
solution for”i(?) in (2.5). This has been done quite accu-

ratelyh’lo

and the first order energy, which is the g matrix
itself, has been‘evaluated. However, for the purposes of
studying higher order diagrams, involving iarge numbers of g
matrices, it is uséful fo extract some qualitative features of
the function 7 and the operator g. The great advantage of the
Reference Spectrum Method, as compared to directly solving the
integral equation (2.1) for g, is the ease with which it lends

itself to such qualitative undérStahding.

In this conneétion,_it is usqful~tp'$eparéte the potential
into a short range bartvvs and éﬁlong'réﬁge‘part V.. @s
originally suggested by Moszkaski*and'scbtt;l¥_ The separa-
tion distance d was sofchéseﬁtéy.ﬁthé'ﬁdrkérs;that the defect
function § had zero slopéiand?#aiﬁé'at r a-d,vige, the "wound"

in the wave function’F dué to the repulsive core got "healed"
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at r = d due to the attractive part in Ve This separation
distance is, of course, a function of the initial momenta

-~ =
k,.P,. But, for a standard hard core potential, with a core

o**o
radius ¢ = O.4 F, the distance d is about 1 F for a wide range
of k P, up to about 2 112 Moszkowski and Scott show that
the reaction matrix g corresponding to this Vg is zero for
free nucleons. Although this is not so for a general off-
energy~shell g matrix in nuclear matter, it is still useful
to make such a separation, since the two parts vy and v{ have
quite different properties and have to be treated differently.
Vg contains the strong repulsive core and is best treated in
terms of its reaction matrix gs to get finite matrix elements.
Further, because of its short range, g has high Fourlier com-
ponents, and as we will see, a strong momentum dependence. On
the other hand, v, is the relatively weak tall of the attrac-
tive part and con;equéntly has a rapidly convergent Born series.
Further, although its matrix elements depend“strongly on the
momentum transfer, fhe‘diagonal element is relatively indepen-
dent of momentum. A1l these properties will be discussed and
used in detail at various places in. later sections. It‘shéuld
be noted, however, that although such a separation is often
seful. it is possible to evaluate the g matrix for the full
v(r), by solving the differential equatlon (2.4) for 7(r), and

this is usually more convenient for accurate numerlcal work.

The function fs(r) corresponding to v, has ‘some useful

features. Consider for instance its s-wave part, written as

-Q-
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usual in the form X (t) ,Then from (2.#),)‘ (r) obeys

[4 ._x:}x (r) = g () [xg ()= o] (K r)] (2.6)
T

Inside the hard core,%’(r) = 0 and hence)<g(r) = rj (k,r), the
free S~wave function. Outside the core.)LO falls off to zero
slope and value at r = d, by definition of d. If there had
been no attraction outside the core, then XZ(I‘) = e—yrfor 76 -
The attractive part makes the decay ofrtg(r) only faster.

Thus, a graph of)<:(r) has an approximate shape shown in Fig. 1.
Inside the core radius, the function)gg = x'x}kor)c: r for
small k,. Deviation from this arises only for large enough k,
so that ko”c ~ l. PFurther, outside the core.)ﬁg does not vary
much with k_, especially for large ¥. The largest k, depen-
dence outside the core arises from the core boundary value

)C:(c) = cjo(koc). Therefore the outer function, when suitably

) (-]
normalized at the core radius, i.e. either Xs(r or j§5122,
C k 1
should be relatively independent of ko. }D( g C}o(kﬁg

Further, since )éo is roughly triangular with a peak at
r=c, its fourier transfornm should be peaked around kc-—7f/é
1.ee Kk~ k4 pt Thus, when the €g matrix acts on the filled
Ferml sea, it tends to excite intermediate states of momenta
typically around 4 F l.' A1l these features of the defect func-

tion will be useful in subsequent discussion.

We can also make similar estimates for:the*reaction matrix

gso We have Y

-10-
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..(7_ f ? (r) 0‘ i (2.7)

where 2 is the volume of integration. Consider the diagonal

"y >
case jk) =-/k;>. The integral in (2.7) can be split into two
parts, inside and outside tgg_ggre radius respectively. Inside

ik .7
the core, i;(r) %(?) = e °', so that

AR P ,
j r5 ('”) JS fcfg = Vc_, the core volume  (2.8)
Core ‘

I\
~
o[
A
A
it

W

Outside the core, the contribution is not so trivial, but the
shape of)iz in Fig. 1 shows that the result should be of the same

order as the core contribution. An estimate of about 2Vc to 3Vc

is reasonable. Thus,

R / } ke = 1 3V (2.9)
<f < :> c
As an application, consider the first order direct diagram in 8-

Its contributlon, using an average value ko, is approxlmately,

. L2 LKL = </< /?A}U" il

Aék
where N is the number of particles
—-)-. /0, 3V . kDHr per particle. (2.10)
2 | C %A*

For purposes of estimation; we can use

~3 -
f' = O 170 F A’i‘é‘ F for kg = 1.36 F'_l

3
Vo = 0.27F for ¢ = O.k4

(see preceding article)

-11-
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This gives the first order g contribution from the "direct"
diagram,
Eél) 1 (0.170) (0.81) (1.5 k%) = 0.10 kF2~ 8 MeV per
particle
This is, of course, only an estimate, and is given only to
illustrate the essential simplicity of the BBP method. The
exact results can always be obtained by solving (2.4) and
evaluating (2.5). The estimate in eq. (2.9) for <EZ ) .7&{ }Es>
is very valuable in studying higher order diagrams, as we will

see in the next section.

It should be noted here that the first order contribution
of g is positive. However, the long range part \7 makes a
large negative contribution (about -59 M’eV)13 through its first
Born approximation, so that the full g matrix g:z_gs + v, is
negative for small ko. This gives, then, a positive contribu-~

tion to the binding energy from the first order direct diagram.

We further note that since 75 is largely ko independent,
the diagonal g matrix element
N U
(k)rka kKt UgR 8>

7"\"
has a strong quadratic dependence on k . Ve will see in Sec. 5

that this proves to be a troublesome-feature>in evaluating the
three-body energy and a full section will be devoted to in-

corporate this momentum dépendende of gg.

We have described above some selected properties of the
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two-body wave function and reaction matrix, which are needed
for the study of higher orders that follows. The reader is re-
ferred to the preceding article for fuller details of the two-

body problem.
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3. e Conve nce of the Brue er-Goldstone Series

We will study in this section the convergence of the
Brueckner-Goldstone expansion order by order, In general,
the expansion will contain diagrams involving the single-
particle potential energy U (See A). Obviously, their contri-
bution will depend on the choice of U, which in turn depends
on what pure g matrix diagramé one 1s trying to cancel out by
these "U diagrams'. Therefore let us first concentrate on

diagrams that do not involve U.

The first order diagrams are shown in Fig. 2. Here,
Fig. 2b is the "exchange"™ of 2a. In the previous section, we
made a crude estimate of the direct diagram 2a as éPZ (fg'“r)

~ +8 =59 MeV = -51 MeV. The exchange diagram can be similarly

evaluated. However, one can see that the exchange diagram is
"almost" diagonal, inasmuch as the momentum transfer‘ﬁéﬁ'is
quite small, so that for a given‘ﬁ andsg. it should not be very
different from the direct term. But, for a spin-isospin inde-~
pendent potential, the states ™ and h must have the same spin-
isospin values in the exchange dlagram. Consequently, the ex-
change diagram contribution is multiplied by an additional
factor of -3, the minus sign arising from the Goldstone rule
mentioned in A. As a result, the total first order contribu-
tion should be about 3/4 the direct term, l.e. about -39 MeV.
We wish to emphasize again, that whereas the ease with which

such estimates can be made is the great advantage of the BBP

-1h-




4}

¢

method, it is always possible to get more exact answers by
solving the differential equation for%?(r). A recent such
calcuiation by Kirson12 gives a va1ue of"F38.35 MeV for the
first order energy, using.the Standard Hard Core potential,

in very close agreement with our estimate.

There are no second order diagrams in the Bureckner-
Goldstone expansion. The third order direct diagfams are only
a handful, as shown in Fig. 3. The remaining third order dia-
grams can be obtained by simply "exchanging" one or more of
the g matrices in Fig. 3. Of the third order diagrams, Fig.
Ja and Fig. 3¢ caught early attention, in>as much as they
seemed to represent self energy effects. The '"bubble inter-
action" <bn[g[bn>1n Fig. 3a, for example, when summed over
the state n, may be conslidered as part of the single~particle
energy of the state b, and might therefore be counteracted by
a sultable U(b). A similar statement would be valid for Fig.
3c, where the "bubble interaction"<<mnfg}mﬂ> may be included
as part of the hole energy U(m). This method, which corres-
ponds to the Hartree method.in atomic physics, is explained in
Goldstone's paper3;»and}£qrﬁs the basis of the BBP choice of
their sing1e~particie éh?fgies.? ThéjBBP_phqiée. which will be
discussed in'Sec.'7, éBs§i5§, oﬁtpeiéﬁerage;ldiagrams 3a, 3c
and their exéhénges,ias’barf oflﬁheféihgleepérticle.energies.

Concurrehtly;,it‘wasiShbwnfbj‘Réjéramanlylthat the re-

maining third order'diagfaﬁéjéreucomparable in size to the

-15-
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bubble diagrams, and should be taken into account to make a
consistent approximation. However, he also showed that even
though these are not obviously self-energy type diagrams, more
than 90% of their contribution.could still be absorbed into
the single-particle energies. These additional diagrams were
then included by BBP in determining their‘reference spectrum
parameters. The spirit of the efforts at that time was still
based on the hope that the Brueckner-Goldstone series converges
as you go to higher order diagrams in g, and that if you have
accounted for all third order diagrams in the above manner,
thie should leave only small errors from fourth and higher

order terms.

10 for

However, when calculations were performed by Razavy
the first order energy with such a single-particle spectrum,
the resulting binding energy was only about 8 MeV per particle.
Razavy used the Hamada-Johnston potential.l5 A similar result
was obtained by Brueckner and M’asterson16 using the (very
similar) Breit potential. However, Brown, Schappert and L'Jongl’?
showed that both the Razavy reeqlfiand'thélﬁrueckner—Masterson
(Br-M) result needed correctionSQ;nhlcnlcoincidentally reduced
both values down to about h MeV or’so;‘ In“narricular. the
Br-M calculations did not include the off-energy-shell effects
on the single-~ partlcle energies. More recently Coon and

Dabrowskild

have incorporated the off-energy-shell corrections
into the Br-i energies.' It,should;be.noted in this connection

that use of both the Coon-Dabrowski and the Brown et al

-16-
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corrections to the Br-M.calculations is wrong since these cor-
rections duplicate one’another. It should also be remembered
that Coon-~Dabrowski inclusion of off-energy-shell effects into
the single-particle energies had already been achieved earlier

by the BBP spectrum.

These remarks are a digression from our main point that
the sum of the first and third order energies after these cor-
rections give only about 4 MeV of binding per particle as com-

pared to the experimental value of 16 MeV.

This can be improved upon by using a "soft-core" repul-
sion, such as the exponential core of wOng7, instead of the
infinite "hard core'. This would clearly decrease the repul-
sion, and was estimated by Wong to add about 4-5 MeV to the
binding energy. This still leaves a discrepancy of over 7 MeV,
the cause of which turned out to be connected with the under-
lying hope that the Brueckner-Goldstone series converged order

by order.

