]

CALCULATIONS ON ISOTOPE SEPARATION

COp/4294 -2

\ v LES
BY LASER INDUCED PHOTODISSOCIATION OF POLYATOMIC MOLECU

This report was prepared as an account of work
sponsored by the United States Government. Neither the

Final Report United States nor the United States Department of

Energy, nor any of their employees, nor any of their

NOTICE

Willis E. Lamb,.Jr.
University of Arizona
Tucson, Arizona 85721

November 1978

- Prepared for
THE UNITED STATES DEPARTMENT OF ENERGY

DiSTRIRUTIQ'EZ g TR

any warranty, express or implied, or assumes any legal
liability or responsibility for the Y, J!

or ion, app

process disclosed, or represents that its use would not
infringe privately owned rights.

» of their employees, makes

of any inf , product or

SR

N L S LA
DRI S

PR AT TR
e iz et
N



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



LAY

PN

ABSTRACT

This Progress Report describes research on the
theory of isotope separation produced by the illumination of
polyatomic molecules by intensé infrared laser radiation.

It is desired to investigate this process by integrating

Newton's equations of motion for the atoms of the SFg

-molecule including the laser field interaction. The first

year's work has been largely dedicated to obtaining a
suitable interatomic potential valid for arbitrary
éonfigurations of the seven particles. This potential
gives the correct symmetry of thé molecule, the equilibrium
configuration, the frequencies of the six distinct ﬁormal
modes of oscillation and the correct (or assumed) value of
the total potential energy of the molecule. Other
conditions can easily be imposed in order to obtain a more
refined potential energy function, for example, by making
allowance for anharmonicity data. |

We have also obtained a suitable expression for the
interaction energy between a laser field and the polyatomic
molecule. The electromagnetic field is treated classically,
and it would be easily possible to treat the cases of time

dependent pulses, frequency modulation and noise.



-

1. INTRODUCTION )

This research involves a theoretical and numerical
study of the dissociation of the SF6 molecule in high
power laser radiation by the method described in the probosal
dated March 8, 1976. The object is fo consider the polyatomic
molecule SFg as a classical dyhamical system obeying
Newton's laQs of motion, with forces on the atoms obtained
from a suitable interatomic potential energy function. The
laser radiation is able to exert forces on the atoms because
they have effective charges which can be deterﬁined as.
indicated later. The real sulfur hexafluoride molecule
should be described with the use of quantum mechanics.
However, as was argued in the original proposal, it is
expected that it is a very good approximation to treat the
atomic dynamics classically. The only area in which much
need for correction would be anticipated is in the early
stages of the excitation process. Even there, if the motion

were sufficiently harmonic it can be shown that no

corrections are needed. However, the anharmonicity of the
molecule does require some corrections to a classical
calculation. Methods for making these were described in the
proposal.

One of the big aanntagés of the classical approach
is that we are always working in-“an ‘inertial frame of
reference. It is not necessary to transform to rotating
axes fixed in the molecule. As a result, no centrifugal
distortions, Coriolis forces or vibration-rotation

interactions have to be considered separately. They are
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"built into the Newtonian dynamics. Once a suitable

interactomic potential has been chosen, it is not necessary
to consider the normal modes of vibration or the
"radiationless transitions" between them which arise from
the anharmonic forces. In the conventional "conversational"
approach, much is said about the effect of "Rabi
broadening,'" excitation up the "§ibrational ladder,”
"leakage into the "quasi-continuum,'" "diffusion through the
quasi-continuum" into the "real continuum" and ultimate
dissociation. All of these things are automatically

described quantitatively by the Newtonian equations of motion.

We firmly believe that our approach offers the best possible

method to get theoretical understanding of this very
important problem for laser induced isotope separation and
photochemistry.

One of the most interesting aspects of this problem
is that it explores the borderline between the dynamical and
statistical treatments of a technically important problem.
No a priori assumptions about the applicability of
unimolecular reaction theory are made. If such an approach
turns out to be valid, the réte constants which are used in
it will have been evaluated from first principles. The
dynamical method is quite general and can be extended to
many other polyatomic molecules.

