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ABSTRACT

Several aspects of dgep inelastic neutrino scattering are
discussed in the framework of asymptotically free field theories.
We first consider the grow;h behavior of the total cross sections at
large energies. Because of the deviations from strict scaling which
are characteristic of such theories the growth need not be linearf
However, upper and lower bounds are established which rather closely
bracket a linear.growth.. We next consider in more detail the expected
pattern of scaling deviétion for the structure functipns and,
correspondingly, for the differential cross sections. Tﬁe analysis
here is based on certain épeculative assumptions. The focus is on
qualitative effects of scaling breakdown as they may show up in the
x and y distributions. The last section of the paper deals with deviations
from the‘Céllan—Gfoss relation,
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I. INTRODUCTION

" A considerable theoretical industry has built up around
the idea of Bjorken scaling, which received its first experimental support
in the SLAC-MIT experiments on electroproductionl.‘ Subsequent confirmation,

in part, has come from the Observation2 that the total cross sections for

neutrinos and anti-neutrinos on ﬁucleohs'appear to grow linearly with energy

beyond a few GeV,VV A simple éﬂdrhighly success ful fhysical picture of
the scaling phenomehon is provided By the well-known pafton model.3 In
its field theoretic transcription;rthis model amounts to the assumption
of canonicéi dimensions for thevfwist-two operators that abpear in the
Wilson expansion of a product of c;rrents. It has recently become
clear, howeVer,‘at least in the frémework of renormalizable field theory,
that the dimensions can be canonical for'all‘the relevant operators only
in the absence of 1nteractibns.r Strict scéling, thetefore, if it were
to persist, would'represent‘a majbf theoréticai paradon 'Onithe'other hand
depafturés from scaling, if they déveldp in a suffiéiently pattérned way,
could also be informative about the structure of the underlying theory.

So fér;'the closest one has come to strict scaliﬁg is with a special

class of‘theories, based on non-Abelian gauge symmetry; ‘Theories of this

 ¢1§§$’§ossess the property of'asyhptotic freedom4 and lead to certain

5,6,7

characteristic patierns of séaliﬁg‘breakdown . In the present papér

‘we discuss some of the observét@onal implications, especially in the context

of neutrino reactioms. One issue concerns the dependence of total neutrino

cross sections on energy. This is taken up.in Section II, where upper



and lower bounds are derived on the growth rate. The arguments employed J

in this section involve very little in the way of extra assumptions going

beyond‘those implied by asymptotic freedom. It is found that the growth,

while it needn't be exactly linear once strict écaling breaks down, cannot
depart too greatly from linear. In the present context, asymptotically

free theories make their most definite predictions for the large q2
L , c A

behavior of the moments of the structure functions. Section III is

concerned with converting this information into predictions about the

large qz behavior of the structure functions themselves. Issues of
non-uniformity arise here in going frqm one to the other; so the discussion
in Section III is based on frankly speculative procédures; The aim,
however, is to assess qualitatively how the breakdown of scaling could
reveal itself in certain aspects8 of the differential section. In
particular, one is led to expect what could be a substantial change with
energy in the shapes of the x and vy distributions. Section IV

deals with a somewhét different subject, namely; corrections to the
Callan-Gross malat:i.ou.9 However this section aléo provides a brief review
of asymptotic freedom, and it contains some comments on the non-uniformity
1ssues mentioned above. Throughout the entire discussion we ignore
possible deviations from scaling which would arise from the propagator

term of a weak vector boson. If the mass is very large the effects would
not be noticeable at present energies; but in any case the necessary
modification could easily be made. In Sections III and IV the discussion
is implicitly restricted to strangeness and cﬁarm—conserving neutrino

reactions.



II. BOUNDS e : -
We focus on the neutrino reactions and their structure~funct10ns
F (w,q ), 1 =1,2,3. Here q2 is the negative of the invariant momentum
transfer and w = 2mv/q2 is the Bjorken scaling variable. Strict scaling
would imply that the Fi(m,qz)‘approach finite limits as q2+ o, fqr fixed w.
However, we are contemplating the possibilitj of departures from scaling;
and on present thinking such departures’are expected to take on their most
characteristic shape when"éxpressed in terms of the large q2 behavior of

the moments of the structure functionms,

| - : |
U(gz) = fd:u- " R (U,Z‘). -
! ) .