This hope turned out to be quite false, as a closer in-
spection of higher order diagrams reygaled} It vas shown by
Rajaraman’ that there exist, in;the?éxpénsibﬁ,'sub-sets of dia-
grams characterizedibj_%ﬂe éﬁmbéry¢? hoiéélines{in them, where
higher and highef ofder tefms,ihLeédhusﬁbfset do not become
smaller, so that evaluétiﬂéfthé;segies brdér{by order is not
the proper proéedure, itiﬁaslélso Suggéstédlthét each of these

sub-sets should be summed in coordinate space and that the

-17-
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resulting sequence corresponding to an increasing number of

hole lines will converge. We will now outline these arguments.

Consider the two fourth order diagrams in Fig. 4. Compare
both of these to the. third order diagramlin Fig. 3b. Fig. k4a
has one more factor g/e (the '"bubble" interaction) and has to
be Integrated over one more independent state, namely n, as
compared to Fig. 3b. Of course, the contribution of a diagram
involves integrals over all the intermediate state momenta,
and although the integrand g%g%g%g factors into contributions
of the individual g matrices, the integrated result will not.

Nevertheless, for purposes of making estimates, we can write

gi:gizz g% -"‘Z< ' E'Zawith a typical b ~ L i

v\xr E—)‘ g__:—v
~ ‘p<,\ 'g‘k>with o = 2 (3.1)
This is where our estimates for §/ >at the end of the

last section are very useful. There we showed that
) 9 “;>> T
(ko}ﬁ,,’\u = '\kx)/>
gives a core contribution of V_, and something of the same

order (2V_ to 3V ) from outside the core. Thus,

—~

@iagram ba .. .57V - 3.5 (C > ~ L
diagram 3b T 7 -[‘C“ (zq) 7 (3.2)

where 2rO = inter;particlé distance = 2.24 F', Consider, on the
the other hand, thgféiagram.Hb. Here again we have an addi-
tional factor of g/é as compared to Fig. 3b, but the additional
independent-momentﬁm to be integrated over, whethér it be p or

q, is above the Fermi sea. Thus,

~-18-
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diagram Wb ~ jz AZ;

Ghegran 3 © pyk, €
As we showed in the last section, the typical particle momentum
p excited by the g matrix is about ’E’; th'l.' This we justifled
by considering the Fourier transform of ‘§(r). and the large
value of the momentum was seén to arise because of the hard
core. Thus, even though the matrix element g/e is of the same
order as before, the phase space over which this 1s integrated

is much larger than the Fermi sea, and we would get a result

3
diagram 4b A~ 5 (¢ 1L -
diagram 3b 3 ( ac (3.3)

On detalled consideration, this factor turns out to be an
over estimate in as much as g/e is smaller than 3.5 Ve for
'high momenta, and the typical momentum p is somewhat smaller
than'gi. However, this ratio is at least of the order of
unity, as compared to the ratio of 1/7th in_eq. (3.2). A

better way of estimating this'ratio is given by Ben Day.9 We

have
a ‘ Z ¢->
giag;amam ‘%g = Z; <k | ﬂ , 3 > DY (k / SD?/?.:

wohew KD = /(’ﬂ?
%'; (‘#" k=o)L bo] 5,y aia $ ()=
= S, (ree) = $olreo) = |

Once again we see that this ratio arises because ‘;(r-o)

{l

+k(r-o). which in turn is ‘because of the hard core. The argu-

ment used here in going from third to fourth order, is clearly

19
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~valid at all orders. We conclude then, that in going to a

diagram of next higher order, if the extra independent inter-
mediate state introduced 1s a particle, the higher order dia-
gram remains of the same size, whereas 1f the intermediate

state is a hole, then there is a reduction by about a seventh,

The above convergence behavior becomes more transparent

when summarised in direct physical terms thus:

With an infinite hard core in the potential, we must of
course anticipate convergence problems in powers of the poten-
tial. In fact, 1f we use the potential as it is, even the
matrix elements diverge. The situation is improved by the use
of the reaction matrix g, which is at least finite. This renders
every dilagram in powers of g finite. However, this does not 1
imply that such a sequence of finite diagrams will converge
order by order. Now, if a diagram contains n hole lines, it
corresponds to an interaction between n particles, since it is

easy to note that every hole line corresponds to one particle

being excited out of the Fermi sea. Since it 1s the hard core
which ieads to convergence broblems. and since the probability
of a large number of particles being within each other's core
radius 1is small ((«. <l). we- would expect a diagram to get
smaller as the number of hole lines increases. But if the
number of hole 1ines is kept constant and the number of g
matrices is increaaed by adding particle lines only, then there

is not likely to be good convergence. Qur semi-quantitative

20
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argunents earlier simply corroborate this conjecture. This
possibility of convergence in powers of the density had been

suggested as early as in 1957 by Hugenholtz.19

At this juncture, it is again helpful to separate the
potential into vg and v,. 4n arbitrary diagram would then
consist of an arbitrary sequence of vg and v, interactions,

and if uninterrupted two-body ladders of v_. are summed into

s
gy @S usual, then we have diagrams with arbitrary combinations
of s and Vye These may be separated into three classes:

(a) Diagrams invoiving vzvalone: These will be very small in-
asmuch as the second Born term in vy is seen to be 2% of the
first.ll°12 The _reason13 behind this large dimunition will

be clear in Sec. 7. (b) Diagrams mixed in v, and g 3 Ve will
show in Sec. 7 that thése can be absorbed into the single-
particle energies. (¢) Diagrams involving g alone: It is
these diagrams which, owing to the hard core, lead to a non-
convergent Sequence for a fixed number of hole lines, for the

reasons outlined.

Nevertheless, if you'¢Obé§dér one. such sequence, say, of
all diagrams with three hoie 1ines;:i.e.'théythree-body clus-
ters, then the contributions of" successive orders alternate
in sign. That is, a seventh order diagram as compared to a
sixth order one, would contain an extra factor fg‘ﬁ 9e = zi

» Tilo

which 1is negative_sincg:gs;is posipive.- Thus,_lt is possible

that the sequence may have a finite Sum.

21




This was in fact shown to be the case. We will use now
a convention for drawing diagrams introduced by Rajaraman for
handling n-body cluster diagrams. Every nucleon is represented
by a vertical line, with interactions represented by horizontal
lines or wiggles as before. '"Particle" and "hole'" states are
distinguished only by arrows. A Goldstone diagram and its
representation in the new convention are shown in Fig. 5. The
disadvantage of the new convention is that it does not distin-
guish between particle and hole states very clearly. On the
other hand, it brings out the unity of all n-body diagrams of
all orders. Thus, all ihree-body diagrams are "ladders" with
these vertical 1ines;. This already suggests that all these
three-body ladders may be summed in a manner similar to
Brueckner's summation of all two-body v~ladders into a g-matrix,
It was showns that the sum of such three-body ladders, called
the T matrix, is finite and can ® evaluated in a manner simi-

lar to the reference spectrum method for the two-body g-matrix.
st le

A three-body wave function analogous to Yﬁg an be defined,
which obeys a three-body Schrodinger type differential equa-
tion. If this equation can be soived,~then the T matrix, or
the three-body energy, can be easily obtained. The same pro-
cedure can be adopted for four-body.and higher cluster dia-
grans. Whereas the corresponding n-body Schrodinger type
equations would be harder'and harder to solvevas n increases,
the solution nevertheless exists, and leads»to finite energies

for the contribution of all the n-body diagrams. Furthermore,
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in view of the short range nature of Bgs these contributions

should converge as n increases.

Although Rajaramants work suggested the above possibili-~
ties, it did not attempt the actual solution of the 3-body
differential equation to gét the 3-body energy. This was done
a year later by Bethe,6 who, with the help of Faddeyev's tech-
nique20 obtained a satisfactory solution to the three-body
wave function and energy. This work also revealed in greater
detaill the above convergence difficulties, and the effect of
going from third order to all three~body terms. We will des-
cribe this work in detail in the next éection. We only need
to mention here that Bethe's work, subsequently further im-

21 and Kirson.12 leads to a three-body energy of

proved by Day
about -5 MeV, which, compared to the -38.3 MeV for the two-
body energy, indicates a good rate of convergence in the
cluster expansion, thus giving us hope that the four-body

energy would be less than 1 MeV.
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4. The Three-Body Energy

We will now discuss a method for determining the three-body wave
function and energy in nﬁclear matter, developed by Bethe in 1964. 6. The
wave function and energy correspohd to the sum of all Goldstone diagrams
with three holé lines. We will use‘the convet;ion'5 mentioned in the last
Qection for drawing cluster diagrams, whereby all three-héle-line diagrams
will consist of three upgoing lines. The interactions g are wiggly horizontal
lines as.before, and energy denominators are just the energies of the inter-
mediate states shown minus the starting energies, as can be verified by
comparing the two diagrams in fig. 5. Subject to a hax;dful of exceptions, the
set of all allowed three-hole-line Goldstone diagrams is just the set of all
possible three-body ladders one can draw, in the new conveation. The excep-
tions arise because there are séme "three-hole'' Goldstone diagrams, such
as the '"hole-bubble" diagram in fig. 3¢ which cannont be represented as part
of the ladder sequence, and conversely there are a few ladder diagrams that
have no Goldstone analogues and should be subtracted away. These anamolies
will be taken into account later on, but let us for the moment consider the sum
of all three~body ladder diagrams.

Let us denote by T, the matrix denotiﬁg the aﬁxﬁ of ;11 three-body
ladders, analogous to the g rh;trix fc;r thc_e.tj:{;lr;-i:ody lad_defs.ﬁ ‘In other words,
<-l“r;1:1[ T | 1mn> is the sum of all th?ée-bo,dy ﬂié{g;ama that begin and end
on states 1, m, and n recpectively. Since Sinding'e’x:"a{er'g‘y diagrams are

- - -

"vacuum to vacuum' in the second quantised language, the states 1, m and n

are below the sea. We will start by evaluating only direct diagrams i.e. where .
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the three particles are restored to the same respective state in which they
stai-ted. Exchange diagrams, belonging for instance tq&{r-x"x TalT|Tma>

are related in a fairly simnle way to the direct diagrams, as in the two-body
case and will be dealt with later. Needless to say, except for the initial and
final states T, r-ﬁ, ﬁ', all other states in the ladders should be above the Fer_mi
sea, and no two successive g fnatrices should refer to the same vair of |
intermediate states. These rules are directly carried ;aver from Goldstone
diagrams. Fig. 6 shows a typical diagram belonging to<:i. ri. n l T'T m n).
Clearly this set of diagrams can be divided into three distinct grouos
devending on which pair of 'oarticles.is involved in the last g interaction,

1) @) o)

Let us define T to be the sum of the group of diagrams in

whose last interaction the narticle 1, 2, and 3 resnectively is a spectator.

Clearly,

rop) @, L)

+T (4. 1)

such a separation was suggested by Faddeyev 20 in connection with the

(3)

3-body scattering matrix. Now, a diagram belonging to T ', such as the one
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in fig.. 6, must have g, 38 its last interaction. The next lower interaction
must therefore be either 83 OF B3 - Thus, the part of the diagram below
the )2 ° itself corfesponds to a term in either T(l) or T(2 ). The only excep-
tion to this is if there is no interaction at all below g;, i-e. if the entire
diagram corresponds only to g2 Thus,

(3) _ 1 (1) (2)
T =gy, - 815 3 {t" + TN | (4.2)

and cyclic permutations

The first term on the right ‘hand side, which corresponds to the third

€12 -
particle not interacting at all, is really part of the two-body energy and is an

example of the unwanted exceptions we spoke of earlier. We will eventually

subtract away its effect from T(3).

