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Abstract 

Thorium forms a tetragonal lower hydride of composition ThH2. 

%ydrides ThH2, TM2 and ZrD2 have been studied by neutron d i f f rac t ion  i n  

order t ha t  hydrogen positions could be determined, 

isomorphous, and have a deformed f l u o r i t e  structure,  

distances i n  thorium hydride are unusually large, as i n  UH3. 

The 

The hydrides a re  

Metal-hydrogen 

Thorium and zirconium scattering amplitudes and a revised scat ter ing 

amplitude f o r  deuterium are  reported. 

Introduction 

ThH2, discovered during X-ray study of the thorium-hydrogen system, 

and ZrH2 (Hagg, 1930) have axes which suggest that they are isomorphous 

/ with the  reported tetragonal structure of !l%% (von Stackelberg, 1930). 

Though ThC2 i s  now known t o  be monoclinic (Hunt and Rundle, 1950) the 

tetragonal l a t t i c e s  might be interpreted as suggesting H;! groups f o r  these 

hydrides, making t h e i r  structure a matter of considerable interest. 

* l h r k  performed under contract with Atomic Energy Codss ion .  
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This paper* presents X-ray evidence f o r  the  existence of ThH2, the  

la t t ice  constants and metal arrangement obtabed by X-ray diffraction, 

and hydrogen posit ions as determined f o r  both ZrH2  and ThH2 by neutron 

diffraction. In  addition, the magnetic suscept ibi l i ty  of ThH2, which 

has abea r ing  on the presence of H2 groups, was examined, 

Phase Determination 

Thorium has been reported t o  react  with hydrogen t o  f o r m  a phase o r  

phases varying i n  composition from about ThH2 t o  ThH4 (Winkler, 1891; 

Iktignon and Delepine, 1901; Sieverts and b e l l ,  1926). However, the 

earlier evidence f o r  any d i s t i n c t  hydride o r  hydrides was slight, and 

most of t he  earlier investigators favored the  concept that  the system 

was of the  so l id  solution type, 

i n  the  older  literature, 

a cubic s t ructure  unrelated t o  t h a t  of thorium metal. 

ward, during a systematic X-ray s t u e  of the thorim-hydrogen system, we 

found a lower hydride. 

ZrH2, and hence was presumed t o  ThH2. 

Table I confirm t h i s  fomula. 

No s t ruc tura l  information was available 

Zachariasen (1944) found a higher hydride having . 
Shortly a f t e r -  

It appeared tetragonal, and isomorphous with 

The composition study reported i n  

The limits of s o l u b i l i t y  of thorium and hylrogen i n  the hydride are 

uncertain since, due t o  the  small par t i c l e  s ize  of the hydride, precise 

determinations of t h e  l a t t i c e  constant as a function of composition are 

impossible. However, it appears t h a t  large changes in the l a t t i c e  

we The publication of the data and conclusions i n  t h i s  paper have been 
delayed considerably because of declassif icat ion problems, 
data were obtained and most of the  analysis performed during the middle 
of 1948 o r  earlier. 

All of the  
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Table I 
Thorium-Hydrogen System 

5 

Phases and In tens i ty  

Tetragonal 

Tetragonal 

Tetragonal (strong)-Cubic (very weakla 

Tetragonal (medium) -Cubic (medium) TM2 . 49 
*m2,56 Tetragonal (medium) -Cubic (medium) 

m2096 Tetragonal (weak)-Cubic (strong) 

m'30 12 Tetragonal (weak) -Cubic (strong) 

Cubic 

Cubic 

aZachariasen found that the higher hydrl.de w a s  a cubic phase. 

constants do not  occur, and presumably nei ther  so lub i l i t y  is great. ThH2 

I& be regarded as it d i s t i n c t  compound. 

Preparation of Saw les. The thoriumhydrides are quite sensi t ive 

t o  oxidation. 

pure thorium metal. was reacted with carefully purified hydrogen within 

a glass  bulb equipped with attached thin-walled g lass  capi l lar ies .  