. For the asymptotically free theories under discussion the moments are

predicted to display logarithmic deviatiéﬁs from. scaling. Namely, for q2

large enough (how large may in general depend on the order n of the moment)

‘the predicted asymptotic behavior is

-4.4)
)

(2)

F()iz) -_— A(z) (’{3

.where p is a écéle paraméter:ndt_specifiéd by the thedry. ‘The
‘coefficients bh(i) ére similatly'uhsPeéified; but the exponents an(i)f
-are definite and characteristic of the underlYing:thédry; ‘They can be
‘computed explicitly, given the" gauge group and the quark content of the

"theory.
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Actually, there will in general be several different operators of

spin n+2 in the Wilson expansion, each making a contribution to the right

hand side of Eq. (2), each with its own characteristic coefficient’bn(i)'
and an(i). For every n, it is the contribution with the smallest exponent
that ultimately dominates at large qz, and it is this contribution that
is understood to be represenfed by the right hand side of Eq.i(Z).
Equation (2) describes the leading term in an expansion in

inverse powers of log q2 and qz. It would be tempting to try to re-

_ construct the full structure function Fi(w,qz), for large q2, by supposing

that the correction terms in each moment are uniformly small, for all n,
when q2 exceeds some n-independent value. We shall in fact succumb to
this temptation later on, but it is clear thgt anf such procedure is
highly speculativé. At the present stage of theoretical understanding

the only firm predictions that follow from the ideas of asymptotic freedom
are those embodied in Eq. (2). Thus a sﬁarp’test of asymptotic freedom

requires the difficult experimentation involved in extracting from the

data the individual moments, as functions of q2. A more modest experimental

objective is the study of total neutrino and antineutrino cross sectioﬁq
as-a function of energj. As is well known, strict scaling implies a liﬁear
growth with energy, at large energies, and 1indeed this kind of behavior
is what is indicated by exisfing data. The question arises as to the growth

properties that are to be expected for theories of the sort under present

discussion. This is our first topic. We will see that both upper and lower
bounds can be set on the growth rate, on the basis of the moment properties
discussed above. It turns out that the bounds rather closely bracket a

linear growth behavior.



The integral in Eq. (1) is presumed to converge for all n > 0.

(n)

It therefore defines the Fyj as functions of complex n, regular for

Re n > 0. For the present discussion we shall-adopt the one additional
assumption that the analytically continued moment functions are regular

for all Re n > ~n,» where n, is some small, but non vanishing positive nﬁmber,

(n)
i

Eq. (2). The exponent functions an(i) that occur in that equation can be explicitly

independent of qz. For given n, at large enough qz, the F are given by
computed and turn out to ﬁe regular for all Re n > -1, We are assuming

that the coefficients function bn(i) are also regular, at 1eaét for Re n > -n_.
In the following discussion we will be concerned with real values of n in

the vicinity of n = 0.

Let us now turn to the cross section bounds for

Vi N —7/u'+'X

and the corresponding antinuetrino reaction. Dropping at the outset cettain kinematic

corrections of order m/e, we have for the differential cross section

. 2 s . | ,
—= 6 (/—)/*Z')/-;-FL)' YY)z h f, @3

H

where the upper sign in the last term refers to the neutrino reactions, the. lower

sign to the antineutrino reactions; and where

g =w's 3’/.0;;1/, Y= g‘/.:mxz) F=Ff-2xFf .




To sufficient accuracy for our present purposes, we note the inequalities ( a
R z22xf > 2/R). o)

(1) Upper Bound: -

Using the inequalities of Eq; (5), together with the inequality
l1-y+ y2/2 <1 for 0 <y« 1, we see that the total cross section

(for the V or 57 reactions) 1is bounded according to

2 ame€ /
c< £ [dg [ Loy, ®
g lame

Now introduce a positive parameter <y , in the range 0 <y < n_, and

observe that

/ .
dy 2méE \I-¥ I
[ x L < :};; _0_@):_ /:2—) 7

f/:«'mi z?

an inequality that follows from the positivity of F2. According to Eq. (2),

for all q2 > 0 and all n >-n  we have the bound

f;“’ wE = fc;x " F < 8/;7)[:(7 (Z}f)]— %@)
' 0 | ar M



where the B(n) are unknown constants, independent of qz; and where the paramefer EZ,
with 212 > uz, has been supplied to guarantee that the moment exists for

¥ all qu > 0. Define

priﬂﬂ) = "chn g )

Then

o< o) [ (% ) [y (E£)]"
oo [

for all vy in the interval 0 < y < n . We now invoke the result that
the leading spin two (n = 0) operator in the Wilson expansion is the
stress tensor, an SU(3) singlet with canonical dimensions. This implies
that an‘vanish.es at n = 0 and beeonies negative for n < 0. TFor the range of
Y‘involved in Eq. (10), this means that f(yv) is positive. However f(y).

} can be made arbitrarily small by allowing Y teeppreach zero as clesely
‘as one wishes. We therefore conclude that a/ E grows with energy

less rapidly that (ﬁnf) ’ for (5 positive but arbitrarily small.