Equation (4.2) and its two cyclic permutations, forny 4 set of three
(1) 2@ g )

coupled integral equations for T . As in the case of the two-
body g matrix, these integral equations are best solved by transforming the

problem into coordinate space and éolving for suitably defihe;i wave functions.
It should be noted that in Eq. (4.2) we have dropped the exclusion operator Q

which would ensure that the intermediate states of particles 1 and 2 remain

above the sea. This a.pproxima_ﬁopis isi,r,nilar to the one made in A for the

| two-body g matrix and is jii:sj_.tified: by‘the 's_a’i"h,é, arguments. The single-

particle energies that go into the denominator e, are givenr by the same

reference spectrum as in the two-body case. -
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Let us now define three-body wave functions ‘Y(l) by,

T(3) ¢ = ’1’(3), and cyclic permutations, (4. 3)

€12

)

where 2is the unperturbed plane wave three particle state. It follows from

Eq. (4.2) that

¥ o é (o) 4 @)y

$- é {g23 ‘i’u) + €13 ‘l"z)}. and cyclic permutations (4. 4)

the wave functions ‘}'(1) and the above equation (4. 4) are the three-body
analogues of ¥ (;) and its equation (2. 2) for the two-body case. As in the
two-body case, if we corivert% gij into differential operators in the variables

= (i).

rij » then (4.4) would give a set of coupled differential equations for y' .

The operator e , deceptive in its abbreviated form, is more compli-
cated than in the two-body case. In every three-body diagram, the first and
lalst energy denominators correspond to two nucleons being excited and the
third below the sea. Thus, in fig. 6, at the level C, nucleons 1 and 2 are in
excited states ; and ; whereas 3 has returned to the state n below the sea.
Every energy denominator except the first and the last, such as at level D in
fig. 6, corresponds to all three nucleons in excited states. Using the reference
spectrum.zz‘ (see A) both types of energy-denominaférs can be expressed in

the form rxlv* (-Vi.z + vz) » but the value of y, using typical values for all

)
the momenta involved, is higher when all three nucleons are excited. To be

Q more explicit, at level D,
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«)

e = E(a) + E(b) + E(d) - E(¢) - E(m) - E(n)

- = a2+b2+d2-£2-m2-n2+6Ak‘i]

2m * )
2 2 2 A

1 2 2 4 -4 - m n 2

SR EREEREE L v ]
m ———t———

- ~b -t E - - } -
But Pab = 2 ;b = * ; n-d by momentum conservation

2 £2+m2+nz+d2 .
P = averaging over angles

' 2 4,2, 2.2
.o L [k2+3d A 4w’ 40”2
ab :1:_/

2
1 ~ 2 3d 2
= eme— - 7 — -
- L v, + 3 + (8- 0.45) k_,J (4.5)
m
using <4 > = <m2> = <n2> =0 6k2F
1 2 2
m
2 3(12 2 :
with Y1 = e + (3A - 0. 45‘)Ak,.'F | _ (4. 6)

The value of the particle momentum d can be typically taken as ~ e from the

[

arguments in Sec. 2 for the most probable momenta excited.
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On the other hand, at the level C in fig, 6, where only two particles

1@ are excited, the energy denominator is on the energy shell, i.e.
= e = E(a) + E(p) - E(4) - E(m)
__1 2 2 2 o1 2 2
= =3 !;kap - k-ﬁm + ZAk;F] == (-v12 + Y, ) (4. 7)
m : m
2 2
where YZ = ZAk.F- kl.m
= (2Aa- 0.3) k.’zz << le. (4. 8)

Therefore, even using average values for the momenta involved, there are
two distinct energy denominators, similar in form, but with different Y's.
In either case, we know from Sec. 2 how -i- gij operates on the two-body

plane wave state. It effects only the relative coordinate rij and gives

-

Lo Jeitk. mg+2P. Rip( . ) 2P Ry (4.9)
e 1) ) k,§ 1)

where gl_: - (;ij) can be obtained from (2. 4) and its general features such as
Yhealing" ,I:t’c. were discussed. Clearly { depends on the value of Y; let us
use the symbol 7to denote this function when Y= Y2 and‘;_v:itself when Y = Y1 .
To incorporate the distinction between n(;iji and g(;lj) ’ ’the‘former occuring

when two particles are excited and the latter when all three are, we split the

Y(l) in Eq. (1. 4) into (‘él) - &) and 2. When % gij acts on ¥, clearly only the
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#

ith and jth particle are excited. Hence

1 o -

Here we have used the limit of zero momenta for all hole states, so that
¢ = 1, This approximation, reasonable inasmuch as the average hole momen-

tum in 03\ kf ~ 1/3c, will be used in all subsequent discussion. Thus,

Eq, (4. 4) becomes

3) .1 1 1 ), 1 @)
By E gt o g3t - oy (B ¥ ) - T (B2 ¥
or,
L€ ” 1 (1 1 (2)
277 = Mryy) Hnlrgg) - 0832 - 083 2 (4.11)
where Z‘i) = ¢ . ‘i’(i) .

We thus have to solve the three coupled differential equations implied in

(4. 11), for the 'Z.(l). Since each Z(l) = § - W(l) represents an excited wave
function with no initial state in it, the operation of %gij on it will involve only
the function g(;ij)’ and not 'n(;';_j). |

However, the Z(l) are functions of all three coordinates. Therefore,

to find the result of operating % g, on Z(3) (;l' :2, ;3), one must first
ik, rp, .
, replace e by ¢ . (rlz) in each Fourier com-

kP

ponent and then perform the inverse Fourier transformation. The resulting

(3)

Fourier analyse 2

function is of course not related in any simple way to 2(3) (;1, ;2. ;3) and the

coupled equations (4. 11) are not easy to solve. Consequently, two approximtions
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a simpler one due to Bethe, and an improved version due to Day have been

(i)

suggested for obtaining the Z''. We will present both of them here. Once

C

the Z(i) are known, the ;hree-body energy is easily obtained in terms of these
functions. Thus <4mn| T(3) |2mn> is just the sum of all diagrams of the type
in fig. 6, which end with g 12 and have all possible combina;tions of gij under-
neath with one exception The diagrams Shown in f£ig 7 have no analogues in

the Goldstone series sincethey don't conserve momentum. Noting that the state

(1)

at the level D in fig, 6 is ¥ , whereas it is ¢ at level D in fig, 7, we get,

on removing the term of fig. 7,

émn' T(3) Uomn>

<§| Bia ey 83 ¥ ey ,y(z)>
<“g12 ‘(:'1;';' (853 * £13)! 4,>

<§ e, 2 ey, 2 4 g, 2@ > |
;;'3' fn Glz\) {g»@u) 21 rl;z ;3>
' gG“)Zm 61 ;2;3 jdml dr, dv,

where Q is the volume of integration. (4.12)

Some comments are due concerning equa.fibn (4. 12). In deriving it, we
have explicitly written out two powers of g, .i. e. the top two "rungs' of the
three-body ladder, and left the rest in the wave functions Z(I) and Z(z). To be

more precise, we have written

i
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(3) - < 1 (1) (2)
anlr Iimr> = ﬂglz - |g23 2V +g,2 (4. 13)
instead of the original definition

<zmnl'r(3)| .ﬂmn> = Q \g12|v‘3’> | (4. 14)

There are many reasons for this. First of all, this explicity brings out the last
energy denominator which corresponds to two excited particles, and leads to

1

P <n Secondly, the pure two-body term < @l glz‘ > present in

<‘”glz 12“

(4. 13) has been removed in (4. 14), Thirdly, of course, the unwanted diagrams

(2)

1
in fig. 7 have also been removed by the use of Z(l) and Z° ' instead of ‘1’( ) and

y(8),

It should also be noted that the g matrix is not a function of the coordi-

nates alone, as assumed in the last line of (4. 12). Whereas at large distances
- -+

g(r) @ v (r) , at short distances g is highly momentum dependent. As shown in

Sec. 2, and in Day's preceding article, one may write

where, insgide the core, ( = ¢, Hence, inside the core g = ¢ = ;%:;,— QZ + y2>
in the reference approximation, where k is the momenturh corresponding to the
relative coordinate r in g(r). Incorporating this momentum dependence is com-
plicated by the fact that the integral (4. 12) involves g63> which depends on k23,

-»
along with functions nG 1 2) and Z“)G 152 :3> which involve other coordinates.
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This problem will be discussed in Section 5. For the time being let us consider
the ng3>and the g@ 1 3>in (4.12) to be independent of momentum, but evaluated
at a suitable average value of the relevant momentum. Finally, as mentioned
at the beginning of this section, there are some Goldstone diagrams which are
not present in such "ladder" sequences. For the three-body case, the sum
T(l) + T(Z) + T(3) defined above does not include the ""hole-bubble' diagram and
the ""hole-hole' diagram shown in fig. 8(a) and 8(b) respectively. However,

fig. 8a is a component of the standard expression for the potential energy of hole
states (see also Sec. 7). Diagram 8b can be explicitly éalculated by integrating
the product of the tﬁree g matrices over the independent momenta. This diagram

(14)

has been shown by Rajaraman to be smaller by a factor of about 75 32 compared

with 8a; it could probably be absorbed into U(m) and U(n).
(3)

Subject to these remarks, T ' and similarly T( ) and T( ) can be evalu-
ated from Eq. (4. 12), once the functions Z( )Cl r, 3)are known. Lef us now

proceed to evaluate these functions from the coupled equations (4. 11)

Three-Body Wave Function

+ o+ =
It is useful to change the coordmates in (4.11) from T,,%5,F3 to
¥ - -+ 3 r1 + rz -
T =r-r,p=-—-—-———--r.Wethenhave,

12 1 2

,(3) - 3
"glz (‘;12 ’?3 = Zg( )<;12' 33":3>

3 2 3

12? . 33

= 8(zm)” -6 jd pfd K g Cm) (3’ @ ) (4. 15)
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where ZSI?)@’, i:, ;3> is the Fourier transform of Z given by

{(3) - _
zp (@ K 7y) =

-+ -
! ik,

3 3 -
Id%qfdr'e e

-+

r 1 ]

12 _(3) e e 6
12 270 (x5 Py "3) (4.16)

The coordinate : is unaffected and this corresponds to keeving the particle

3

3 fixed instead of the center-of-mass. It should be noted that ( - 13’ 1'r12)
k
actually devends also on the momentum of the third narticle through the factor

’Yl (éee eq. 4.6), but as can be seen from fig. 1, the function { does

not vary much with vy, for lar,gey‘: » 80 that an average value may be used.

1

Subject to this, eq. (4. 15) is still an exact representation of the overator

‘:' B2 Now, for T 5 <G We have

L]

. o -{( -
Cl_:ig(rlz) = e T2,
so that,
Zg(3)< ;12. 33, ;3) = Z‘”(glz; 33. -r’;) fo.r Traef (4. 17)
Forr 12 >6¢ both the Day and Bethe apnroximations» involve nulling
the function { (\:12) outside the integral in eq. (4.15), in some average sense.
To justify this, we first note that in the reference anoro:;imation. the strongest
devendence of { _ (;12;) on the angles of §, k and ;1

‘ k, P .
PL (f{ . ’}‘1'2) so that upon integration over d3k. only the S-wave nart

2 is contained in

o . _
¢ k, P <_r12) survives. Of course, the integrand also contains the Z function
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which depends on k as well, However, Kirson has shown that the conclusion,
viZ, that only the S-wave part of C matters, is nevertheless justified,

One reason for this is that the comnonents CL for L = 0 are relatively

small because the core does not have a strong effect. There is only a very
small devendence on the angle between P and k due to Pauli corrections, etc.