In sections 2 - 6, we describe how the current
SFg potential is determined. Section 2 gives the
initial approach in terms of a pair of Lennard-Jones

potential functions with arbitrary coefficients. Section 3
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develops a method for determining the potential constants
given the experimental normal mode_frequencies and
equilibrium configuration. Limited to central forces, the
method dces not reproduce the SFg spectrum precisely.
Section 4 succeeds in reproducing the spectrum by including
three-body forces. The potential is accurate, however, only
in the region about equilibrium. By specification of

6 F-F constant, and

certain parameters such as the 1/r
the total dissociation energy of the molecule, Section 5

yields a satisfactory global potential. Section 6 develops
the laser-molecule interaction energy. Section 7 describes

the computer facilities used in the project.



2. INITIAL FORMULATION

The SFg molecule has seven particles and twenty
‘one Cartesian coordinates X3, 1 = 1, 25 ees, 21. We
first wrote a computer program LIS which allowed us to
integrate the Newtonian equations of motion for the seven
particles moving in a conservative potential energy field
consisting of a sum of two body interaction potentials for
the seven atoms. To get started, we took two potential
energy terms for each of the 15 like particle pairs F-F:
attractive ones varying as the inverse sixth power of the
distances, and repulsive ones with inverse twelth powers.

We took two similar types of potential energy terms for each
of the six unlike particle pairs S-F. In effect, we were
introducing one Lennard-Jones potentiél for F-F (like) and
another for S-~F (unlike) particle pairs. The potential
energy of the wholé molecule could then be described by
giving four constant coefficients B(1), ..., B(Y4¥) to measure
the strengths of the various types of interactions. At this
stage, of course, we did not know the correct values for the
four constants, and simply assumed them arbitrarily.

Our computer program LIS then‘sought out the
equilibrium configurations for the molecule. It did this by
starting from an arbitrary configuration and integrating the
equations of motion of the bérticles with viscous.damping
bintroduced into their equations of motion in addition to the
assumed interatomic forces. If the potential constants were
suitably chosen, we found that there was an equilibrium

configuration which had the desired octahedral symmetry.
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"Even if this were a stable equilibrium, it was not

necessarily the one of lowest potential energy. However, by
simple adjustments of the constants we could make the
molecule have only the octahedrally symmetric equilibrium
configuration.

We then applied the theory of small vibrations. The
potential energy V(xq, x5, ...,'x21) needs to be
expanded in a Taylor's series around the equilibrium
configuration. The resulting matrix PV of 21x21 second
partial Cartesian coordinate derivatives plays a central
role in the theory of small vibrations. Qur computer
program LIS calculated this matrix. It also found the
eigenvalues and the similarity transformation matrix S which
diagonalizes the PV matrix. The matrix S gives the
relationship between the Cartesian coordinates and the
normal mode coordinates. The 21 eigenvalues of PV are
proportional to the squares of the frequencies of the normal
modes of vibration‘of the molecule. (For the sake of a
simpler discussion, we are overlooking the important fact
that because the masses of the particles are not all equal
to one another it is necessary to first transform from
€artesian to mass—normalized‘Cartesian coordinates before
the making the matrix diagonalizaiion.) As was to be
expected, three of the eigenfreduencies came out to be zero
corresponding to the three transiational normal modes.
Likewise, another three of the normal mode frequencies were
zero corresponding to the three rotational normal modes.

The remaining 15 nonzero vibrational frequencies showed the



(1)

) degeneracies which are required by the octahedral symmetry

of the molecule. Herzberg uses group-theoretical
designations A1g, Eqr Fius F1g, F2g and F1g

for these modes. Mode A1g is non-degenerate and

représents the highly symmetrical "breathing mode." Mode
Eu is two-fold degenerate while the remaining modes are
each three-fold degenerate,. These normal modes are also
designated by the numbers 1, 2, ..., 6 respectively. Modes
3 and 4 are the only optically active ones, and mode three
is in close resonance with the radiation from a CO,

laser.

Naturally, since at this point we were only guessing
the four potential constants, we obtained incorrect
eigenfrequencies, but at least they showed the right pattern
of degeneracies. It was almost inevitable that the |

equilibrium S-F distance would have the wrong value. This

could easily be taken care of by rescaling distances. Our

- computer program also allowed a representation of the

molecular configuration to be displayed on the screen of a

CRT terminal (Tektronix 4013). We could start the motion
off in some non-equilibrium configuration and watch the
motion of the particles. Some of the motions seen in this
manner were surprisingly complex. We also put into the
program a rudimentary facility for having a periodic laser
field exert forces on the particles. In this way, it was
possible to demonstrate how the laser disturbed the motion.
We did not follow up this approach very far because none of

our constants were sufficiently realistic at this stage of

-6~
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. the work.