(11) Lower Bound: -

From the 1r71eqluelitiesref Eq. (5) we see that - \
M E P A
e . 2 .
> £ [afzz dr (1-y) /f(x,;‘). (11)
2 x
iﬁzmz




The expression on the right hand side can in turn be bounded from below ﬁ 7
if we shrink the range of integration. In particular, let us, say, double
the lower limit on the x integral, so that (1—y)2> 1/4. Moreover., let

us replace the upper limit on the q2 integral by dME /(/@3 E/m) Y)

where b/ is some positive parameter. Next observe that

& £ g
j’/‘mi Z % >{%ﬂg r F;

RCTIEn

/

‘(12)

0 2y

vhere 9{30, f)>b and o(-(-/g < M, . We now invoke the

bound in Eq. (8) and require, in the notation of Eq. (9), that
£ (dap) - F&) < Yp. (13)

Then it readily follows that

at. fﬁa) -
ole > (i) /[,{’,, "”"/ ] ’ (14)

where C(@{) depends on the parameter ¢/, but not on the energy € .
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The inequality of Eq. (14) holds for all positive values of ¥ , o« and /6 ,
subject to Eq. (13) and to o(././s < mo . We therefore seek to minimize the |
quantity

P= r-Fey 5

within these constraints. From familiaf inequalities on moments of a positive

function one has that

Df 6 2 .
), e,

24 2 Qolt (16)

Thus, for fixed o/ one minimizes )’ within the constraint of Eq. (13)

by letting /3 approach zero. Then from Eq. (13) it follows that

— o an

(18)

with respect to o in the range O <ol M,. Since in this
section, comnservatively, we allow for the possibility that n  may be
small, we shall simply set 'O(v-'- 0. Récall:ing that £(0)=0, we therefore

have the bound
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where

=6 - (19)

The function £(x), which is related to the exponent function a by Eq. (9),

can be computed explicitly, given the gauge group and quark content of the
underlying theory. For definiteness we adopt the theory of Refs. (5), (6), (7)
based on the color group SU(3)' and containing these quark triplets. For

this theory one finds

To summarize we find (for neutrinosor antineutrinos) that ‘7/5

is bracketed at large energies within the limits

' 5 d
D (he)T < o < LC (M)

(21)

where 5. is an arbitrarily small positive constant and where P, which

depends on the structure of the underlying theory, is a constant of order

unity; for SU(3)' the value is given by Eq. (20). 1In deriving these

bounds we have made the mild assumption that the moment function Fz(n)(qz)

can be continued a small, but finite distance to the left of n = 0, for all ngﬁ?j

For the rest the results depend solely on Eq. (2), which represents the
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characteristic prediction of asymptotic freedom. The key technical fact that -
made it possible to achieve such close bounds is the fact that an=0 for n=0.

What emerges from all this is that the total cross sections are

predicted to grow asymptotically in a way that cannot be too different

from linear. 1In this particular respect the departure from st;ict écaling
(which leads to a linear growth at large energies) is expectedAto be

very mild. On the other hand, deviations from scéling have a chance

to be more substantial for the structure functions themselves, in their
detailed dependgnces on q2 at each w. To proceed further, however, one
has to introduce new assumptions that go beyond Eq. (2). We shall
introduce these in the following section, and attemptthere to follow out

some of the qualitative implications.

III. THE STRUCTURE FUNCTIONS

The discussion in thié section, which is addressed to the properties
of the structure funcfions at large qz, will be based on a highly specuiative
assumption. Namely, let us suppose that the moments Fi(#)(qz) are well
represented by the asymptotic expression on the right hand side of Eq. (2)
once q2 exceeds a certain limit;'cail it qoz, where qo2 is independent
of n; i.e., let us supﬁose that'the,asymptotic behavior described in Eq. (2)
is uniform in n. At the present stage of theofetical understanding this
is to be regarded as a frankly phenomenological coﬁjecture;lovwe.shall return
to warninés and comment§ later on. qu thé preseﬁt, 1ef us see what follows.

In genefal, the inverse to Eq. (1) 1is given by
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L0 +C
nel )
Iwz) L) dm ™ F (5) (22)
any sl
where the contour runs to the right of all singularities of Fi(n).

(n)

What we are assuming now, for q2 2 qoz, is that the Fi can be replaced

by the expression on the right hand side of Eq. (2). The expénent functions
an(i) can be explicitly computed and are known to Ee regular for all

Re n > -1. We shall assume that the bn(i) are simil#rlyuregular for Re n > ;1.

2 2 (n)
i

Altogether, then, we are assuming for q° 2 q,” that F is regular in

the region Re n > -1 and well approximated there by the right hand side
of Eq. (2).

If we are given the structure functions for some value of the
momentum transfer in the above asymptbtic region, say at the value qoz,

we could compute the moments F (n)(qOZ) and thereby the coefficients

i
bn(i) in Eq. (2). From our assumptions it then follows for all q2 > qo2
that
&) - dmh) |
3 - 2
(3) F (7) A (23)
wheré

1= 4R /4 %

(24)

In principle the full structure functions Fi(m,qz) can now be computed

for all q2 > qo2 on the basis of Eqs. (22) and (23). The practical
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implentation of this procedure, even apart from questions about the under-
lying assumption on which it is based, requires,ghe "input" information-
Fi(m,qoz); and also requires evaluation of the complicated integral of
Eq. (22). The practical difficulty arises, in part, from the fact that
the an(i) are complicated functions of n.(digamma functions are involved).
There are no issues of principle here; but the situation callé for numerical
approximations. Let us first deal with these. Fér definiteness we take the
underlying theory to be based on the‘gauge group SU(3)', with three quark
triple:s. Moreover, let us concentrate on the structure functions averaged
over proton and neutron targets.
For the structure function F,, the relevant exponent function
an(Z) has the following key properties:5
(1) 1t vaniéhes at n=0, reflecti;g the fact that the stress
tensor has canonical diméngions.ll
a°(2)=0; |
(ii) For large n, an(Z) grows like
an(2) ~ log n.