Further, as shown in sec. 2, for r

. o)
12 > ¢, the S-wave function Ck.P‘:?lZD‘

is nearly independent of k and P. The dependence on P arises through y 1
to which Q;: p Glg is not very sensitive, and the largest dependence on k
1 4 . .

arises because of matching the function at the core radius c, with the interior

: g - . D
solution i, (kr). Thus it is reasonable to treat k,P ( 12) _ C ("12)
(kC)
as essentially independent of k, and P, as long as these momenta are not

large compared to .xl.... . Hence, we may write
c

23 (';12’ Py ?3) |
-2 =
i . 2i P- © P
=,a_T_T)6 fd3 deB k £ P ('12) e zZ. (P. k, r3>

; .
jfe P (12) Jd de3k e

: (2")
D (3) C Y - v- »
o 4.18
¢ (2) 2 G Py 73) | - (4. 18)
This is the Day approximation. The vector c is directed along T and

c b (r l'z)which is normalised to unity at the core radius, has to be
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(3).

evaluated for values of k and P at which the Fourier transform Z o is
peaked. Kiraonlz, who explains the above approximation with greater care,

3) . 0-6
T

shows that Z is peaked around k> P = - This will be elaborated
on later,

The Bethe approximation treats k.P ( 12) = Q (12)

_52‘7—3

independent of k, P rather than CP ( r12> . In this approximation,
\

- ' - -

ik.r 2iP.p

B (3, .3 12 3.(3) (2 = =
-~ 8 C (1‘12) _}[d P‘;, d k e e Z T (,Po k, 1'3)
(2m)
_ B (3) - -t -y -
=C <r12> z (’12' Py Ty . (4.19).

This is the Bethe approximation, which revplaces i—- gli simply by a
multiplicative factor CB ("r 12 . We will first use the Bethe approximation
which, because of the above simbplicity, leads to an algebraic solution to the
couvoled equations (4. 11), and reveals transparently some of the features of
the three-body nroblem inQolVéd. We will then use the more accurate but
more complicated Day apbroxiniatior;' ’a'lid dial;-:ﬁss"itﬁ merit; over the Bethe
approximation. :

In the approxiination of eq'. '_(4A.'v19')~. fhe counled eqﬁat_iom, (4.11)
bef:ome. | PR .. ' | . l o

2(3) - 1v1<;13)>+ i (;23,\ B gB';23) z(l) B ";B (:13) Z(Z)
and cyclic permutations

(4. 20)
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Equations (4.20) can be solved algebraically for the Z's in terms of the

N's and {'s, which we know by solving the reference equation (2.4). We get

23V Mpgupy+ngay =1, (0 4u,,-2u, “z3)
Upg Uzt U3 0, F 0, Uy, - 20, U5 0, (4.21)

where u,, =1 -C? =1-CB(:..)
1} 1) 1)
and 1, =Tl(;,,>
1) 1)

(i)

We can insert these Z ' into the integral (4. 12) for the three-body energy.
Take, for instanée, diagrams of the type shown in fig. 6. These

diagrams, summed over l,m,n, give,

- 2 /’.q e (1) = g RN .
W=p Jf‘n_ r,) Bl r23> Z (rl r, r3j ar, d'\‘Z per partlcle(é.zz)

where particle 3, instead of the center of .maas, is kent fixed. Note that one
of the (1's in eq. (4.12) is cancelled by integration over the coordinate of the
fixed varticle 3. The result (4. ZZ) is provortional to Oz. as exvected on
physical grounds for three -body clusters.

Whereas we can evaluate Zu) from eq. (4.21) and integrate (4. Zi) for
W, it is useful as shown by Bethe, to study the solutipn in certain lifniting
cases using simplifying approximations, ‘toigain some insight into what is
going on. Let us, as before revolace 3 = .‘l:gn > by unity since the hole state
momenta are small. Let us also take 7 (x-': j) and 1C B ( ;ij ) to depend only
on the magnitude of rij' 'I?his is reasonable as'e‘xplained before since we

are using averages over the momenta anyway and the angular averaging

will pick out only the S-wave parts. (BBP show, 4 for instance, that N and {
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Thus,

for L £ 0 can be represented by a function of the type -?.-;'-1-5 outside
the core with a somewhat larger value of v than the true value). In this
approximation and in uniform nuclear matter, the functions g, xm and Z(i)-
all 'depené only on the relative separation distances rij' since no directions
have been nicked out in svace.

Now take the case when all three particles are far apart, i.e. rij - ®,
Then CB(rij)-. o andu (?ij\)-'l. Thus,

(3) _
z Moz ¥ M, (4. 23)

and
\

- _ !

W Wy = "sz N(r12) &(*23) {"(”zs\) T 99 w2
It is easy to see that eq. (4.24) is just the sum of the third order direct
diagrams in fig. 3a and 3 b. Kohlerz3 had obtained a similar form for the
diagram 3b. The fact that W becomes just the third order energybfor large rij
is reasonable since at these distances the votential is weak enough to give a
goud convergence order by order and the third order clearly dominates the
three-body energy. To see the behavior for amallgr values if rij » let us

look at the case

r =r =Er

12 23 13

then Ujp SU;3 =, =0 =1 - C .a‘,nd n 12 = ",23=j”13 =N

1) _2n 29  (4.25)

Z "3 .2u " 1+2¢

If the distances rij are very small (within the core radii) then = 1, and
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2. 20 (4. 26)
This clearly corresponds to the very strong potential in the core region, and
hence represents all orders of verturbation. This result is a third of eq. (4. 23)
which represents only the third order contribution. This diminution by a
factor of 3 in the core region, in going from third order to all orders, may be
partly understood thus: When two nucleons are within a core radius apart, the
infinite core comnletely destroys the wave function in that region and leads
to a large { and large energy. When three nucleons are all within each other's
cores, an uncorrelated treatment will give three times this energy since
three such nairs are involvéd. This is what happens in third order. In actuality
however, we can do no more than destroy the wavefunction once when all
the nucleons are close together, so that a fully correlated treatment
(full three-body energy to all orders) will‘give only 1 of the third order

3

energy. Actually, when all r,, < ¢, this solution is exact, since under these
ij

[ '*—-

conditions, ( ij = nij = g; f = 1 so that the original counled equations

(4. 11) become

(3) (2) )

Z =2+ 2Z + 2

However, when all Tij< the three narﬁ;icle's are in identical situations and

(1) @) = 2(3) = g— . ;.This solution, simple and

< ¢, should be remembered in the context of the Day

hence by symmetry 2 = Z

exact for all r
B §
approximation as well,

Finélly. for emall {, one can expand (4. 25) as v

(1) 271
2 =TT

= 2n -ang+8nc.16nCc3+... (4.27)

39




C

This series represents the contribution of three-bodf diagrama order by
order. It is clearly not convergent for { > -Zl- For large inter-particle
separations, C(— o, and hence the series converges rapidly, so that a few lower
order diagrams suffice for the pure long range vpart of the force. Within the
hard core, however, {= 1 and the terms in the expansion (4.27) keep
increasing although the whole series has a closed sum of —259- . Even for any
reasonable "soft' repulsive core, ( is still a little greater than %—- and the
perturbation expansion above will not converge. (See for instance Sorung and
Bhargava's work 8 using the Bressel notential 7 with only a finite core of
about 650MeV})

Thus we see many of the anticipated features of the tkree-body problem

in this simplified discussion. More exact results can, of course, be obtained

from eq. (4.21) and (4.22). We note at this point that eq. (4.22) may be

written as 27, ~ .
w = / A
m=" 8 (Ta3) Fy(Ta3) 9755

where )
F_(r,. )= n / / N (r,,)+ n(r \ ar
a (F23)° " (M12) (r23) * "(F13) I (4.28)

Similarly, for the full three-body energy

2 [ , |
W= _[g F23) F1 (29 9723

d ; (1) r : \
F = N . T
where F (T,4) M7y 27 (Fir Tape Tys) 4Ty (4. 29)
. 2 F .
1 , using
: (i) Fa
the more accurate Day approximation for the Z'', which we will ~ outline

We will give graphs of the functions F.,F, and their ratio £ =

now,
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Day's Approximation

Day approximates the action of the operator -:- gij by eq. (4.18)
as compared to the simnler multinlicative apnroximation by Bethe in eq. (4.19).
It is clear that Day retains more of the ooerative character of -é— gij , and

(1)

as we shall see, his resulting solutions for the 2 are congiderably better.
As the Z( ) are functions only of the interparticle distances, we can rewrite

the Day approximation (4. 18) as

L g r r r (3) '/ r roo)
e B12 ( 12° T23 13) J120 T230 T13)
- D e (3, " I‘
= €7 (r),) 2 (c, o3 F13 (4. 30)
: -+ -+ -
where rfz3 and r'13 corresnond to the coordinates c, 03. and r3 in the

eq {4.18) , and their meaning can be read from fig. 9. The Day approximation
thus differs from that of Bethe, in that it ''shrinks'' the triangle of the

varticles in addition to multinlying by § 12) Note that for T2 < ¢,

(3) _ .3, Do a
Zg -é (eq. 4.17), and f\rlz:’ 1

Substituting (4. 30) into the coupled equations, (4. 1)) » We get,

2(3) (l) :
(F121723)%13) = ™ (zs) UGB ("zs)) Fiar T23,713) ¥ T23<

(1) / ) >
2 (‘712', CoTy3) M7 C
-
ifr é\' '
1z 23 13) 13 < €|

(z)/s ‘ o
z (12")'3';‘__) i r

> g
23" c (4. 31)

These equations correspond to eq. (4. 20) of the Bethe approximation, and

(3)

unlike the latter, cannot be solved algebraically, since Z'~’ at one set of points
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(2) (1)

at other points on the "reduced triangle. " Of

(m_ 2
3

) X .
rlz s> ¢, thenr 13 and r23 are necessarily less than c, so that .

Z( ) {/ C, r2'3. r13> = 7, and this again leads to an analytical solution of (4. 31).

But, for the general case where at least two of the r, i are greater than c,

is coupled to Z and Z

course, if all r, ij < ¢, then the solution is Z . Similarly, if only

one has to resort to a numerical method. The method involves substituting
() @, 1 . »

for the 2 \rlz. Cy r13> and Z K 12* D3° ca in eq. (4. 31) from the

other two coupled equations, which leads to noints on a smaller triangle.

