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ABSTRACT 

Several  aspec ts  of deep i n e l a s t i c  neut r ino  s c a t t e r i n g  are 

discussed i n  the  framework of asymptotically f r e e  f i e l d  theor ies .  

We f i r s t  consider t h e  growth behavior of t he  t o t a l  c ross  sec t ions  a t  

l a r g e  energies.  Because of t h e  devia t ions  from strict s c a l i n g  which 

are c h a r a c t e r i s t i c  of such theor ies  the  growth need not  be  l i n e a r .  

However, upper and lower bounds are es t ab l i shed  which r a t h e r  c lose ly  

bracket a l i n e a r  growth. 

\ 

We next consider i n  more d e t a i l  t h e  expected 

p a t t e r n  of s c a l i n g  devia t ion  f o r  t he  s t r u c t u r e  functions and, 

correspondingly, f o r  the  d i f f e r e n t i a l  c ross  sec t ions .  The ana lys i s  

he re  is based on c e r t a i n  specu la t ive  assumptions. 

q u a l i t a t i v e  e f f e c t s  of s c a l i n g  breakdown as they may show up i n  t h e  

The focus is on 

x and y d i s t r i b u t i o n s .  

from t h e  Callan-Gross r e l a t i o n .  

The las t  s e c t i o n  of t h e  paper dea l s  w i t h  devia t ions  
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I. INTRODUCTION 

... 

A cons iderable  t h e o r e t i c a l  indus t ry  has  b u i l t  up around 

t h e  idea  of  Bjorkeza s c a l i n g ,  which received its f i r s t  experimental support  

i n  t h e  SLAC-MIT experiments on e lec t roproduct ion  . 
i n  p a r t ,  has come from t h e  observation2 t h a t ’ t h e  t o t a l  c ross  sec t ions  f o r  

neut r inos  and anti-neutrinos on nucleons appear t o  grow l i n e a r l y  with energy 

1 Subsequent confirmation, 

beyond a few GeV. 

t h e  s c a l i n g  phenomenon is provided by the  well-known par ton  model. 

A simple and highly success fu l  phys ica l  p i c t u r e  of 

I n  3 

i ts  f i e l d  t h e o r e t i c  t r a n s c r i p t i o n ,  t h i s  model amounts t o  the  assumption 

of canonical dimensions f o r  t h e  twist-two opera tors  t h a t  appear i n  t h e  

Wilson expansion of a product of cur ren ts .  

clear, however, a t  least  i n  t h e  framework of renormalizable f i e l d  theory, 

that the  dimensions can be  canonical f o r  a l l  the  r e l evan t  opera tors  only 

i n  the  absence of i n t e r a c t i o n s .  S t r i c t  s ca l ing ,  therefore ,  if i t  were 

t o  p e r s i s t ,  would r e p r e s e n t  a major t h e o r e t i c a l  paradox. 

depar tures  from s c a l i n g ,  i f  they develop i n  a s u f f i c i e n t l y  pa t te rned  way, 

could a l s o  b e  informat ive  about t h e  s t r u c t u r e  of t h e  underlying theory. 

It has r ecen t ly  become 

On t h e  o t h e r  hand 

So f a r ,  the c loses  e has  come t o  strict sca l ing  is with  a s p e c i a l  

class of  t heo r i e s ,  based on non-Abelian gauge symmetry. Theories of t h i s  

. class possess the  proper ty  of  asymptotic freedom4 and l ead  t o  c e r t a i n  

cha rac t e r f s  t i c  p a t t e r n s  of s c a l i n g  breakdown 596’7 .  In the present paper 

w e  d i scuss  some of  t h e  observa t iona l  impl ica t ions ,  e spec ia l ly  

of neut r ino  reactions. 

c ross  sections on energy. 

One i s s u e  concerns t h e  dependence of t o t a l  neut r ino  

This is taken up, i n  Section 11, where upper 



and later bounds are derived on t h e  growth rate. The arguments employed & 
i n  t h i s  s ec t ion  involve.  very l i t t l e  i n  t h e  way of e x t r a  assumptions going 

beyond those i n p l i e d  by asymptotic freedom. It is found t h a t  t h e  growth, 

while i t  needn't  be exac t ly  l i n e a r  once strict s c a l i n g  breaks down, cannot 

depart  t oo  g r e a t l y  from l inea r .  

free t h e o r i e s  make t h e i r  most d e f i n i t e  pred ic t ions  f o r  the l a r g e  q 

behavior  of t h e  moments of t h e  s t r u c t u r e  funct ions.  Sect ion I11 is 

concerned wi th  convert ing t h i s  information i n t o  pred ic t ions  about the 

I n  the  present  context ,  asymptotically 

2 
I 

2 l a r g e  q behavior of 

non-uniformity arise 

the s t r u c t u r e  funct ions themselves. I ssues  of 

he re  i n  going from one t o  the o ther ,  so the d iscuss ion  

i n  Sec t ion  I11 is based on f rankly  specula t ive  procedures. 