To prepare samples f o r  X-ray study a known quantity of 

A 

measured volume of hydrogen was admitted t o  the system a t  known pressure 

and temperature, the  reaction i n i t i a t e d  by h e a t i w  t o  4OO-Lf;O0 C, and the  

excess hydrogen measured and evacuated. 

http://hydrl.de
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Thorium metal forms a powder when reacted w i t h  hydrogen. The 

powdered hydride of  known composition was shaken in to  the capi l la r ies  

vhich were then sealed off  the bulb a d  used f o r  the X-ray studies. 

The hydrides of  lower compositions were made by removing hydrogen 

from the higher hydride at about 5 7 5 O  and a high vacuum. 

renoved was measured by water displacement from a Mariotte bott le.  

The hyckogen 

Because of the higher coherent sca'ttering amplitude and lower spin 

diffuse scat ter ing f o r  deuterium, deuterides ra ther  than hydrides are 

preferred f o r  the  neutron d i f f rac t ion  studies. A sample of ThH2 was 

studied, however, and th3.s provided an in te res t ing  check on the TQ 

conclusions, even though the t w o  d i f f rac t ion  patterns were completely 

different.  

so that s l i g h t  surface oxidation was not so important as in the  X-rag 

studies. 

vacuum system but were transferred t o  sample holders i n  a dry box under 

carbon dioxide. 

The deuterides were prepared and used i n  qui te  large amounts, 

They were prepared f r o m  thorium and zirconium metals in  a 

The thor ium mtal was pure Ames = t a l  turnings while the  

zirconium was Foote Hineral Co. metal reduced t o  f ine  turnings (the massive 

m e t a l  would not m a c t  under the  conditions of t h e  ewerimant). 

The deuterium for  the t ho r ium deuteride was prepared by passing t h e  

vapor from 99.3% RO, obtained from t he  A.E.C., over uranium turnings at 

700'. & 

the preparation of zirconium deuteride, 99.5% deuterium gas supplied by 

The method is d\?g t o  Newton (Sped-, Newton et &., l9U). 

the Stuart  Oxygen Company was used, 

the deuterium was assuredby reacting it w i t h  uraniurnturnings a t  2500 

and subsequently releasing it by heating the  UD3 thus formed t o  500°. 

In bath preparations tne  pur i ty  of 
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Structure De_temination 

Lattice Constants. X-ray powder diagram of ThH2 indicate it t o  

be body-centered tetragonal, % = 4.10 2 0-03, c =: 5.03 

e 
c 

his axes are transformed from face-centered t o  body-centered, and changed 

f ron  j$X t o  Angstrom imits. 

0.03 51, Z = 2, 
-0 

9.20 g./cc, 

4.4h9 ? 0.003 8, i n  good agreement with those of Hagg (1930), if 

Our l a t t i c e  constants f o r  ZrH2 a re  ~ = 3 , 5 2 0  2 0,003, 

"4 

A few very weak maxima not explained by the  above unit were noted 

i n  the ThH2 X-ray pattern, and some of these have not been explained i n  

terms of impurities. Since ThC2 was found t o  be only pseudo-tetragonal 

it was feared tha t  t h i s  n6ght also be the case fo r  ThH2. 

extra ref lect ions on the ThH2 diagram were not related t o  the more 

numerous extra  ref lect ions of ThCz, Moreover, the neutron d i f f rac t ion  

data leave no doubt t h a t  ZrH2 and ThH2 are isomorphous o r  very nearly 

isomorphous with respect, t o  both metal and hydrogen positions. There 

is neither X-ray nor neutron d i f f rac t ion  evidence t o  indicate  anything 

other than the above body-ceztered l a t t i c e  f o r  ZrH2. 

the  extra l i nes  i n  the  ThH2 pat tern a re  due t o  unidentified impurities. 