(111) The exponent function develops a pole12 at n=-1,

‘-a

2 (2) =
o1 n+l
This can be traced back to the presence of vector gluons in the under-
lying theory.
On the basis of therexacf results given in Ref. (5), we adopt the

following approximate expression for an(Z):



-
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4,6)x -1478 &Jirml) + 2,07 (?/mz) (25)

- 0 ,007‘/ - /c 333//’"‘}‘/) .

For large n the exact an(2) grows like A log n + B+ 0(%). The approximation

adopted in Eq. (25) gets the coefficients A and B right. It also incorporates

the exact residue for the pole at n=-1, and it satisfies a°(2)=0.

The exponent function an(3), relevant for F,, has properties

32
similar to those of an(Z), though with different numerical coefficients:
a log n growth for large n, a zero at n = 0, and a pole at n = -1,

The following expression incorporates these key features and represents
a reasonable approximation to the exact results: |

0

a.03)x 0.5%¢6 Lg(ma) — 0. 1YY — 6.2963 [fr+1). (26)

We shall have some comments to make in the next section about the

longitudinal structure function F For the purposes of this section,

L°
however, we accept that FL/F2 for electroproduction is already small
compared to unity in the q2 region of the SLAC-MIT experimenté.1
Moreover, the ratio is predicted to vanish as q2 + =, in the model under
discussion as well as in the simple quark-parton model. We shall suppose

that FL/F2 is also already small at modest values of q2 in the case of

the neutrino reactions.
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Our next task, then, is to settle on the input information
Fz(w,qoz) and Fs(w,qoz.). To be safely asymptotic we would like to
have these for "large enough" qoz. Detailed structure function information
for the neutrino reactionsis however still lacking. Apart from everything else,
therefore, we cannot.. at preéent proceed in a really quantitativeway.

-However, in order to see qualitatively what kinds of effects are to be

expected in the present framework, we adopt the following illustrative
hypothesis. Let us suppose that qozz 5(GeV)2 is already just sufficiently
asymptotic so that, for electroproduction, we can employ the SLAC-MIT
results for Fz(a}qoz). We may then employ a simple parton model (from

whose predictions we are expecting substantial departures only at much

[l

larger qz) to translate this into the F2 structure function for neutrino
reactions at qoz. The details of one such approach, and fit, are
discussed for example by Albright and Jarlskogl3. We shall adopt a
slightly modified-versionM of their Eq. (3.8c) to represent the
peutrino structure function F2, averaged over protons and neutrinos,

at qo:Z ﬁ 5(GeV)2. Concerning F3(w,q°2) we make use of the fact that

at CERN energies (where departures from s;aling are presumably still
small) the cross section r’air:ioz/r 0"‘7&‘;" = 2.0 _‘1"_. 0.2, s

fairly close to its upper bound, O’v/d-gs 3 . Te bouﬁd
corresponds to F3=-wF2. It _will simprli‘fy matters, and will ﬁgrhaps not
be too misleading for our qualitative purposes, if’we, accept this
i'elat;ion at the reference momentum transfer _qoz. . In any case, asymptotic
freedom implies .at very large q2 that | F3I 18 F, —> 0, hence that

0«»‘/0-)7 — / ‘asi £ < @ , Our input hypotheses mérely helpsus to
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get started on this road. .Wtien better starting information ﬁecomes ;
available one will be in a position to do a more serious and qualitative
extrapolation into the asymptotic region than is now possible.

' Given the approximations of Eqns.(25) and”(26), which are
reasonably good, and given lthe input structure functions, which are perhaps
-only illustrative, one can now work out the stfucture functions for all
qz > q°2 on the basis of‘ Eqns.(22) and (23). This has to‘be done
numerically, and a number of technical comments are assembled in the
Appendix. The qualitative behavior of the structure functions at
large q2 can be inferred rather directly from the properties of the
exponent functions, as has already been discussed in the literature.
Consider F2 (x,qz), for example, where for convenience we now work with
the variable % = w~! in place of W . Since ao(2)=0 it is obvious
that [ ’ F2 dx, the area under the_F2 curve, must become independent of
q2 in the farge q2 region. However, the shape of the curve changes with
changing q2. The behavior near threshold,15 i.e., near X =1, is clearly
governe>d by the large n properties of the exponent function. Since
an(2) grows, logarithmically, with n, it follows for increasing q2

that F, should vanish increasingly rapidly as % - I . On the other hand,

2
the behavior as % —> () is governed by the pole that an(2) develops at
=-1. At large qz, this leads to an unbounded growthlz’l6 as 9:-90,‘

proportional to exp {2 [G, 1&32 «6} Z'I]'/a} , where a is a constant
and 2 is proportional to log q2. The rate of growth as X->0