however, is t o  assess qual i ta t ively 'how the breakdown of s ca l fng  could 

r evea l  i t s e l f  i n  c e r t a i n  aspects8 a f  t h e  d i f f e r e n t i a l  sec t ion .  

p a r t i c u l a r ,  one is l e d  t o  expect w h a t  could be  a s u b s t a n t i a l  change with 

energy i n  the  shapes of the x and y d i s t r i b u t i o n s .  Sect ion I V  

The aim, 

I n  

dea ls  w i t h  a somewhat d i f f e r e n t  sub jec t ,  namely, cor rec t ions  t o  the 

Callan-Gross r e l a t i o n ?  However this s e c t i o n  a l s o  provides a b r i e f  review 

of 

i s sues  mentioned above. 

poss ib l e  devia t ions  from s c a l i n g  which would arise from the propagator 

term of a weak vec to r  boson. 

no t  b e  not iceable  a t  present  energies;  bu t  i n  any case t h e  necessary 

modif icat ion could e a s i l y  b e  made. 

is  i m p l i c i t l y  r e s t r i c t e d  t o  s t rangeness  and charm-conserving neut r ino  

asymptotic freedom, and it contains  some comments on the non-uniformity 

Throughout t he  e n t i r e  d i scuss ion  w e  ignore 

I f  t h e  mass is very l a r g e  t h e  e f f e c t s  would 

I n  Sect ions I11 and IV the discussion 

reac t ions .  

u 



Bj 
11. BOUNDS 

We focus on t h e  neut r ino  r eac t ions  and t h e i r  s t r u c t u r e  functions 

Fi(w,q2), i = 1,2,3. Here q 2 is t h e  negative of t h e  inva r i an t  momentum 

2 
t r a n s f e r  and w = 2mv/q is t h e  Bjorken s c a l i n g  va r i ab le .  S t r i c t  s c a l i n g  

would imply t h a t  t h e  Fi(w,q2) approach f i n i t e  l i m i t s  as q 2 + m, f o r  f ixed  w .  

However, we are contemplating the  p o s s i b i l i t y  of departures from sca l ing ;  

and on present  thinking such depar tures  are expected t o  take on t h e i r  most 

c h a r a c t e r i s t i c  shape when expressed i n  terms of the l a r g e  q 2 behavior of 

t h e  moments of t h e  s t r u c t u r e  functions,  

For t h e  asymptotically f r e e  theo r i e s  under d iscuss ion  t h e  moments are 

predic ted  t o  d isp lay  logarithmic devia t ions  from sca l ing .  Namely, f o r  q 2 

l a r g e  enough (how l a r g e  may i n  general  depend on t h e  o rde r  n of t h e  moment) 

t he  pred ic ted  asymptotic behavior is 

where p is  a scale parameter no t  s p e c i f i e d  by the  theory. The 

c o e f f i c i e n t s  bn(i)  are s i m i l a r l y  unspecified; b u t  t h e  exponents an(i) 

are d e f i n i t e  and c h a r a c t e r i s t i c  of t h e  underlying theory. 

computed e x p l i c i t l y ,  given t h e  gauge group and t h e  quark content of t h e  

theory. 

They can be  
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(9; Actually,  t h e r e  w i l l  i n  genera l  be  several d i f f e r e n t  opera tors  of 

sp in  n+2 i n  t h e  Wilson expansion, each making a cont r ibu t ion  t o  t h e  r i g h t  

hand s i d e  of Eq. (2), each wi th  i ts  own c h a r a c t e r i s t i c  c o e f f i c i e n t  bn( i )  

and anti). 
t h a t  u l t ima te ly  dominates a t  l a r g e  q , and i t  is  t h i s  cont r ibu t ion  t h a t  

For every n ,  i t  is t h e  cont r ibu t ion  wi th  t h e  smallest exponent 

2 

is understood t o  be represented by t h e  r i g h t  hand s i d e  of Eq. (2). 

Equation (2) descr ibes  the  leading term i n  an expansion i n  

2 inve r se  powers of l o g  q and 

cons t ruc t  t h e  f u l l  s t r u c t u r e  

t h a t  the co r rec t ion  terms i n  
.) 

2 q . It would be  tempting t o  t r y  t o  re- 

func t ion  Fi(u,q2), f o r  l a r g e  q2, by supposing 

each moment are uniformly s m a l l ,  f o r  a l l  n ,  

when qL exceeds some n-independent value. We s h a l l  i n  f a c t  succumb t o  

t h i s  temptation later on, bu t  i t  is clear t h a t  any such procedure is 

highly  specula t ive .  A t  t he  present  s t a g e  of t h e o r e t i c a l  understanding 

t h e . o n l y  firm p red ic t ions  t h a t  follow from t h e  ideas  of asymptotic freedom 

are those  embodied i n  Eq. (2). Thus a sharp test of asymptotic freedom 

requ i r e s  the  d i f f i c u l t  experimentation involved i n  ex t r ac t ing  from t h e  

d a t a  the' i nd iv idua l  moments, as functions of q . 2 A more modest experimental 