If this is reveated successively, you eventually reach (in general) a triangle

where at least two of rij < €, when the solution is known. Day has calculated

this numerical solution for several values of rij' However, the method does

not work for some ingtances such as when all three vnarticles are collinear,

in which cases you never reach a stage when two of the distances are less
than c. In the more general case, the numerical solution is laborious.
Consequently, Day has suggested that equations (4. 31) be replaced by

an approximr ate form, which is amenable to an analytic solution, The wave

(i)

are large only when the rij ~ c, and all the ('s and N's

droo off ravidly for rij > c. Butif T2 is not much larger than c, then

Thus, one might try to reﬁlace eq. (4.31) by

. ‘
r ~ T and r ~ 7T

13 13 23 23’

(3)
2? (T120 230 ’13) "(zz} +”( 3\ C (zz) m(lz 23’r!3)1fr L
| " | (1)612' € 7y3) i rps
- €D<r13) Z(z) (i'xz’ Tyye r13) ifr,<c
2@

Cflz' r, g c) ifr . > ¢ (4. 32)
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These equations are amenable to an analytic solution. This simply involves

(1) (2)

substituting for Z and Z from the other two coupled equations when

you get two of the r, ij to be equal to. One can then exploit symmetry pronerties
_ @) W, L)

N and Z ,c.r}- ( Ty c/\_,

such a‘s’acZ( )(c, r » C)
23 / s

23. c / c’

to solve the set of three equations imnolied in (4. 32). The result is

(1) . . L1 \
20 Ty Ty T3 R TR LI TR PTY R TY LIPS 3P €231
-n ft; +C + lC; 'é'g ."! ) v"+:’"‘§“ C..:C A .!:../g st +'C. t Q' | £ L.
230t Y3t b Bt B Gt Bt bt T 1233 23;
(4. 33)
=P 4
with N 13 ) and Cij = \rij)

2
This is Day's analytic solution to (4. 32). Day finds ! that it agrees
véry well with the numerical solution to his original equations (4. 31).
2
Further, Kirson 1 finds that when the analytic solution (4. 33) is substituted

into the right hand side of (4. 31), Athe resulting iterated solution for

7(3) -

/ is very close to the analytic solution. Two of Kirson's

(T12* T23* T13)
graphs comparing the analyuc solutmn (4 33) and its first iteration are

given in fig. 10. Since the ana_lytu; sqlutxon'agrees very closely with its

first iterate and witﬁ the-»tii:r;uericahlpgs‘olﬁtio;:'to the mo;e Ae':é'a'\ctv: equations (4, 31)
evaluated by Day for several sets of- values’of r13’ anci smce (4. 31) 1ts§1f is
only an anproxunatmn,; we wiH— use eg. (4. 3}) for' the Z( ).'. '

This analytic sio‘ljiiAtion‘ by i)a:..y;irs:‘-coxjsi'idéi'abl;‘i better than the 8impler

(i)

solution (4. 21) for the Z First of all, the uhdérlying approximation for

1 . . .
the operator re gij » in eq. (4. 18) is more accurate than the corresponding
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Bethe approximation in eq. (4. 19), Secondly, the Bethe solution has drastic
discontinuities which occur sometimes when one of the rij equals c. This
may be partly understood by considering the solution (4. 21) when all rij < c+.
Then the uij =1 - G?j tend to vanish and the solution approaches the

indeterminate form—oo— , whereas when all rij < ¢, we know the result to be
(1) _2

Z =3 - When T,a and T 4 are less than ¢, the Bethe solution gives
oy | (4.34)

If now s aporoaches ¢ from outside, the above solution is highly sensitive

to the exact behavior of "1 and Q?Z near the core, whereas for r

2 12< €

it is equal to —i—- . There are no such discontinuities in the Day solution
A comparison of the Day and Bethe solutions is given in fig. 11.

Of course, the three-body energy and the function Fa and F1 involve integrals
of the Z(i) and consequently the two solutions give comvarable results since
the.discontinuities do not matter here. But Dahlblom 26 » doing the
corresponding dalculatioh for tensor forces:{see sec.. 6), found that the Bethe
procedure led to great difficulties while the Day method was straight-forward,
Also with central forces, the Day solution is clearly more accurate. This is
especially clear from Kirson's work: If the solution (4. 21) is ﬁsed on the
right hand side of (4. 31), the resulting iterated solution is comnletely
different, in contrast to the behavior of th;e Day solutioﬁ, Fig. 10.

| It should be mentioned at this stage that having obtained the Z(i)
by the above methods, Kirson evaluates their momentum transform and finds

0- 6

it neaked at k, P % —_ This was mentioned earlier in connection with
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eq. (4. 18) and (4. 19), where the function { had to be factored out of the

(1) .

integral for the Zg This factoring was justified only if the { was

1
relatively indevendent of k, P, which is true only if they are less than -

@)

It is therefore gratifying that the momentum dependence of the Z" ' conforms

are used as

to this requirement. Further Kirson finds that if k, P -
input in eq. (4. 19), the resulting Z(ﬂ give an output momentum dependence
which agrees well with the inout.

This compvpletes our discussion of the evaluation §f the three-body wave-

y

function defects Z The Day solution (4. 33) may be used for evaluating
the function F¢, or the more comnlicated exnressions derived in Sec. 5 and 6,

and the three-body energy as defined by equations (4. 29) and (4. 12)

resnectively., We will quote the results after discussing exchange diagrams.

Exchangg Diaﬁrams

The nroblem of exchange diagrams may seem comnlicated inasmuch as
for every direct diagram you can exchange any of the interactions, or ''rungs
of the ladder" in the diagram. However, as is illustrated in the example in
fig. 12, when you exchange an intermediate interaction, the resulting diagram
can be redrawn so that it looks like a direct diagram, with two of the final
momenta _{ and l'-:l exchanged, as comvpared to the initial ordering of the three
momenta. Thus fig. 12a and 12b are equivalent. It is clear therefore that no
matter how many of the interactions are exchanged.- the result would simply

- -

amount to permuting the final momenta 1,‘ m and n. Thus, all direct and

exchange diagrams would be contained in <lmn |T| Imn> , <mln |T| Imn:,

-

inm |T|1mn>, <nml | Tllmn> , <mnl |T!1Imn= and <nlm |T| Imn~ .
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The exchange diagrams, however, carry additional statistical weights

as comvoared to the direct diagrams, if one uses snin-isosnin independent
forces 14. For such forces, each narticle retains its spin-isosnin values

and hence all states on a given vertical line in the direct diagram have the
same value of s, and T 2 although any two vertical lines may have different
svin and isosnin comvonents. However, for an exchange diagram such as

the ones in fig. 12, both the states—l. and r-;u must have the same spin-isosnin
since a narticle from each of these states goes into the other. Thus, the
number of allowed states, and hence the contribution to the energy is

reduced by a factor of 4. In addition, if these diagrams are drawn in the
Goldstone Convention, it can be seen that fig. 12 corrésnonds to only two
nucleon loons, unlike the three in a direct diagram. C;onsequently, according
to the Goldstone rule, there is an additional minus sign associated with fig. 12,
and altogether, therefore, it is multiplied by -.-i-— due to the above arguments.
Similarly, when all three nucleons interchange momenta, as in <mn1| T‘ 1mn>.
there is a multiplicative factor of —';{-1)- since now all three nucleons must have
the same s, and Tz, with only one nucleon loon altogether. These arguments
clearly have to be modified for tensor forces.

But for these statistical factors, the matrix elements <lmn ‘ T ! Imn>
and any one of its exchanges, say. ZLinm |T|lmn> ', are not very different.
Compmare, for instance, the two diagrams in fig. 13 which are corresponding
terms belonging to <1mn|T|1mn> and <lnm |T‘ Imn>> respectively.

For every set of intermediate momenta in fig. 13a there is a term with the

same set in fig. 13b. The only difference is in the final interaction. The
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final interaction has different matrix elements for the two cases, since the

-t -4 —

momentum transfer in the two cases is different by q =m - n. But since

m and n are holes, the average value of gqc = \/T.—E.k €06, and it was

F

14
shown in the context of third order diagrams, that the resulting difference
2

. 1 2 .
is only a factor of about ran i.e. about 6/ .. Therefore, up to a few
percent, the direct and exchange matrix elements of T are equall
. 6 . . . .
It was also shown by Bethe *, that in the approximation of neglecting
2 2 . . .
q ¢ , the inclusion of all exchange terms, amounts to using even angular
momentum contributions only. This has no effect for a Serber tyve attractive
force which acts only on even L states anyway, but it cuts down the repulsive
core effect to only the even L states, sunporting such an assumntion that had
27 . . . .

been made by Brueckner and Gammel in their g matrix calculations.

Several calculations have been made, using the above method for

: N
evaluating the three-body energy by Snrung, Bhargava and Dahlblom 24',

¥

FA
and by Kirson‘1 . Kirson uses the full standard hard-core notential,

including the short and long range parts, to obtain an energy of -5.15 MeV

for the three-body clusters. His curves for the functions F r \, F .r. )\
10723 a | 23/!
and fb /\"r23\, defined earlier are depicted in fig. 14. As anticinated, for
23/ .
largé r23 , all three functions annroach the same value, 1. At small

c .
distances, I:"1 is about a third of Fa’ as exvnected from eq. (4.26). The

curves have been drawn to a scale where Fo (r the corresoonding

23)
function for just the third order bubble diagram is taken to be unity.

The diminution from -38. 35 MeV to -5.15 MeV in going from the

two-body to the three-body contribution indicates that our hoves of
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convergence in nowers of density appear justified. It will be seen in

section 7 that the long-range nart Vi contributes rﬁost of the -5 MeV in the
three-body energy, and that the energy for just the short range nart is a
small ;»ositive amount. We therefore can exnect a four -body energy of much
less than 1 MeV for Vf It will be shown in section 7 that most of the higher
order effects of vg can, on the other hand, be absofbed in the single-particle
ndtential energy U(b).

A more recent calculation by Dahlblom of the functions Fl' Fa and

fb is given in fig. 15. This calculation uses the recent Reid notential for

trinlet states, which Has a hard core of about 0. 52 F and consequently a stronger

attraction outside. The resulting three-body energy is consequently more

negative (about -7 MeV).
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5. Effect of the Momentum Dependence of the g Matrix

We now proceed to a systematic evaluation of the three-body
energy. In particular, we shall take into account the momentum
dependence of g which was mentioned below eq. (4.14) but was then
ignored in the remainder of Sec. 4. To do this, we must go back

to the fundamental eq. (4.12), line before the last. From this,

or from Fig. 16 (which is just Fig. 6 with different features
emphasized) we find, in slightly different notation,

Wi(K,) = JdKldKQ <Ko]ﬁ12‘KJ> <K1 , é\23: K2><K2 Q(l)lKo>(5'l)

Here each Ki stands for the momenta of all three particles;

specifically KO refers to the initial and the others to the two
intermediate states. The final state is of course identical with
the initial. The y\, g, and Z are operators and have therefore
been denoted by a A . The first operator represents

A A Qq .