increases with increasing q2. It is obvious that these properties of

F2 are all shared also by the structure function F3.
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We shall not present here the results of our detailed
computafions of the structure fqnctions themselves, It will pi‘obably
be some time before F, and F3 can be ekperimentally determined in detail,
as functions of %' and large q2. Moreover, in particular for F2,
the behavior near =/ and 4 = has alrgady been discussed in
the literature. Instead, we shall display the = structure functions
in what are effectively partially integrated froms. Namely we co.nsidef
the partially differential cross sections, 90’/@5, and 9T/@x
obtainéd by integrating (Ja‘d’/axag over one or the other of the two
variables. For given beam energy & this requires knowledge of the
structure functions for all q2 up to the kinematic limit 2mé .
The preceeding discussion, given the basic assumpt‘ions adopted for this
sectior;, deais only with the asymptotic region q2 > qoz, where, ideally,
qo2 should be taken "large enough". 1In practif:e we are supposing that
q 02 somewl;lere in the SLAC-MIT region will do; and we have somewhat
optimistically taken qo2 N S(GeV)z. To discuss the differential cross
sections we must also know the cross sections for q2< qoz.‘ Here we
rely on the observation that scaling seems in fact to hold well enough
for modest q2, sa’y’v for q12< q2 < qdz, wheré q12. is,Perhaps of érder
a (GeV)z. It is stretﬁching things, however, to suppose that the
transition from scaling to asympt;otic behaviér;sets 'in sharply, for all 765
bat some particular qoz. Nevertheless, we are forced to this assumption.
This introduces certa;ln artifac‘ts ‘inr the fipél results , especially for low

beaxﬂ energies & where both the q2 £ qc’2 and q2 > qc’2 regions are
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* making comparable contributions.to the cross section. These effects, however, ‘EE‘
become less serious as one goes to large energies. There is aiso the problem
of scaling breakdown at the other end, for q2<: qlz. The low q2 region
(q2< qlz) contributes sigqificantly to the cross sections even for a2mE&

_substantially larger than 'qlz. It has always.been something of a puzzle,
therefore, even when strict scaling is assumed to hold beyond q12 ~ (GéV)z,
why the total cross sections become so nearly linear in B already at
a few GeV., These uncertainties about scalihg breakdown at low"q2 make
themselves‘felt in our computations here, although the effects become
unimportant for large beam energies. In practice we have simply cut off
all q% integrations below q12 = 1.0(GeV)2. For all of these reasons
we restrict ourselves to large energies f? . For the remaining
parametgr, the scale /ad’ we take /((“_.._. 0.5 »m: where m is the

proton mass.

(1) The y-distribution:

From Eqs. (3) and (4), and ignoring the longitudinal structure -

function FL’ we have

Y, U

20"
o

= f JorHuay + oy )/«s;)}

H(EY) = S o /_;'/75;f-2'msyx)J @n
‘ 0

/(/23): —f:!w X 6&) 52:2'»:{558) .

0

C
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If strict sclaing were to hold, both H and K would be constants and

the total .cross sectiohs. o v and (¢ v would grow linearly with
energy. Moreover, with xF3=—F2‘it would follow that H=K, which
implies: d’v/Ji'_: 3, @0‘”/9 =constant, and 00 ;/05 A~ (,__y)?..
Except for the question of scaling .bteakdown at very small qz, these are
precisely the results that.we are adepting as input for small energies

2, 5.0 mz). As we go up in energy, departures begin to

(m& < ¢
develop, sinze we are assuming onset of asymptotic behavior for

q2 > qoz. The functions H and K begin to acquire a dependence on the
argument E 3 The behavior at vsmalnl y still comes exclusively from
the scaling region, whereas the large y behavior (y—>1) reflects
contributions from q2 in the asymptotic region. With increasing energy
€ the transition moves increasingly towards small values of y.

The functions H and K in this region are sensitive to our assumption that
there ls:_ a sharp transition ftom scaling to asymptotic behavior. They
both undergo variations in th‘isv region but then become smooth and slowly
varying functions for larger rvalues of y.

To get the total cross sections we have to integrate over all y
in the interval 0-1,:and this birncl‘ud‘e‘s the problematic transition region.
For small energies the results, are sensitive to the choice of cutoff and |
to artifacts associated with the transition region. Once large energi-es
are reached roughly 8 50 GeV the behavior becomes smooth. Indeed,

to within the numerical accuracy of the computation o /E irsf then
essentially constant up to the highest energies ( a2 350 GeV) that we

have considered and 0 y/f rises very slowly toward e .