However, the 

We presume that 

k g n e t i c  Susceptibil i t ies.  As noted above, the poss ib i l i ty  must 

be considered that ThH2 and Z r 3  contain H2 groups, 

are materially greater i n  t h e  hydrides than i n  t h e  metals, and the  metal 

arrangements are different i n  the  mztals and hydrides. 

Metal distances 

It seemed unlikely 

t ha t  such large changes could be produced by the solution of H2 molecules 

in the metals. Consequently, if H2 groups w e r e  t o  exist ,  it seemed 



l i k e l y  tha t  they would do so as H2: o r  H2- ions. 

would contain an unpaired electron, and should lead t o  paramagnetic 

In e i the r  case the ion 

dihydrides, 

!l"2 w a s  examined and found t o  be diamagnetic. Our zirconium metal 

contained sufficient i ron  t o  render suscept ib i l i ty  measurements value- 

less. We have not examined the  suscept ib i l i ty  of ZrHzfurther, but it 

apFeam l i k e l y  t h a t  ZrH;! is a l so  diamagnetic. 

Hydrogen Positions i n  the Hydrides. TbHzI and ZrD2 have been 

studied by neutron d i f f rac t ion  using t h e  apparatus described by WoUn 

and Shull (1948). 

was diffracted by the  polycrystall ine samples. 

pat terns  are shown in  Figures (1) and (2). 

t o  be seen i n  the  pat terns  f o r  ThH2 and ThD2, and this is  a consequence 

A monochromatic beam of  neutrons of wavelength 1.057 8 
The resul t ing d i f f rac t ion  

A pronounced difference is  

of the  reversed phase of scat ter ing f o r  hydrogen re la t ive  t o  t h a t  fo r  

deuterium and thorium. 

pat tern i s  t o  be noted and t h i s  is caused by t he  very large nuclear spin 

The very high d i f fuse  scat ter ing i n  the ThH2 

incoherence which characterizes hydrogen scattering. This is very much 

less in  the case o f  the deuteride, The ZrD2 pat tern is verg similar t o  

that of ThDz aside from some in tens i ty  differences caused by scat ter ing 

amplitude differences. 

All ref lect ions oberved are accounted f o r  by t h e  body-centered, 

tetragonal lattices obtained by X-ray diffraction. It is t o  be noted 

t h a t  without the  neutron d i f f rac t ion  data it would be unsafe t o  assme 

a body-centered set of p o s i t i m s  f o r  the hydrogen atoms. 

The metal atams can be placed a t  000 and # without l o s s  of gen- 

erality. There are then five possible sets of body-centered positions 
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f o r  hydrogen atoms. 

I 000,g 

The s t ructure  proposed by Stackelberg (1930) f o r  ThC2 is  not b a y -  

centered, but a similar s t ructure  with 112 groups a t  random along p g  
anc! fig i s  bodpcentered, and has heen considered. This s t ructure  i s  

eliminated by consideration of (002) alone, irrespective of  the  H2 dis- 

tance assumed, since it makes t h i s  re f lec t ion  far more intense than 

observed . 
Structure I1 is eas i ly  eliminated; 2. gas it makes (002) strong and 

(112) v e r y  weak,con%rary t o  observation. 

i r respect ive of  z since it makes (110) strcmg. 

examination o f  V eliminates it for  all possible values of  Z. 

Likewise, I11 can be eliminated 

A somewhat more detai led 

Structure I provides very sat isfactory agreement between observed 

and calculated in t ens i t i e s  (Table 11, I11 and IV), and structure  IV is  

sa t i s fac torg  i n  the  neighborhood of z = i3 *ere it becomes ident ica l  

with s t ructure  I. The allowed var ia t ion o f  z from 3 in structure IV 

is about 0.03 (Table VI. Since agreement becomes someaat wrse f o r  

any appreciable deviation of z from $, and since there i s  no obvious 

reason f o r  any deviation, we presume t h a t  Structure I is correct. 