3. DETERMINATION OF CENTRAL FORCE POTENTIAL CONSTANTS

The next problem was to determine a set of potential
constants for which the six eigenfrequencies would have the
observed values, which in wave numbers are 782, 649, 966,
620, 528 and 352 for modes 1, 2, 3, 4, 5 and 6,
respectively. At this point wé had no idea how many
potential energy constants B(i) had to be determined to
specify the interatomic potential energy function. For any
given potential, we could calculate the corresponding
eigenfrequencies. The inverse problem of determining
potential constantsvwhich would lead to the desired
eigenfrequencies would.be a formidable problem if approached
in a direct manner. It would be very much like looking for
a needle in an n-dimensional haystack where the number of
dimensions n is unknown! Fortunately, however, we were able
to devise a simple and effective method for dealing with
this otherwise difficult problem. The computer program for
doing this is called LISFIT.

In solving the problem of the 21x21 matrix of second
pértial derivatives of the interatomic molecular potential
function, the computer programs SIMTRAN and SIMEIGEN give
the 21x21 transformation matrix S between the Cartesian
coodinate representation and the normal mode coordinates.

It turns out that the form of this matrix is determined to
an amazing degree by the high symmetry of the SFg
molecule.

The situation is somewhat analogous to what one
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" would have for the 2x2 matrix representing rotations in a

plane about a fixed axis. All foor elements of the rotation
matrices are simply characterized by a single parameter
representing the angle of rotation. 1In the case of the
21x21 matrix with which we are concerned, it turns out that
all of the 441 elements are characterized by two parameters
which we called alpha and delta. It is possible by a simple
and systematic procedure to write down all of the elements
of the transformation matrix. One can start by putting into
the last three columns the numbers which intuitively
correspond to the rotational modes, and into the next to
last three columns the corresponding numbers for the three
translational modes. The numbers which would represent the
breathing mode can be put into the first column. From here
on, one can proceed column by column, using a little
intuition about what the normal modes might be, and making
use of orthogonality conditions for pairs of columns and
normalization for each column. Whenever one comes across a
number which one does not know, it is denoted by some
symbol., Most of these symbols can be detérmined in terms of
others b; using orthogonality conditions. In the end, one
has only two unkoown parameters delta and alpha remaining.
The parameter alpha involves the doubly degenerate modes E
and can be assigned arbitrarily without any loss‘of
generality. The 3 and 4 modes are very similar (apart from
being orthogonal!) to one another. Consider a triatomic
linear complex F-S~F which lies along one of the Cartesian

axes X, y or z, In equilibrium, the remaining four F atoms
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- lie at ﬁhe corners of a square in a plane at riéht angles to
the chosen axis. The square has the sulfur atom at its
center., In both modes 3 and 4, all of the motions of the
triatomic and of the square complexes ére along such a
chosen axis, the two F atoms on the axis move together, by
equal amounts, and the modes differ only in respect to their
differing relative motions of the S atom and the square
array of F atoms. The ratios depend on delta. Work at Los
- Alamos (kindly communicated by Dr. C. D. Cantrell) has
determined the value of delta by considering the observed
rotational properties of the molecule, so we may regard it to
" be determined experimentally.

An equivalent expression of the previous paragraph
would be to state that the secular equation of the 21x21
matrix PV of partial derivatives of the potential energy
function can be factored into 15 linear equations and three
repeated sets of one quadratic equation for the normal mode
frequencies. This factoring of the secular equation has
been known since the 1930's, at least for the case of
central forces, and we‘rediscovered it independently 40
years later.

The foregoing facts mean that we can determine the
transformation matrix quite independently of what the
potential energy function is,}using only its octahedral
symmetry properties. When the potential energy matrix is
diagonalized, its six distinct nonzero elements are simply
related to the normal mode frequenéies of the molecule.