Eventually, as E—’iw) G”/GP must approach unity - on the



- 21 -

present model but also in fact for ény interacting field theory. This
is becaﬁse the singlet operators in the Wilson expansion must have
smaller dimensions than the correspondiﬁg non-singlet operators, owing
to positivity. Howéver, for asymptotical'ly free theories the approach
to unity is very slow,. réflecting thé fact that departures from scaling
are only logarithmic. Thus, we find that the ratio ( v/ g ;7,
which was equal to three in the scaliné region, has dropped only by
about 10 percent at £ = 200 GeV. Because of the transition region
artifacts, however, we can't be tbo precise about this number. What
is less sensitive, at large energies, afe the differential cross sections
0””/95, and @0’"”/95_ at large values of y. For &€ = 200 m and
1/2 ¢« y« 1 these are displayed in Figs. 1 and 2. For ’00“”/9J
in particular, we show for comparison the input curve (1-y) which
obfains at low energies. The changed behavior reflects the fact that
H and K, though they are slowly varying in y away from the Small y
region, a1:e no longer equal in magnftude away from small y.
(ii) The x-distribution:
As was discussed earlier, with increasing values of q2 we
expect the structure functions to fall oéf increasingly rapidly as
%<2 ] , and to grow increasingly i:apidly as X <0 . For
large energies £ , thch allow for contributions from large values
of q2, something of this comes through in the % - distributions
@o“v/zx and 90"»/9,? This is especially the case so far as
the ¢ - } behavior is concerned. Unfortunately, since for given X,
'qz cannot exceed 2mEx , the small % effects in the structure functions
- are somewhat washed out in the cross sections 90°/0x . Nevertheless,
for large energies the effects are visible. The results are shown in

Figs. 3 and 4, for & = 50 and 250 ' m.

b
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IV.. CORRECTIONS TO THE CALLAN-GROSS RELATION

In our discussion of the differential cross sections we have
ignored possible contributions from the longitudinal structure function

FL=F2-2%F1. For electroproduction the ratio FL/FZ is known to be

small already in the SLAC-MIT region. Moreover, both for electroproduction' '

and for the neutrino reactions,'asymptbtically free field theories and
the quark-parton model both agfee that‘fhis ratio must go to zero as
q2-arco : this is the Callan-Gross re]_.ation.9 However, although the
effects arising from FL may indeed be small, it is nevertheless interesting
to try to detect its contributions experimentally. Owing to the absence
of the photon propagator this may be_easier to do at large q2 in the
neutrino reaction than in electroproduction. In this section we shalli
cohsider the large q2 properties of the ratio FL/F2 in the context
. of asymptotic freedom. This will also prpvide an opportunityvto briefly
review some of the ideas of asymptotic freedom.17

Let us firsf recall how parton model relations among structure
functions are partial}y recovered inr an asymptotically free theory. We
adhere closely to the notations of Ref. (5); and for.simplicity we
restrict ourselves at first to SU(3) non-singlet structure fuﬁctions.

The analysis presented in Ref. (5), which is based on the w0rk18 of

Wilson, Callan and Symanzik, leads to relations of the form:

P . , : o '
e " Féxgt) = CL, a) M, (28)
g x X?) o 3) " S
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‘where F 1s a generic structure function, Mh is the matrix element of the

operator of spin n+2 appearing in the Wilson expansion, and Cn is the Fourier

-

transform of the éoefficient of this operator. The parameter ’/Z is
a reference momentum at which the coupling constant'g is defined.

(n)

The function C satisfies. a renormalization group equation

5 9 m -
[ eple-a o

whose solution is j% g:
ar
(ﬂ?/:g éi) C )?7 ) lﬂ]’Zr /ﬂ )k»(, 211) dn jF'

(30)
The effective coupling constant g(x) is defined through
d ‘) -
-éi = /9(3?(&Z>)
dx : (31)

g/a) ‘

In an asymptotically free theory g(;&«i ) - 0 as qz—? co

so that on the right hand side of Eq. (31) the Wilson coefficient

C(n)(l,é) approaches its free-field value. In this sense one recovers
the algebraic relations of the parton model, such as the Callan-Gross
relation F2—2¢T1=FL=0. Deviations from scaling, which formed the subject
6f the previous sections, come of course from the exponential factor

in Eq. (31).
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(n) (1

By evaluating C ,E) to the next order in perturbation . -
theory one obtains corrections to the parton model relations. A simple
calculation involving the graphs of Fig. 5 (in fact only 5a gives a

non-vanishing contribution) leads to thé (quark operator) result

@ o
Q'nfyurlr) _ Ff")( 2 .

- y 3wy 2, .
CGuark) 6“)('?9 lér* ne3

.L‘

where CZ(R)iis the quadratic Casimir operator for the representation of

the quarks. For the colored quark model we have CZ(R)=4/3' It should

be emphasized again that Eq. (32) refers to the SU(3) non-singlet combinations
of structure functions, e.g., the proton-neutron difference. The

left hand side of Eq. (32) 1is an experimentally defined quantity and

provides a direct determination of the effective coupling constant as a
function of q2. The smallness of g is required for self conmsistency of

our expansions, in the large q2 region that we are considering. One

. 4
can now invert Eq. (32), at fixedqu, to obtain

2 El(w’ ¢t), ,
/wj) yC(R),éz e [duw _.‘,_,w,;) (33)

where we have switched to td‘-'-"){'. In this way we see that

L, | 2 B
fuliy g7 —> K f‘; p w22, (34)
Fa/“’)?‘) for : '

5.'_(:).'-2? — k;_ (w—/)_z w= !,

szujg'} : it
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. where K1 and K2 are constants which may be computed from Eq. (33) if we
know the'grOWth properties of F2 as‘a function of 4) . For instance if
Fz—aw..‘/z'as w—-—ya; as expected from Regge arguments for the proton-

| neutron difference, then K1 =8CZ(R)/3(K1=32/9 for the colored quark
model). If F, (u)-l)P(qz)~ as W/, then K, = ACZ(R)/(P+1). “For

‘qz in the region of several (GgV)2 experiment suggests that P:z 3. With
more reliable input data one could try a global fit based on Eq. (33).