Neutron Intensit ies.  The observed neutron intensi t ies ,  recorded 

i n  Tables 11, III and IV are integrated in t ens i t i e s  on an absolute scale 

de(;c;mined with a EF3, BIO enriched, proportional counter by methods 
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Table I1 
Observed and Calculated Intensities for ThD2 

neutrons In& ces - @ s in2tF Pobsd. 
P hlsl(calcd)* P e e  2 

1.01 

110 

002 

200 

l l 2  

211 

202 

103 

220 

301 

310 

004 

222 

2u 

114 

312 

332 

7 
4 

368 

6Ls , 

207 

8 

87 

196 

65 

4 
78 

4 
117 

4 

535 

320 

7 
4 

339 

588 

191 

74 

us 

181 

429 
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Table I11 
Calculated and Observed Intensities f o r  ThH2 

Indices calcd . 
101 146 

002 

2 00 

185 

74 
2 

112 3 

4 0  

178 

70 

2 

3 

211 89 79 
202 

1-03 
"3 159 
37 

lo? 138 
32 

172 

195 

86 

110 

220 I 1 -- 

Table IV 
Calculated and Observed Intensities f o r  Z- 

Indices caJ.cd.* 

101 16I+ 187 

SLO 54 57 
002 21 - 
200 292 294 

112 512 ~ 543 
2u. 

202 

103 

100 '3 h3 79 

117 

62 

220 1.5 L 121 
w s-*..-e-... - ..-. 
* f,. -: 0.64, fZr = 0.67 x cm,; not corrected-by temperature factor. 

.1 
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Table V 
Calculated Versus Observed Intensities for ThD2 

Based on Structure IV 

P.e-6 sin% T ( c a l c d . )  p obsd. Indices 
2; = 0.2s 0.27 0.29 0031 

320 320 

7 

8 

.339 

580 

183 

320 320 322 101 

L10 

002 

200 

112 

211 

202 

103 

220 

301 

310 

004 

222 

2x3 

1l4 

312 

R 

7 < lo 
43 10 

7 
32 

7 

4 
339 34b 339 

553 
183 

339 

183 3.. 7 yl 75 74 7 9 0  75 75 1.382 

166 166' =5 166 166 

52 

93 6i2* 

52 

58 jZ12 
93 

181 

429 

,0.124 0,078 00052 
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previously described, The calculated absolute neutron in t ens i t i e s  were 

obtained from the equation I 
L 

were k, determined independently f o r  this instrument - 0,066, j is the 

mult ipl ic i ty  factor, F i s  the  structure factor,  L i s  the Lorentz factor. 

For the powder block method employed f o r  the T q  data, L is sin2 28, 

and for  the  ThH2 and ZrD2 data, taken with cylindrical  samples>it is 

s i n  28 s in  8. 

form, where Note t h a t  k is a known constant 

determined from studies with materials of known cross section, so the 

absolute in tens i ty  agreement is significant.  

1 

The exponential term is  a temperature fac tor  of the usual 

is determined empirically. 

i 

The coherent scattering amplitude f o r  deuterium was determined . 
previously, but i f  t h e  parameterless positions f o r  the deuterium atoms 

are assumed, the-value can be improved somewhat by the present mrk, and , 

for  t he  calculation of Tables 11, and 

has been used. 

a value, f D  = 9 0,6b x ~o"ucm~,  

Coherent scat ter ing factors  were available f o r  neither zirconium nor 

thorium and these w e r e  determined from ZrN, Z*, Th and Tho;!. 

scat ter ing aq l i t udes*  fo r  zirconium and thorium thus determined are 

respectively o 0.67 and d. 1.01 x 10°Ecm.3 whereas t h a t  f o r  hydrogen has 

been taken as 0.39*1V'"*cm, 

The 

I 
I 
c 

I r 

* See Shull and WoUan (1951) f o r  a more complete tabulation of neutron 
scat ter ing amplitudes. 
ing amplitude d i f f e r s  somewhat f r o m  that i n  the tabulation but  i s  not 
outside the  limits of e r ro r  on ei ther ,  
from consistency within the  Zr% data. 