These are known experimentally. This means that we can



transform the experimentally measured diagonal matrix in the
normal mode representation "back" to the PV matrix of the
Cartesian basis and thereby assign experimental values to
all of the 441 elements. Suppose that the potential energy
function is written down as a sum of elementary terms as we
have described previously. For instance, for the like
particles we would have a term’of the attractive inverse
sixth power van der Waals type. The function of distance is
multiplied by a strength‘constant which might be denoted by
‘B(1). The 21x21 matrix PV(1) of second partial derivatives
can be calculated for this single potential energy term, and
naturally all of its elements are dependent on B(1) in a
linear fashion. The potential energy of the molecule would
be a sum of such power law terms, each multiplied by its own
strength coefficient B(i). If the potential energy of the
entire molecule, written as a sum of such terms, is
differenfiated with resepct to each of the possible pairs of
Cartesian coordinates of the 7 particles, we obtain the 21x21
matrix PV of the theory of small vibrations, and the matrix
is a sum.of "influence" matrices PV(i) for the i-th
elementary type of potential integredient, each multiplied
by the corresponding B(i). We can then write down as many
as 4471 simultaneous algebraiC'equations for the B(i) which
lead to a fit of the "expefimental“ matrix elements to the
values calculated from the assumed force law. It turns out
that of the 441 matrix elements associated with the
potential energy function only eight are linearly

independent of each other. In fact, there are eleven which

-10-



" may have differing absolute values, but those three which
are on the main diagonal are linear combinations of
noé—diagonal elements (an expression of the principle of
conservation of linear momentum for the whole molecule.)
With some thought one can be convinced tﬁat the numerology
giving the number eight involves counting the six distinct
nonzero normal mode eigenfrequencies, and adding one for
translation and one for rotation. One can also conclude
that it is not necessary to explicitly require that the
molecule be in equilibrium at the chosen S-F distances.
Information on the atomic spacing is already contained in
the elements of the PV matrices. The fact that the PV
matrix has zero rotational eigenvalue frequencies.
implies, by a subtle argument, that the molecule is in
equilibrium.

This means that we can write eight simultaneous
linear algebraic equations to determine eight potential
energy constants B(i) which are the strengths of the eight
used types of elementary potential terms. The 8x8 matrix of
these simultaneous equations is denoted by GR. It has rows
which refer to one of the eight independent elements of the
PV matrix and columns whiéh label the various potential
types. |

The foregoing discussion would suggest that we
should take a potential energy function for the like
particle pairs having inverse powers of r with exponents
having values perhaps equal to 6,7,8 and 12 with a similar

set for the unlike particle pairs. This would make a total
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" of eight potential energy constants B(1), B(2), ... , B(8).
One could then try to solve the eight simultaneous equations
in the eight unknowns B(i) as described in the last
>paragraph. Unfortunately, the determinant of this 8x8 GR
matrix vanishes 50 that no meaningful solution could be
obtained in this way.

One should, at this point, examine the elements of
the 8x8 GR matrix of the algebraic equations for determining
the B's in order to find oUt why the determinant vanishes.
Inspection of the pattern of zeros and a little thought
leads to the conclusion that a larger number of the distinct
nonzero elements of the 21x21 PV matrix are. associated with
like particle pairs than with unlike particle pairs. One
can try to allow for this by taking more of the eight
potehtial energy constants B(i) to refer to like particle
pairs rather than to unlike particle pairs; This insight is
helpful but not sufficiently so. The determinant'still
vanishes. The reason is that for the case of purely central
force potentials between the particles, there is an equality
between two of eight normally linearly independent elements
of the PV matrix. This leads to a linear dependence of the
eight "indepéndent" elements of the PV matrix, and a zero
determinant for the linear equations which must be solved
for the B's. A further consequence‘df the above equality of
PV elements is that there is a‘simple linear relationship

between the squares of three (1, 2 and 5) of the six normal

mode frequencies. The existence of such a relationship can

be seen in 1930 papers on SFg which made use of harmonic
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" central forces. These had the relationship, bht did not
stress its importance. There were other early calculations
which used non-central forces, and they did not lead to the
algebraic relationship in question between the eigenvalues.

It was then clear that we had to have at least some
non-central potential‘ingredient. Non-central forces have
been used in the theory of the vibrations of polyatomic
molecules for manyvyears. Typically, one would introduce
terms depending on the angles between adjacent bonds
connecting atoms in the molecule. Such discussions are
usually intended to deal with small excursions from
equilibrium. In the work.on the laser induced dissociation
of polyatomic molecules it is very important to have a
"global" potential which works well for arbitrarily large
departures from equilibrium, since the ultimate object is to
have the ﬁolecule dissociate. It therefore seemed important
to us to have potentials which in the 1limit of large
particle separations behaved correctly. For the case of two
body potentials, this suggests that the inverse sixth power
potential should dominate all others at large distance,
since it is known that that is the correct asymptotic form
of the van der Wéals interaction. Naturally, if we had
charged paticles, Coulo&b forces would be used. Even though
there may be charges which can be assigned to the S and F
atoms when they are close together, these charges will fall
off exponentially with increasing-§eparation,which will give
a potential energy falling off asymptotically faster than

with the inverse sixth power of the distance.