Ni2 = &2 e (5:2),
i.e. the last interaction and the preceding propagator. The last
interaction is separated from the rest in this manner because the
e here corresponds to the excitétion of 2 particles while "earlier"
propagators correspond to excitation of 3 particles, as explained
in (4.5), (4.6). (5.1) is somewhat more general than (4.12) in
that the momenta in initial and final state are not yet put to
zero. Following Kirsén and the discussion in Sec. 4, we shall

assume that the three-body wave function operatdr Z(l), operating

on the unperturbed wave function {K;> = ﬁg, may be written as
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A
2 )y =2 (g R (5.3)
where @i(xo) is the unperturbed wave function (produce of three plane
waves) and the function Z(l) depends only on the distances between
the three particles, not on the directions of the vectors ?fé, etc.
The problem then is the matrix element of g23. This
quantity depends appreciably on the relative momentum of particles
2 and 3 in state Kl' To see this, we write
A N A
&3 Ky) =e7 23| %1y (5.4

/ 23 is the two-body defect function as defined in Sec. 3,

<>

where

"and the operator e may be written in the reference spectrum

approximation

e=7%- vi (5.5)
As is shown in BBP, ¥ increases with increasing excitation of the
state Kl' Therefore, just because ;, is very insensitive to Kl
(ref. 6, p. 809), g is very sensitive: it increases rapidly with
increasing energy. This is particularly true for the contribution
from inside the corej; we have

4'; -3 ,K]>= {Kl> , Ty le (5.6)

g3 | Kp)- (k2§ r 3| Kl> LA 1, LC (g )
where k23 is the relative momentum of particles 2 and 3 in state
K,. The contribution from the core surface (ref. 4, Eq.(5.28))
is less sensitive to the energy of state Kl, and that from the

long-range, attractive forces is insensitive, viz.
A
€o3 )K1> ~ V(I‘23)‘ Kl> s Tog >> ¢ (5.8)
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A simple approximation was made by Kirson: He replaced g
by its value for the average momentum K23 of/the 1nteracting
particles. He justified this approximation by his finding that
the distribution of the momentum k23 in state Kl is sharply peaked
around its average value of about 0.6/c (ef. this paper above (4.19)).
Hence Kirson puts | _

A

B3] K1) = ea3lkay ays 723) £ (%) (5.9)
where @E.(Kl) is the product of three plane waves corresponding to
the momenta in state Kl’ and g23 is simply a function of r23. If
this is assumed, the integration over K; and K, in (5.1) can be

done immediately and gives
W3(Ko) = éco VL*(rlZ)g2;(r23) Z(l)(r123r23:r31)/. K;> (5.10),

substantially equivalent to (4.12).

Because of the considerable sensitivity of g23 to k23, the
choice of k23 Av in the Kirson approximation is rather critical,
and it is not clear what criteria to use. Bethe has given a more

general solution. He writes
A - —_ ‘
g23' K;> = ng(r23) ﬂ?(Kl) : (5.11)

where P and k are, respectively, the avefage ahd'the relative
momentum of particles 2 énd 3 in thersfate Kl;l The function g
depends on both these parameters, and it is therefore not possible
to effect "closure" with respect to’Kl} Howevér,‘closure is

possible with respect to Ké, and leads to the result
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Wy(Ky) = W3 jd3k, (%) M 12] k) ;| &'z ,K°> (5.12)

<K1 | g"z()) Koy = fd3r12ﬁ3r23 g*Pk(r—ZE}) AC RN
exp 1(p3-p2+2k) (5.13)
<K ’ vu Kl7 jd rio M« *(r 1p) €XP i(p3-p2+2k) r21 (5.14)

Here pl,p2;33 are the initial momenta of the three particles
in state K, and 5?, as in (5.11), is the difference between the
momenta of particles 2 and 3 in the intermediate etate Kl'

Two alternatives are now open. One is to calculate and use
the exact expression for gy, (FZ3); then no further simplification
of (5.13) seems possible. The other is to find a manageable
approximation to the dependence of g on P and k; this is probably
sufficient because the entire three-body correlation contributes
less than 20% to the total potential energy of nuclear matter.

Such an approximation is suggested by (5.7) and (5.8), together
with (4.5) and the discussion of BBP Sec. 7. The state K, is
characterized by the excitation of only two particles, 1 and 2.
In this case, if kg denotes the momentum of particle 2, (4.5)
shows that in (5.7)

k23:'-; k :Jé‘-k.b
and, kpst + VP ® (5.15)

2 compared with k52 Then, considering the two

neglecting kF
components (5.7) and (5 8) of g and assuming that the contribution
from the core surface has’ an intermediate behavior, it is
reasonable to set

gpic (Tp3) = 81 (rp3) + K78, (tp3) (5.16)
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Here we have used both equations (5.15).

Before (5.16) can be used, it is still necessary to make
assumptions about the nuclear force, as follows:

1. An ordinary (non-exchange, central) force between the.
nucleons, which may include a repulsive core, can be represented
quite well by (5.16). 1In evaluating 81 and 855 the definition of
g should be remembered:

epc (B F@ = vir) Py (F) (5.17)
where 4‘= e % .7 and ‘{/ = d’" Z; is the two-particle wave function
with interaction. 1In practice it is probably best to calculate
8pk by explicit integration of the Schrodinger equation for two
values of K on both sides of the most probable value of k determined
by Kirson (k=b.§§/@), and then to deduce &, and 8o from these.

Such a program is presently being carried out by Dahlblom.zb

If (5.16) is accepted, integration of (5.13) over K, is

28. The factor k2 multiplying 855 ON the

straightforward for gl'
other hand, can be combined with the*\’matrix element, if we gssume

[P35 - P, << 2k (5.18)
which is generally a good approximation since p3 and p; are <‘KF'
The result is then 29

Wy(K,) = j a¥ry) gy [17(r10)8, " (rp3) - £ U2y (ryp)

gz*(r23X]. (1) (r125?é3;r31) | (5.19)

Since both q_and.z(l) are esééntially independent of the momenta
‘;i;sé,ﬁg, this result may simply b¢ mg;tip1ied by‘P2 to give the
energy per particle. The effect of nbn—vanishing momenta'ﬁi;gé,ﬁg

can be treated approximately, using the method of Kirsonlg.
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Eq. (5.19) can be further simplified. Since g depends
only on r23, we can integrate over the position of particle 1,

i.e. overt?iz, keeping r23 fixed. This yields

Fy(ry3) = Jd3r12 wL*(rle) z(1 )(r12 ro3T31) (5.20)
Fg(r23) = ‘%fd3 12( V rl (rl2)) Z( )(r125r23:r3l) (5.21)
Wy(K,) =jd ro3 [8"(r3) Fylrpg) + &y (rpg)Fp(rpg)]  (5.22)

The function Fl is identical with the F introduced in ref.6,

Eq. (5.1) which was there shown to be small if 53 is inside the
core and to increase rapidly (by about a factor 3) outside. The
other correlation function, F2, was introduced in ref. 23.

2. A more realistic nuclear force may be considered, in

first approximation, as a superposition of two parts, (a) a Serber

force
WY@ =tv [ YA+ (D] (5.23)
and (b) an additional attractive force acting in the S state only
vy (T) = v (r) P (r) (5.24)

with Y/o denoting the L = O component of the wave function (sub-
scripitse for even L,S for S-State:L The Serbertforce acts in all
two-body states of even L, with L=20 and 2 being the only
important ones, while the need for the force (). arises from the
observed fact 730, 3lthat thennqg;eon—nuelepn potentlal is more
attractive in the ‘1s ‘than :ih',ﬁ’,gin s"t’é:te |

a. If it is assumed that the Serber force v acts only for

e

large r, we can proceed as in (5. 8) and can replace \P(r) by the

ik r

unperturbed wave function 4>(r) = e In this case, (5.22)
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is replaced by 29
= 1 3 3 * *
Wag(K) = 3 fd r1p Sy [ (ryp) + (rl3)] Ve (rys)
(1)
A S ,rl3,r23) (5.25)
Here the first term q{(rlz), arises from the "direct" term in the
-,
Serber force, ¥ (r) in (5.23), while Vl(rlS) arises from the

exchange term, *’(:;). But Z(l)is clearly symmetric in Tio and rl3,

therefore the two terms in the bracket of (5.23) give equal

contributions, and the Serber force gives exactly the same result
as an ordinary force. This is in accord with the discussion at

the end of Sec. 4.

It 1is then possible to drop the assumption that Ve acts
only at long distances r, and to assume instead
A ’ 2 " >
ve V(@) = % [ee1(r) + Pap(r) ] L) + $(F) (5.26)
in analogy with (5.16). The result is exactly (5.22).
b. The S-state force'(5.24) is somewhat more complicated.
Assuming, again in analogy with (5.16),
- 2 ’
vs(2) Yolr) = [e1(r) + ¥Pegp() ) ¢ ()
P_(r) = 3 (xr), (5.27)

. Bethe obtains

Wg(Ky) = Jd3r23 [gsl(r23) Fsl(r23-) + gs2<?23)Fs2(r23ﬂ,(5'28-)
Fap(rp3) = 37 jd3r12 R LX(R'%”%) - X(R*'%r23)] 2()(5.29)

Fso(rp3) = (4r23)-1fd3r12R-1[w (R-3rp3) -@(R+’5‘r23)J Z(l),(5-30)
2

-~

R = %/ ?12”13/ , R%= %(r12'2+r132) - Tp3
X (%) ﬁlo(y) y dy

w (x) =xzt(x) + x(gg}ﬁ. | (5.31)
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3. The tensorlforce-between nucleons 2 and 3'is con-
¢ 32

veniently replaced by the central force which results from i
in second order perturbation theory. This force depends slightly
on k, so that it should be a good approximation to write

8, @) = (g (r) + Ken,(r) ) P (@) (5.32)
with 811 attractive and &po repulsive. Thereby the tensor force
is reduced to the same form as the other parts.

Summary The total nuclear force may be well represented
as a sum of an ordinary, a Serber, an S-state and a tensor force.
The ordinary force may be chosen to include the effect of the
repulsive force in the 1p state and the repulsive core. All
terms except the s-state force reduce to a result of the type

(5.20)-(5.22), the s-state force gives (5.28)-(5.32).
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6. Tensor Forces

6 21 12

and Kirson assume that the

The theories of Bethe~, Day

initial and final interactions in the three-particle ladder
involve central forces, including a repulsive core. Da.hlblorr126
has tredted the case of a tensor force in the initial and final
interaction, with central forpes in all intermediate interactions.
He assumes that the initial and final particle momenta are zero.
Then the force in the 3S-state modifies the two-particle
function<# = 1 into

V=94 ) - " sy, (6.1)
where WLC is the s-state defect function, previously called "
in Sec.l4 and 5, while the last term is thé D-state which 1s

introduced by the tensor force. 312 is the usual tensor operator

S1p = 35 F T T - 7.9, (6.2)

12 2 <12

A
with r a unit vector in the direction r. The contribution of
the tensor force to the three-body energy is written (apart from

a numerical factor)

Wy = jﬂ'\Tl,e €23 z(1)T (6.3)

Because of the spin opérators in 812’ WT is not symmetric in
particles 2 and 3,'in.contra5t to (4.33). Using otherwise Day's

approximation, Dahlblom finds
1T . T e A _
z(t) =Nz L“-'?13‘t%$13?23]—
R ,
- 213 LL‘ - S0 712 ngJ

*H23 (912+ 613 - Gz §a3) (6-4)
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In this expression, § is the wave-function defect due to

central forces in an intermediate state, the same as in (4.33).

(6.4) contains no counterpart to the last term in (4.33) which
arose'there from tﬁe Z inside the repulsive core: The tensor
force inside the core is zero, heﬁce this term is absent in (6.4).
Since VT = 0 for r é, the function ?LT rises only slowly outside
the core, (see the curve u2£°) in ref. 4, Fig.13). On the other
hand §, drops rapidly for r 7> ¢ (sée curve><-o in the same figure).
Hence products like "ng $13 which occur in (6.4) are rather
unimportant: If r23 is small, then rio and r13 are not very
different, and the product 'n?(rlz) s (ri3) is small because we
cannot make rio large while rl3 remains of order c. If r23\f7 C,
we may integrate over r13 essentially independently of Tio} then
again the term y’(rl3) has little influence because it is
appreciable only over such a small volume. Moreover, the terms
n g have small coefficients. Thus (6.4) reduces essentially
to the simple expression '
Z(l)T~ 47&12 - 2’(13 : (6.5)
Dahlblom has confirmed this qualltatlve argument by

calculating

Fp(rpg) = fﬁq T(r, ) Z(l)T(rlz,r23,rl3) Sr, (6.6)
which is analogous to (5 20) and may be used to calculate WT in
(6.3). He finds that for gllfvalueg of ;23, FT is within about
5 percent equal to '

Frpo (T23) “jVL (rle)[” ’L (r10) -2 “"13]‘13 (6.7)

which corresponds to the approximation (6.5). Now this
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approximation does not contairzig s and hence cdrresponds exactly
to the third order of the Goldgtcne expansion. Thus, if the
initial and final interaction are both tensor, the old-fashioned .
third order calculation of the three-body energy is adequate.