The value used here f o r  t h e  zirconium scatter-  

The present value was suggested 
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Dlscussion of the  Structures. The nearest neighbors of hydrogen and 

The four  metal atoms about hydrogen metal atoms are l i s t e d  in Table V I .  

i n  the s t ructure  are arranged tetrahedrally. 

tetrahedron has the d i rec t ion  BOY, and the tetrahedron is  f la t tened 

s l igh t ly  i n  t h i s  direction. 

ture, tetragonal rather than cubic because of compression along 

One two-fold axis of t he  

The hycbl.de has a dis tor ted f l u o r i t e  struc- 

Those hydrides are black and metallic (or i n t e r s t i t i a l )  r a the r  than 

It seems c lear  f romthe  metal distances, which are saline i n  character. 

inuch larger  f o r  t h e  hydrides than the pure metals, t h a t  metal-hydrogen 

interact ions are quite important i n  the structure. 

If one assumes t h a t  the bonds between mtal and hydrogen are 

essent ia l ly  covalent t he  H-M bonds are expected t o  be of bond number 

0.25 o r  quarter bonds, s ince hyclmgen can share a t  most one electron 

p a i r  wi th  i t s  four neighbors. 

Z r  = 1.,!$4, Th 9 1.652 g) and rule (Pauling, 19&), one would predict  

for  Th-H a distance of 2.28 8 versus 2.41 2 observed. Similarly, t he  

predicted and observed Z r H  bonds are 2.08 and 2.09 

Though t h e  agreement is sa t i s fac tory  for ZrHz9 the  observed value f o r  

Using Pauling's metall ic radii (H 0.27, 

respectively. 

ThH2 is much too long, and w u l d  suggest very poor Th-H bonding. 

cation of Pauling's rule gives a bond &er f o r  Th-H of 0.4). 

(Appli- 

In 

thcr ium hytkl.de t h e  m e t a l - m e t a l  distances are re l a t ive ly  long, so that 

application of Pauling's' ru le  would' lead t o  the conclusion t h a t  i n  

the nuaiber of electrons used by thorium in forming bonds (the metallic 

valence) is only  2.37, w h i l e  f o r  ZrE2 t he  calculated valence is 3.9b9 

versus - 4 expected i n  both cases. There i s  no obvious explanation f o r  

the very long interatomic distances and apparent low metallic valence i n  

%he thorium hydride. 

http://hycbl.de
http://hytkl.de
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Table V I  
Interatomic Distances i n  ThD2 and ZrD2 

T*2 ZrD2 

About D 

b h  a t  2 , ~  El 4 Z r  a t  2.09 B 
About M 

0 
8H a t  2,U A 

eTh a t  3.83 

4m a t  4.09 

8H a t  2.09 

8Zr a t  3.33 

bZr a t  3.51 

It seem l i k e l y  that the  compression of  the structure along & (c&, of 

TN)2 i s  shorter  than the  coryesponding distance, a+, i n  thorium metal), 

leading t o  the distorbion of the f l u o r i t e  structure, occurs t o  provide 

f o r  shorter metal-metal bonds. Unfortunately, quantitative rules, such 

as Paulingts, concerning bond distances a re  apparently too rough t o  be 

of help i n  understanding how large such a d is tor t ion  should be. 

are  such ru les  of help i n  guessing hydmgen positions from met,al posi- 

tions. 

which is  ruled out according t o  the neutron in tens i t ies ,  are a t  l e a s t  as 

sat isfactory as those of I, and, indeed, lead t o  a metal valence some- 

Neither 

On the  basis o f  Pauling7s rule the distances of s t ructure  11, 

w h a t  nearer the expected value. 

the case of UD3, where hydrogen was again found i n  dis tor ted te t rahedral  

positions with abnormally large U-H distances, (Rundle, 1951), and again, 

ordinary considerations of bond distances would seem t o  favor another 

s h d x r e  (Rundle, 1947, Pauling and a, 19L8) . 

A similar s i tua t ion  has been noted i n  
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