-13-



4, INCLUSION OF THREE-BODY POTENTIALS

The next step in complexity beyond two particle
interactions would be three particle ones. Consider three
atoms at the corners of a triangle with sides a, b and c,
with the oppesite angles denoted respectively by A, B and C.
In the 1imit of large distances there would be the usual
dipole-dipole, dipole-quadrupole, quadrupole-quadrupole,
..sy €tc. binary interactions. Subject to some
assumptions, Margenau has shown additivity of these forces.
There is a good discussion of non-additivity of van der
Waals forces in the book by Margenau and Kessler. In
addition, there will be genuine three body forces. 'The ones
which appear in lowest order perturbation theory were first
considered‘by Axilrod and Teller. The long range limit of
the three body interaction potential is

(1 + 3 cosA cosB cosC)/(a b ¢)3.
This is the asymptotically dominant three-body interaction.
There would, of course, be a whole sequence of other terms
which would appear in higher orders of perturbation theory.
These would be increasingly important for small values of a,
b and c. Because we wish to have a potential that works
well at large separations,.we.havé contented ourselvesbwith
non-central potentiais of the kind considered by Axilrod and
Teller. o

At this point, wé typically 100k for the

like -particle binary interaétions,the inverse powers 6, 7, 8
and 12, and for the unlike particle pairs 6 and 12. We

brought the total number of interactions up to eight by
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- adding in an Axilrod-Teller term for like particle triplets
F-F-F and another for unlike triplets S-F-F. We no longer
had the difficulty of a vanishing determinant and a set of
the B(1i) coﬁld be determined. Usually, there would be
something unpleasant about the indicated solution. For
instance, although we would typically have an attractive
inverse sixth power term for like particles, for unlike
pairs it would be repulsive.

At this point the potential was doing everything we
asked it to do (correct normal mode frequencies and
degeneracies, correct equilibrium distances and correct
value of the parameter delta.) However, these things dépend
on the properties of the potential in a very limited region
of the whole eight dimensional space of the B's and it is
not surprising that one of the inverse sixth power terms
should have a physically unreasonable sign.

5. SPECIFICATION OF CERTAIN POTENTIAL CONSTANTS

In order to get around this difficulty, we appealed
to existing data on the SF and F, molecules, and
extracted (rough) values for the inverse sixth power terms.
We then put these terms into our potential with the
experimental coefficients. This "liberated"_two more
unknown B's, so we added an inverse ninth power term for
like particles and an invéfse seventh power term for unlike
particle pairs. Again we could get a good solution for tﬁe
eight unknown B's. This time we had the "right" inverse
sixth power terms. However, typically, one of the inverse

twelth power terms was attractive. Not only that, but in
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many cases the "pocket" in the potential energy function
which corresponds to the small vibration analysis would be
located on the steep side of a bottomless pit. We got
around this difficulty by forcing in, by hand, a repulsive
inverse twelth power repulsion and made up the total of
eight "unknown" B's by outting in another power law
previously skipped over. Depending on the magnitude of the
coefficient of the twelth power term we found a potential
with one or two eqnilibriun configurations. For a range of
values of this coefficient we got a potential with
reasonable properties. Ultimately, we will appeal to
information on the anharmonicity of the potential in order
to pick the "best" amount of the imposed inverse twelth
power repulsion. Of course, there is no fundamental
theoretical reason for choosing the twelth power.
Lennard-Jones simply wanted to have some short range
repulsion and happened to choose the :exponent -12.

In order to further "tack down the potential
function around the edges" we added another "experimental"
quantity'to the eight PV matrix elements oresently being
fitted: the total dissociation energy of the molecule. As a
guess, this was taken to be six times the energy (about 30
mode 3 "photons") required to adiabatically remove one F
atom from SFg. At this stage, Qe héve a ninth type of
force law with a strength coefficient B(9), and a 9x9 GR
matrix.