If (6.7) is inserted into (6.3), the first term,
‘}LT(rlg)] 2, corresponds to the"bubble" diagram 3a, the second
term to the "ring" diagram 3b. In the bubble diagram, the middle
interaction g23 leaves the states of the two interacting particles
unchanged, viz. b and r, respectively; in 3b, the two particles
are effectively exchanged by the middle interaction, i.e. particle
2 goes from the excited state b to the state m in the Fermi sea,
while 3 goes from its normal state m to a highly excited state
whose momentum is close to b. Hence, taking into account that
(6.7) contains 2 q,l2 - Q,l3’ the effective middle interaction is

2g(ordinary) - g(exchange) =

- 2 Lg(even) + g(oddi) - [g(even) - g(oddi}

= g(even) + 3 g(odd) (6.8)
This is in marked contrast to the case when initial and final
interaction are central: in that case, as discussed in the last
part of Sec. 4, the interaction g23 is purely in even states.

It is well known that the interaction is more attractive
in even than in odd states: The long-range force 1s attractive
only in even states, repulsiyefih iP}ahd'essentially zerd in other
odd states. The repulsive cofe.is assumed to exist in all states.
Hence the three-body energy is~iess aﬁtractive if the initial and
final interactions are tensor than if they are central.
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Tensor Forces at other levels

We have only discussed the case when tensor forces act at
the beginning and the end of the Goldstone diagram. At any inter-
mediate level, we can have a tensor force act twice in succession
on the same pair of particles: this gives an effective central
force which can be treated like a central force, cf. item 3 near
the end of Sec. 5.

Two tensor interactions between two different pairs of
particles, at any two levels? give only a small contribution,
because the average over spins give nearly zero. An exception is
the case of an initial and finai tensor interaction between
different pairs, 12 and 13, which contributes the term 2 n,(rl3)
in (6.5); as Dahlblom has shown, this is due to the fact that the
momenta of the various particles are strongly correlated in this
simple case which is not true in general.

Three tensor interactions, without any central ones, have
been treated by Dahlblom'33 using the OPEP interaction without
modification. This overestimates the interaction because we know
that the l/r3 singularity 6f dPEP must be compensated by other
contributions. Even so, Dahlblom found only abdut 1/2 Mev

contribution.
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7. Single-Particle Potential Energies

We will now discuss the choice of the single-particle
potential U (See A), which affects the value of the g matrix, and
consequently every diagram in the expansion. In principle, of
course, any convenient choice of U which gives a finite g matrix
is permitted, but an educated choice thaﬁ enhances the convergence
of the Brueckner-Goldstone expansion is clearly preferable.

In simple physical terms, the potential U, which is added

~and subtracted from the total Hamiltonian is supposed to reduce

the size of the perturbation H, by absorbing some of the inter-

particle potential energy 2: V- -into the unperturbed H This

would clearly enhance con;:fgenie. In diagrammatic language, the
introduction of U fesults in some additional Goldstone diagrams
besides the pure g-matrix diagrams, and the choice‘of U is
designed to cancel some of the latter by the former.

Thus, one choice of U(b) for "particle"-states3 would be
such as to cancel the third order "particle—bubble" diagfam
(fig.17p) with the corresponding diagram involving U(b). In order
to effect such a cancellation between Fig.l1l7a and l7b'fof a given
value of momenta 1, a and m, we clearly require

u(b) = Z <bn[ g ()] bn> ' (7.1)
where W is the startlng energy as defined in BBP“ and in A .

Now, W, and hence <ibn[ g (W)) bnj;depend_on the states 1, m and a,
so that the choice U(b) eq. (7.1) is not a function of the state b
alone. Thus, the cancellation of .Fig.l7a by Fig.l7b for all

l, m and a, can be achieved only in an average sense, by choosing

-61~




-60-

U(b) as in eq. (7.1) with some typical values of 1, m and a. This

is precisely what BBP do in their choice of U(b) for particle

states. They not only try to cancel Fig.17b on the average, but
also the diagram with the middle g matrix exchanged. Thus, they
choose ‘

U(b) = “Zk '{<bn /g(AE) [ bn>- <Dnl g(AE), nb>} (7.2)
with AE cori'espponding 412> = <m2> = O.GKF2 and {a) ~ yp~t
which are typical values. This choice 1s somewhat modified by
including other third order diagrams of comparable size as shown
by Rajaramanlu.

It should be noted that there is a self-consistency
requirement implied in eq. (7.2) since the g(W) used to define
U(b) itself depends on U(b). BBP define a self-consistent U(b)
according to the above prescription and show that this potential

2, which agrees with

caﬁ be approximated by a guadratic form A + Bb
the exact U(b) in the important range of b = 2 to SF'l. This is
BBP's Reference Spectrum for particle states. Extensive work goes
into the calculation of U(b), ensuring self consistency, and the

reader is referred to BBP and the subsequent work of Sprung 34

10,34 for details.

and Razavy
The BBP choice for the hole-state potential energy U(m)
is similar to (7.2), except for the important difference that the
g matrices are on the energy shell.
U(m) = “§kF{<mn le(w,)| my - (an |g(u,) Inm>} (7.3)
where WO = Em + En' This choice is simpler because it does
not depend on the other particles in the diagram, unlike U(b) in

eq. (7.1) where such a dependence arises because of the off-energy

-shell nature. BBP also show, using an elegant identity




generalized from an idea of Brueckner and Goldman35 that this
choice of U(m) cancels not only the "hole-bubble" diagram, but
a whole sequence of diagrams shown in Fig. 18. There is no
corresponding identity for the particle energy U(b) and the
off-energy shell dependence of (7.2) has to be retained.

We will now show that according to our present understand-
ing of the subject, the choice of the particle potential energy
U(b) above should be modified. As mentioned in Sec.3, at the
time of the BBP work, it was hoped that the Brueckner-Goldstone
expansion converges order by order. If this were so, then the
first order diagrams, using the BBP choice of U(b) and U(m) should
give a good approximation to the binding energy since second order
diagrams don't exist and third order diagrams are cancelled by
the above potential energies. We now know from the subsequent
research described in sections 3 to 6 that there is no convergence
order by order in the g matrix, and that the third order diagrams
cancelled by U(b) are the lowest order terms in an alternating
and non-convergent series of three-body ladders. As equations
(4.23) and (4.26) show, the third order terms are nearly three
times the fuil three-body energy, and therefore by cancelling them
off the BBP choice of U(b) may do mdre harm than good.

On the other hand, the,choice,(7g3) of the hole energy
U(m) is still good because the;diagf§msiinﬁFig. 18 that it absorbs
do not belong to the-three:body 1addéf}s§éu§née qﬁ!;ec. L. This
can be readily seen%bf attemptihgitd;drqw"theldiaéréms in Fig.18

in the ladder notation. Thus, we wili retain the BBP choice of
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U(m) which absorbs Goldstone diagrams not summed in the three-body
energy, but look for alternate prescriptions for the particle
potentlal U(b).

Several choices have been suggested in the literature. We
have mentioned in Sec.3, that the Coon and Dabrowsky choice17
amounts to the BBP prescription. More recently Brandow-l has
suggested that U(b) = O be used. This is appealing not only
because of its simplicity, but because it gives a sizeable energy
gap between particle and hole spectra, thus facilitating the use
of the reference method. (The average value of U(m) is around
-90 MeV.) On the other hand, the Brandow choice does not absorb
any specific higher order correction terms. Thus the problem of
evaluating four-body corrections, etc., is still left open.

Bethe6

has suggested that U(b) be defined so as to absord
the full three-body energy evaluated in Sec.4. In other words,
U(b) should be chosen such that the three-body energy may be

written as

Wy = j/y(i?){ 2 y(o) a3 (7.4)
whgre | > .
y(®) = fn(?)e“"r ar (7.5)
and ‘y(b l 2 is the probability that a palr of’ nucleons is excited
-~

from a state in the Fermi sea to a state of momenta +b and D
(the momenta of the 1nitial hole states have been neglected, and Q}
has been assumed independent of these momenta) 0bv1ously, (7T.4)

is only one condition on the functlon U(b) which stlll permits
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wide latitude in its choice. Bethe6 proposed to set

u(®) = |y(v)] 2 J(d3r23 g1 (0,753)F: (1p3) (7.6)
with F, given by (5.20). At least approximately, this should

12

satisfy (7.4). Using this prescription, Kirson™  and Sprung,

Bhargava and Dahlblom24 have calculated U(b), and the latter

'workers also include to some extent the effect of tensor forces.

(7.6) may be criticized on five counts: 1) It is not
established by any fundamental theory, 2) it is not even proved
to satisfy (7.4), 3) it has a singularity if y(b) = O for some b,
4) Sprung gﬁ_gl?u. found that for b slightly greater than kg,
U(b) tended to become smaller than U(m) for states m slightly
below kg, thus giving a "negative gap" in the energy spectrum.
They arbitrarily removed thisbunacceptable negative gap. 5) In
three-body ladder diagrams, all three nucleons are interacting
with each other, and it is therefore somewhat artificial to treat
this effect as a single particle potential on one of them.

A more systematic definition of U(b) has recently been

given by Bethe.29 He starts from our eq. (5.13) and finds
0) = [30)] 7 [@rpy epm(rag) Ty(rg) (7.7)
_ 3 . 1
Yy (rp3) = jd 1o Jo(brlz)z_( )(rlz,r23’r31) (7.8)

For the values of b which are most important according to Kirson,
viz. b = 0.6/c, rl2jo(br12) has its peak at abcut the same value
of ri, asrt(rlz); then’Yb(r23) is proportional to F,, eq. (5.20),
and the new definition (7.7) of U(b) reduces to the old one, (7.56).
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On the other hand, for small b, j, in (7.8) is =~ 1 80 that Y, is
nearly independent of r23 (while for larger b, Yb increases with
r23); therefore, fof small b, the repulsive contribution from

o3 £ ¢ in (7.7) is not suppressed by the factor Y, : This
automatically eliminates the negative energy gap of Sprung et al.,
discussed as point 4 above. Points 1 and 2 are clearly satisfied
by the new definition (7.7); point 5 of course remains.

The problem about the dénominator y(b) is removed by
remembering that the initial interaction may be alternatively
tensor or central. Then it can easily be shown that a suitable
definition is

2 n
U(o) = Yo (B) U (B) +yg (0)Ug(b)
Yoo (b) + yg° (b)

(7.9)

where yc(b) and yT(b) are the expressions (7.5), calculated
respectively with the»defect func’u:.ions"'tc and ?lT for central and
tensor forces, and Uc’ UT are defined correspondingly. The
denominator of (7.9) does not vanish for any b, so that criticism

3 above is now also taken care of.