The q2 dependence of FL((J,qz)/FZ(LJ,qZ) is of course also

determined by Eq. (33). Once q2 is largerenough so that EZ/SE;Z is

small compared to unity we expect
-z " 2 —/
- A (%.3.) >
ur (35)

where the constant A is computable. For the colored quark model A=8Z779.
Since g is an experimental quantity, Eq; (35) therefore permits an
experimental determination of the parameter /ALZ. In the renormalization
group formalism /sz is- of course an arbitrary parameter, but we
might conventionally definé it by requiring a good fit to Eqs. (34) and (35).
Defined in this way, ;/xz is a fundamental parameter, which descﬁibes
the rate at which the strong interactions '"turn off" in the deep Euclidean
region.

In our previous discussion of the asymptotic inversion assumptions
" we had to express strong caveats about the uniformity in n of the
onset of asymptotic behavior for the moments. The question boiled down
to whether one can trust perturbation theory for the anomalogs dimensions

&;1’ especially with respect to the growth at large n and the
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singularity at n=-1. Concerning the former in particular, there is the . *
danger that higher order terms in perturbation theory lead to corrections

which increase with n. In the present context we must ask whether we

(n)
L

firmer ground, for the following feasons:

can trust perturbation theory for C /Cz(n). Here we believe that we 2re on

(a) In each order of perturbation theory the leading contribution to

an) as n —3&@ 1is given by vertex correction graphs, as displayed

(n)

in Fig. 6a. These give no contributions to CL . However, the graphs

of Fig. 6b, down by exactly one power of n as n — & , do contribute

(n)
L

behavior in Eq. (32) may therefore be realistic even beyond lowest

to C . There is no obvious non uniformity, therefore, and the r -+ «
order in perturbation theory.

(b) Graphs involving exchangé of two gluons do not contribute to the
rafio Cén)/C§n). Order by order in perturbation theory, therefore, it
seems that there are no singularities to/the right of n=—2.v Even if
the sum over all orders produces a moving singularity (as~q2 varies),

since the effective coupling constant at large q2 is small, such a

singularity should not move much to the right of n=-2. This is
relevant because Regge arguments suggest thaEngn) has a singularity
at n=-3/2 (for the non singlet case under discussion). Thercfore,

the i %-> O behavior of FL(x,qz,), obtaiped from the inversion of
: | ’ | |
. ﬂy _ (ﬁ)
fare Rongd = [aremBang) C/CY | o
o ‘

will be dominated by the singularity of Eén). This means that the behavior
predicted by Eq. (34) is not sensitive to the singularity structure of

C{n)/C§n) and should therefore be reliable.
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For SU(3) singlet structure functions the analysis is more
complicated,5 and theifesults are weaker. Here one has contributions
from the gluon operators in the light cone expansion. Their céefficients
vanish to zeroth ofder in g, but in order éz we have to consider the

graphs of Fig. 7. It turns out that only graph 7a gives a non vanishing

contrihution to C

™), .
( { o 2
CL J° ) = -i . C,‘(G)- h .
C;_b‘) (2uark) lex* i) (miy)

én). In fact, the gluon contribution leads to

We see that for large n the gluon contributions are negligible compared
to the purely quark contributions, Eq. (32). Thus the {J-»/ prediction
of Eq. (34) applies for the singlet as well as the non singlet case.

Tﬁe W > o prediction is also unchanged, in form, but the

coefficient Kl is no longer determined.

V. CONCLUSIONS

Our discussion of deviations from scaling, for deep inelastic
neutrino reactions in the context of asym@totically free theories, has been
at two levels, Concerning the growth properties of the total )} and i?
cross sections, wé could set lower and upper bounds without recourse to

serious assumptions going beyond the basic features of asymptotic freedom.

The bounds closely bracket a linear growth, so that in this respect deviations

.from scaling are predicted‘to be small.