Some general remarks on the search for a global

potential are in order. It is clear from the usual
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vBorn-Obpeﬁheimer discussion that such a potential exists.
It is also very unlikely that we can express it exactly in
terms of a limited number of potential types. At most, we
can hope to get a reasonably good appfoximation which
reproduces a chosen set of experimental properties. We
could lay more emphasis on the SF and F2 two- body

problems and begin with two-body terms which would really
work for these molecules. We could let our nine (or more)
unknown B's determine the admixture of three (and more) body
force types. Presumably we would either use suitable
generalizations of the Axilrod-Teller potential for higher
orders of perturbation theory, or we could simply guess
'suitable functions (as has been done in recent work on three.
atom molecules.) We could have many more than nine such
terms because we could not only require a fit of the normal
modes of sulfur hexafluoride, but use whatever might be
known of the other molecules with one sulfur atom and 2, 3,
4 and 5 fluorine atoms. Many other kinds of data could be
used also, for example, isotope shifts. Such a program
would be very worthwhile, but lengthy. It would be
considerably simpler for a molecule like ammonia. The use
of many three-body.force terms would add enormously to the
time required for integratioh of the dynamical equations of
motion for the molecular dissociation. We think that for
'‘the main purpoée of our project that we are already fairly
near to a satisfactory global potential. It shou}d be
remembered that our two-body forces are designed to work in

the SFg environment, and will not work so well in an

-17-



’ ]

" Fo, SF, SFz'br SFy environment. However, we will be
interested to see how well they do. (We only used the long
range inverse sixth power attractions for SF and F2.) As

a severe test of our "global" potential we can determine the
equilibrium configurations and normal mode frequencies as
well as the dissociation energies of F, and all of the
sulfur fluorides.

We close the discuséion of the search for a
molecular potential function with some more remarks of a
general nature. We have given a number of lectures on this
work (as at the.Tenth International Qﬁantum Electronics
Conference in Atlanta in May, 1978.) It almost always
happens that there is a question from the audience: Why do
we try to get the interatomic potential in the way
described? It is well known that there are very general
computer "codes" for getting such potentials. It seems to
us that this question misses some very important points.
(1) It would enormously lengthen the dynamical calculations
to proceed in theA way suggested. (2) We would lose
accuracy. No self-consistent field treatment of a 70
electron problem could possibly give potentials for the
atoms with the precision of those which we borrow from the
spectroscopic work. The resonance phenomena which make the
project interesting require that good frequencies are put
into the calculations. We do not believe that ab initio
calculations could be sufficiently accurate. There would be
more point in using them for a molecule about which very

little was known. There also might be some utility for an
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ab initio calculation of the long-range van der Waals
coefficients, or an esfimate of short range repulsions.
6. ELECTRIC FIELD-MOLECULE INTERACTION

We conclude with a brief discussion of how the
interaction of the molecule with the laser radiation should
be treated. Because the laser wavelength is much larger
than the size of the molecule, the electric dipole
approximation is a very good one. The laser radiation can
be replaced by an oscillating spatially uniform electric
field. Such a field exerts forces on the charged particles
in the molecule. The interaction energy is a product of
electric field and electric dipole moment of the molecule.
A simple treatment would assign a negative charge to each F
atom, and a positive charge of six times this much to the S
atom. Then it would be a very simple problem to get the
dipole moment of the molecule as a function of its
configurétion. (The'dipole moment would be zero at
equilibrium because of symmetry.) Because F atoms have a

strong tendency to fill their 2p shell, it would be natural
to think that the charge on the F atoms in sulfur
.hexafluoride would be closely equal ﬁo one electronic

- ¢charge. Such an argument doesn't seem so strong when one
wonders how the S atom feels about the lbss 6f six
electrons. 1In any case, the electrons are not localized on
the nuclei. Our model requires forces on the atoms, and
would become confused by a force on an extended electronic
distribution. Fortunately, all we need to know is the

expectation value of the dipole moment of the molecule for
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any specified configuration of the nuclei. The product of
this with the laser field gives a potential energy, and the
force on any nucleus is obtained by taking a suitable vector
gradient of the potential energy.

In principle, the dipole moment for any
configuration of the nuclei could be given by an ab initio
70 electron calculation. For Eeasons analagous to those
given before, we prefer to make use of experimental data and
a little guesswork to get what we need for the dynamical

Acalculations.