Multi-particle clusters

Rajaramanl3 has emphasized the usefulness of defining a
U(b) in order to absorb the principal effect of many-body clusters.
His argument runs briefly as follows: Consider all three-body
ladders to be divided into the three groups as suggested in Sec.3:
(1) those involving &gy ¢ only, (1i) those with v, only, and

(iii) those mixed in g, and v, . TFor class (1), we expect the
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four-body energy to be much smaller than the three-body energy
and so on, because of the short-rangedness of fhe force (fc3< 1).
The class (ii) diagrams are similar to higher Born terms in Vs
and should be very small since even the second Born term vzgyﬂjis

11,12 qpis then leaves diagrams

only 2% of the first Born term.
of class (iii) as the leading contributors to the four-body energy
and larger clusters. In fact, even for the three-body energy of
about -5 MeV, we will show that the dominant contribution comes
from a diagram of this class.

Now, for any typical potential, such as the standard hard-
core potential, the matrix element <k fv Ko;> is strongly
dependent on the momentum transfer q—k ko, although the diagonal
element <k 1 v, ,k> is relatively independent of k. A graph
of '<k} &} koy for ko = \fﬁfgikF is given in Fig. 19, and shows
that a typical off-diagonal matrix element is about 1/7 or less,
of the diagonal one. This, for instance, is the reason why the
second order term in Vs namely v gy , is only 2% of the first

le &

order ka The former éontalns twd off- diagonal matrix elements
compared to the diagonal flrst order term. On.the other hand, the
dependence of gg On the momentum transfer is not strong.

From this, we would expect that the most important diagrams
of class (iii) should involve dlagonal elements of Vs A diagonal
matrix element in a Goldstone dlagram corresponds to "bubble
interactions." Thus, we would expect a dlagram of the type in
Fig. 20a, to be larger than the,one;;n;QOb although both belong

to class (iii) and are four-body terms. In addition, a diagram
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with a bubble-interaction contains one less excited particle, and
hence smaller energy denominators, which also enhances its
importance. It should be noted here that if one uses a Serber
force for v  instead of a Wigner force, then the exchange of the
bubble intefaction is also important. The best way to take into

account diagrams of the type in Fig. 20a with exchanges, is to

absorb them into the single-particle energy with a potential

Usong(®) = z <bn| V. ’bn> %<bnl ve )nb> | (7.10)

wWk
The factor of % in front of the exchange term arises for spin-
independent forces because of the statistical weight arguments

. -
given earlier™ ., For Serber forces, of course,

.<bn |v, )nb) <bnf bn> (7.10a)
éﬁ states b and n agree in spin and isospin.

It is worth noting that three-body ladders can have at most
one bubble interaction, so that the only diagram of class (1i1)
with a diagonal Vs is the third order diagram in Fig. 21. An
estimate of this &iagram, along with its exchange using a typical
value of b, gives about-—5:MeV While fhis is only an estimate,

it reveals the domlnance of such diagonal v terms in the three-

,,

- body energy. Accordlngly, Ra,jaramanl3 propdésed to use only the

long-range bubble terms ln _the deflnltlon of U(b). However, if
this were taken llterally, thls would enhance the trouble found
by Sprung et al and 1lsted as crlticism, p01nt 4 avbove. The
new Bethe prescrlptlon (7 7) or (7 9) also emphasizes the long-
range force acting on highly excited states b, and is therefore
acceptable from the point of view of Rajaraman.
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Since Rajaraman has shown that bubble interactions
involving Vs give the main contribution to the many-body energy,
we may expedt that the use of (7.9) for U(b) will absorb a major
part of these many-body clusters. The prescription for nuclear
matter calculations is then the same as has been used in the past
by Brueckner's group and others, viz:

Calculate the 2-body g matrix from the integral equation

g[ mn> = vl mn> (27)” jd3b v | ab7

, : , D |
T(a) + T(b) ¥ U(a) U%g) 2 E(m) - E(n) <ab’ g/mn> (7.11)

where T(a) is the kinetic and U(a) the potential energy of the
particle state a, and E(m) the total energy of a hole state m.
Similar prescriptions hold if the initial state includes one or
two particles rather than two holes. Calculate U(b) from (7.9).

- Summing the diagonal elements of g, we get the total, two-
body nuclear energy. If now the denominator of (7.11) is expanded

in powers of U(a) + U(b), the term independent of U will give the

1 The term

two-body energy according to Brandow's prescription.
linear in U(a) + U(b) will give the three-body energy, because
U satisfies (7.4). .The remainder represents the part of the
multi-body energy which we caﬁ:take into account by our simple
scheme. This remainder theﬁiis the only term-by which our
prescription differS“frém Brandéw's if both are*consistently
carried out. Since the potentlal U(b) is- llkely to be negative

for all important 1ntermed1ate states, our prescription will
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provide more attraction than his. This will be especially
important for the low particle states, with b slightly above KF’
which are reached mostly by the tensor force. We guess that the
effect of putting U(a) + U(b) into the denominator of (7.11) may
be about 1-3 MeV. This attraction is, however, already contained

24

in such calculations as that of Sprung et al.” , so that it cannot

be invoked to give a larger binding energy than previously found.

;70-




£\

Acknowledgements

One of us (R.R) is indebted to Dr. Ben Day for
useful conversations and for his cooperation in tailoring
this work along with his preceding article so as to

supplement one another.

-71-




10.
11.

i2.

13.
14.
15.
16.
17.

References

B.H. Brandow, Phys. Rev. 152, No.3, 863 (1966)

K.A. Brueckner and C.A. Levinson, Phys. Rev. 97, 1344 (1955);
K.A. Brueckner, Phys. Rev. 97 1353 (1955)

J. Goldstone, Proc. Roy. Soc. (London) A293, 267 (1957)

H.A. Bethe, B.H. Brandow and A.G. Petschek, Phys. Rev. 129
No.1l, 225, (1963) Henceforth referred to as BBP

R. Rajaraman, Phys. Rev. 131 , 1244 (1963)
H.A. Bethe, Phys. Rev. 138, Vol.4, B304 (1965)

Such potentials have been suggested by C.W. Wong, Nuclear

Physics 56, 224 (1964); C. Bressel et al., Bull. of Am. Phys.

Soc. 10,584 (1965); R.V. Reid, (private communication).

Calculations using such soft cores have been done by D.Sprung
and P.C. Bhargava, Nuclear Physics (to be published).

Ben Day, Rev. Mod. Phys. (preceding article)
M. Razavy, Phys. Rev. 130, 1091 (1963)

S.A. Moszkowski and B.L. Scott, Ann. Phys. (New York) 11,
65, (1960)

The dependence of d on k_ and Po’ along with several other
features of the two and three body problems is discussed by

M. Kirson, Ph.D. thesis, Cornell University, Ithaca N.Y.

R. Rajaraman, Phys. Rev. (to be published)

R. Rajaraman, Phys. Rev. 129 No.1l, 265 (1963)

T. Hamada and I.D. JohnSton,fNuClear Physicstég,A383 (1962)
K.A. Brueckner and K.S. Masterson, Phys. Rev.';gg, 2267 (1962)
G.E. Brown, G.T. Schappert and C.W. Wong, Nuclear Physics 56,
191 (1964)

-72-




18.
19.
20.

2l.
22.

23.
24,

25.

26,
27.
28.

29.
30.

31.

S. Coon and J. Dabrowski, Phys. Rev. 140, B287 (1965)
N.M. Hugenholz, Physica 23, 533 (1957)

L.D. Faddeyev, Zh. Eksperim i. Teor. Fiz. 39, 1459 (1960);
Dodd. Akad. Nauk SSSR 138, 565 (1961). English translations
in Soviet Phys. -JETP 12, 1014 (1961) and Doklady 6, 384
(1962) respectively.

B.E. Day, Phys. Rev. 151, No.3, 826 (1966)
This is the BBP spectrum described in A. Briefly, we will use
it in the form E(b) = ,, (b%) + A, for b> ky and E(n)
l*n2 + 81 for n < Ky with & defined by Ay-py = AKZ.
H S. Kohler, Ann. Phys. (N.Y.) 12, 444 (1961)

D.W.L. Sprung, P.C. Bhargava and T. Dahlblom, Physics Letters
21, 538 (1966).

All these formulae are valid only if g may be written as a
function of r23 alone. For a more general treatment see
sections 5 and 6

T. Dahlblom, (to be published) in Nuclear Physics
K.A. Brueckner and J.L. Gammel, Phys. Rev. 109, 1023, (1958)

The asymmetry in K; and K, is arbitrary. It would be equally
possible to let g depend on the momenta in state K2 3 then
closure with respect to K1 could be accomplished. However,
Kl is more simply defined by the two-body'functiOn YLl while
K2 requires analysis of the complicated.3-body function 2.

H.A. Bethe, Phys. Rev.. (to ve published)
P. Noyes, Conference on Nuclear Forces and the Few-Nucleon

Problem (London 1959), P Noyes and T. Osborn, private
communication (1965)

R. Reid, Cornell University thesis (1967), to be published
in Phys. Rev.

-73-




32.
33.

34.
35.

G.E. Brown and T.T.S. Kuo, Nuclear Physics 85, 40 (1966)

T. Dahlblom, K.G. Fogel, B. Quist and A. T8rn, Nuclear
Physics 56, 177 (1964)

M. Razavy and D.W.L. Sprung, Phys. Rev. 133, B300 (196%4)
K.A. Brueckner and D.T. Goldman, Phys. Rev..1ll7, 207 (1960)

-Th-




Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig.
Fig. 12.
Fig. 13.

Figure Captions

S-wave part of the two-body defend function for low
relative momentum.

First order diagrams.
Third order direct diagrams.

Two fourth order diagrams. Diagram (a) contains one extra
independent hole line as compared to fig. 3b, while
diagram (b) has an extra particle line.

A fourth order term represented in (a) the Goldstone
convention, and (b) the Rajaraman convention.

A typical three-body cluster term belonging to

<}mnl T llm%> .

Two "three-body ladder" diagrams which have no Goldstone
analogue.

Two Goldstone diagrams in third order, which are not
contained in <lmn\ TI 1mn> .
Triangle formed by the three particles in coordinate space.

Two graphs due to Kirson12 comparing Day's analytical
solution (solid line) and its first iterate (dashed line).
Graph (a) is for all rij = r while graph (b) has ry3 =

]r23—r121 and r,, = 1l.5c.

11. A comparison of the Day and Bethe solutions, exhibiting

the strong discontinuities of the latter (solid line) as
compared to the former (dashed line). The graph is drawn

for ryp = l'.5c,_r13 = }r23-r12j .
An exchange diagram represented in two equivalent ways.

Comparison of a direct diagram belonging to <imn }TI lmn>
and an exchange diagram belonging to <§nm] T‘ 1m€> .
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Fig. 14. A graph of the functions'Fa, F, and f, defined in text,

] b
for a standard hard core potential 12.

Fig. 15. The functions F,, F, and f, using the Reid potentiall
for triplet states.

Fig. 16. A three-body diagram. K., K, and K, each stand for the
momenta of all three particles at the respective stages.

Fig. 17. The third order "bubble diagram" and the third order
U-diagram. Goldstone3 suggested a choice of U(b)
designed to cancel these terms with one another.

Fig. 18. Diagrams showing the absorption of a whole sequence of
terms by the choice of the hole potential energies U(m)
on the energy shell.

Fig. 19. Dependence of the long-range force matrix elements on
the momentum transfer.

Fig. 20, Two four-body terms. Diagram (a) contains one diagonal
ve matrix element while (b) has two off-diagonal ones.

Fig. 21. The long range "bubble" diagram which dominates the
three-body energy.
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