In order to treat the structure functions in more detail, and

thereby the differential crosssections, we had to invoke uniformity
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assumptions of a speculative character. Given these, we ére letito
expect substantial deviations from scaling in the structure functions at
large q2. The effects are somewhat washed out in the partially:integrated
cross sections but ‘are still visible there, especially forvthe X
distributions as they change.shape with beam energy.
It is naturallto ask how these resﬁlts.cqmpare with expectations
for other possible mechanisms of scaling breakdown. In this connection
it is especially interesting to contemplate a situation where the strong
iﬁteractions afe governed by an abelian rather than a non abelian
gauge theory.19 Of course abelian theories are not asymptotically free.
That is, if there 1is a fixed point it is not at the origin of céupling
constant space. The anomalous dimensions,‘which are determined at the
fixed point, cannot tﬁerefore be reliaﬁly gotten by perturbation theory -
even if we. knew where the fixed point is located. Just for orientation,
however, suppose that the effective coupling constant at the fixed point is
very small, so that lowest order perturbation theory can be used. In
that cas; the anomalousdimensionswpuld have the éame general properties
as in the non-abelian case. The chief difference is that the analog of
Eq. (2) would contain q2/u2 in place of log (q2/u2) -
the scaling deviations, that is;'would-go like inverse powers of (q2/u2)
rather than inverse powers of log q2/u2. For the structure functions and
differential cross sections, therefore, the geheral trends would resemble those
of the non-abelian case, but the_éffects'woéld'ﬁe greatly magnified.
'There is another mechanism of ﬁossible scaling breakdown for

neutrino processes that has been discussed in the literature.20 The

idea here is to modiff the parton model solely through endowing the

- partons with form factors. The trends can be seen in the paper by Barger.
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APPENDIX

We present here some of the details of our procedure for
extrapolating the structure functions from oné value of q2 to “hiéher
values of q2. This involves inversion of the moment’s, Eq. (23), with
the a, given by Eq. (25) or Eq. (26). Let us quote three relevant

theorems on Mellin transforms:

(a) If

&,‘
[/ S Et)s Gitn),

then

-, | o
= fxf, | 9,/") ‘?a('”)»

w'hiZl ! ‘2_

O

where £eds e f “’“’ o oluiar).
| G
(b) If k>0, Y>C » xthen"'

| Y-/ o » ' |
,oma (%—) '-1‘/'2 W} = (;;{,? e "

,Q |

B
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-

" where I)) i is the modified Bessel function of index V-/.

-

(c) If f(1) = 0 and f(z.:)/w“*'l—ao as &-» €% , then

@ o
dw  -del A, o 9%
S8 w S f/w) = m+d+l) f o Jc/w).
‘i ™ 4w ( l_ld""“2 |

The moment problem that we encounter is

o (s = 5G)) Z_Q,.,)

(A.1)

where, with the approximations that have been adopfed, a, has the form

G, = Comstant + ﬁZ /C/;/%(%+o/§+l)+ m‘j";’; )

(A.2)

Our coefficients dls are positive. If all the C'ﬁ were similarly
positive we could invert Q—a’" by repeated convolutions, using (a) and
(b). One further convolution would then yield F(& ,q2). Actually, the C/‘g

are not all positive. 'However, if a given C;ﬁ is negative we can use

{(c) to write

Fn(3) = —— G (3,%; d3) (.3
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where

L |
G (375 4, = J -2 w*# Flu, g)

W - dw (A.4)

is known from the input data (which satisfies the requirement that °

F’(l,q02)=0). In this way we are led to consider the moment pfoblem
- L ' -
)= Gy ) 2

where ‘ : N

by = G+ («572)—-,3

The new problem has exactly the same structure as the original one,
2 2 . ‘ : ;
with Fn(qo )= Gn(qo 3 a(p ) and a — bn' By repeated iise of this

trick we can arrange (over some range of A which is big enough for

 our needs) that the modified C/4 are all positive. Indeed, with

sufficient repetition we can arrange ‘that the index 3 encountered in
(b) is always greater than unity.. This last allows us to avoid modified
Bessel functions of 'riegative'index.' The' latter are singular at the

origin and would be a nuisance for numerical work.
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FIGURE CAPTIONS

W v |
A plot of (——) 1dg for E = 200 m (solid line). For
G2m E dy
comparison we have plotted‘(dotted line) the function 0.50

v
(l—y) which is what (~=— 2 ) 1dg would be if scaling held

c%n E dy
with the structure function given by Albright and Jarlskog

(Ref. 13 and 14)

A plot of (G2 ) é-%ég for E = 200 m. Note the suppressed
zero. We seemthat Ea—yg-y is practicallly a constant from

= 1/2 to ;which is what scaling would predict.
A plot of (szE) do;iE) as a function of x for two different
energies (E=50 m anq_E=250 m.)
VA_plot of ¢ ;F') dd:EE) as a function of x for two

different energies (E=50 m and E=250 m).

Feynman diagrams contributing cbrrections to the Wilson
coefficients for fermion operators. The graphs (b) do not
modify the Callan~Gross relation.

Representative high order Feynman diagrams controlling the n
behavior of corrections to the Wilson expansion. (&) A.

typical leading contribution to C( ). This graph gives no

(n) (b) A leading contribution to C( n)

contribution to C
The bubbles represent radiatively corrected vertices.
Feynman diagrams contributing corrections to the Wilson coefficients’

for gluon operators. The graphs (b) do not modify the Callan-

Gross relation.
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