We assume that for any configuration of the
molecule, the total electric dipole moment is a sum of
dipole moments, one associated with each S-F bond. We
assume that each S-F bond has a dipole moment along the
bond, and a magnitude which is some function f(r) of the
length r of the bond.  We expect that f(r) falls off
exponentially for large r, and that it vanishes for r = 0.
Because of symmetry, the total molecule has a zero dipole
moment in its equilibrium configuration. If the molecule is
distorted by a mode 3 or mode 4 displacemént, it acquires a

dipole moment and the laser field can drive these modes.

We have applied this model to data on the optical
absorption coefficient of the molecule for the 3 and 4
modes. This gives us the value of thé function f(r) "at the
equilibrium S-F distance (1.5648) and the derivative f'(r)
at equilibrium. We then assume a functional form for f(r) =

(a + br) r exp(-r/D) with three constants a, b and D. We
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expect to guess that the decay distance D is about 28. The
other constants in f(r) are determined from the intensity
data on modes 3 and 4. The constant D could also be
detefmined experimentally if measurements of transition
strengths were available for the higher rungs on the

vibrational ladders for the 3 and 4 modes.
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7. COMPUTER FACILITIES

Our calculations are being made with a Data General
ECLIPSE/23O minicomputer. This sixteen bit machine has 128K
words of core and semiconductor memory (soon to be doubled
with assistance from NSF), two 9-track 1600 bpi magnetic tape
drives and a 192 megabyte disk storage system. (The help of
ERDA in the acquisition of the last item was decisive, and
has greatly enhanced the power of the whole facility.) We
have a Megatek 6000 Graphics Display System which is
refreshed by a DGC NOVA3/12 minicomputer 1inkéd to the
ECLIPSE by a multiprocessor communications arrangement.
There are also a Versatec 1200 line printer-plotter, a
Tektronics 4013 storage_scope terminal and a number of other
terminals. An asynchronous line multiplexer supports an
automatic answer line and seven other remote users. A dual
drive disﬁette has just been added for convenient system and
user file backup.

The ECLIPSE is a very fast and convenient computer.
We have the new Advanced Operating System (A0S) which adds
greatly to the power and flexibility of the facility. AOS
is a multiprocess, multitasking system. ‘Each user has
access to his ow& files, and security against other users.
He also has access to system utility files which can be used
on a shared basis with other users. It is possible for the
system manager to assign the rights and privileges of the
various users in a very flexible way. Normally, any user
process will acquire suitably chosen time slices, and each

process can be swapped from core to disk, but it is possible
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to create processes which are core résident and are never
swapped out to disk. This means that certain processes can
be largely immune to the presence of other users with less
critical tasks. We have four batch streams, at least one of
which can be made core resident. Hence a number of jobs
associated with the LIS effort can be run simultaneously,
and the computer will still be able to be useful to other
people in the Optical Sciences Center. The FORTRAN 5
compiler is very efficient, and the language is a pleasure
to use.

There are still a number of additibnal components
which would make the system even more useful. Among these
would be a DCU (Data Channel Unit) which would reduce the
need for interrupts of the CPU by high speéd terminals, a
swapping disk to cﬁt down time lost in swapping processes
out to disk and an array processor which could enormously
speed up‘our solutions of the differential equations of the
dynamics of the SFg dissociation. We will need some
kind of film producing facility in order to make
communicable recqrds of histories of the molecular

~dissociation process.
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COMPLIANCE
It is believed that the work reported represents
" reasonable compliance with the Contract requirements as

stated in Appendix A of Contract No. EN-77-5-02-4294,

PERCENTAGES OF TIME

The Principal Investigator expected to spend 8% of
his time for 10 months and 100% of his time for 2 months in
the year béginning July 1, 1977. In fact, he spent much
more than 8% during the academic year. The budgeted summer
compensation for 1978 could not be taken. Because of
unexpected requirements for the computer, funds had to be
shifted to provide a larger amount of time for a computer
programmer's time. Nevertheless, the above time committment for

the summer months has been satisfied.

OTHER SCIENTIFIC PERSONNEL
Murray Sargent III, Professof of Optical Sciences
Lionel N. Menegozzi, Visiting Associate Professor
of Physics and Research Associate

Bruce J. DaCosta, Computer Programmer
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