o b j e c t i v e  is the  s tudy  of t o t a l  neut r ino  and an t ineu t r ino  c ross  sections- 

as-a func t ion  of energy. As is w e l l  known, s t r i c t  s c a l i n g  implies a l i n e a r  

growth wi th  energy, a t  l a r g e  energ ies ,  and indeed t h i s  kind of behavior 

is what is i nd ica t ed  by e x i s t i n g  data. The ques t ion  arises as t o  t h e  growth 

p r o p e r t i e s  t h a t  are t o  be expected f o r  theor ies  of t h e  s o r t  under present  

discussion. This  is our f i r s t  top ic .  We w i l l  see t h a t  both upper and lower 

bounds can b e  set on the  growth rate, on the  b a s i s  of the moment p rope r t i e s  

discussed above. It tu rns  ou t  t h a t  t he  bounds r a the r  c lose ly  bracke t  a 

l i n e a r  growth behavior. 
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The i n t e g r a l  i n  Eq. Cl]  is presumed t o  converge f o r  a l l  n 2 0. 

It the re fo re  def ines  the  Ffcn) as functions of complex n ,  regular  f o r  

Re n > 0. For t h e  present  d i scuss ion  we s h a l l  adopt t he  one add i t iona l  

assumption t h a t  t h e  a n a l y t i c a l l y  continued moment functions are r,egular 

f o r  a l l  Re  n > -no, where n 

independent of q 

Eq. (2). 

is  some s m a l l ,  bu t  non vanishing p o s i t i v e  number, 
0 

2 (n) are given by For given n ,  a t  l a r g e  enough q , t he  Fi 2 

The exponent functions anCi) t h a t  occur i n  that equation can be  e x p l i c i t l y  

computed and t u r n  o u t  t o  de regu la r  f o r  a l l  Re n > -1. 

t h a t  t h e  c o e f f i c i e n t s  func t ion  bnCi] are a l s o  r egu la r ,  a t  least f o r  R e  n 7 -n . 
In  the  following d iscuss ion  we  w i l l  be  concerned with real values of n i n  

t h e  v i c i n i t y  of n = 0. 

We are assuming 

0 

Let us now tu rn  t o  t h e  c ross  s e c t i o n  bounds f o r  

and t h e  corresponding an t inue t r ino  reaction. 

cor rec t ions  of order  m/E, w e  have f o r  

Dropping a t  t h e  o u t s e t  c e r t a i n  kinematic 

t h e  d i f f e r e n t i a l  c ros s  s e c t i o n  

I 

where t h e  upper s i g n  i n  the  l as t  term r e f e r s  t o  t h e  neut r ino  r eac t ions ,  the.  lower 

s i g n  to t he  an t ineu t r ino  reac t ions ;  and where 
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* To s u f f i c i e n t  accuracy f o r  our present  purposes, we note  the  inequa l i t i e s  

( 5 )  

(i) Upper Bound: - 
Using the i n e q u a l i t i e s  of Eq. CS], together  with t h e  inequal i ty  

1 - y + yz/2 c 1 

(for the Y o r  

f o r  0 < y 1, we see that t h e  t o t a l  cross sec t ion  

react ions)  is bounded according t o  

Now int roduce a p o s i t i v e  parameter y , i n  t he  range 

observe t h a t  

an inequa l i ty  t h a t  fol lows from the  p o s i t i v i t y  of Fz. 

0 c y .e no, and 

(71 

According t o  Eq. (Z), 

f o r  a l l  q2 > 0 and a l l  n >-n w e  have the  bound 
0 - 
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where t h e  B(n) are unknown cons tan ts ,  independent of q 2 ; and where t h e  parameier -2 q , 
-2 2 with q 

a l l  q 2 0 .  Define 

3 p , has  been supplied t o  guarantee t h a t  t h e  moment exists f o r  
Bd 

i 

Then 

8 

f o r  a l l  y i n  t h e  i n t e r v a l  0 .C y 

t h e  lead ing  sp in  two (n = 01 opera tor  i n  the  Wilson expansion is t h e  

stress tensor ,  an SUC3) s i n g l e t  w i th  canonical dimensions. This implies 

t h a t  an vanishes a t  n =. 0 and becomes negative for n < 0. 

y involved i n  Eq. (10) , t h i s  means t h a t  fCy] is pos i t i ve .  However f(y) 

can b e  made a r b i t r a r i l y  small by allowing 

as one wishes. We the re fo re  conclude t h a t  c/& grows with energy 

le6s r a p i d l y  t h a t  (,&E> , f o r  p o s i t i v e  b u t  a r b i t r a r i l y  small. 

(ii) Lower Bound: - 

n We now imroke t h e  r e s u l t  t h a t  
0 

8 

For the range of 

y t o  approach zero as c lose ly  

8 

From t h e  i n e q u a l i t i e s  of Eq. ( 5 )  we see t h a t  4 

W 
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L The expression on the r i g h t  hand s i d e  can i n  turn be  bounded from below 

if w e  shr ink  the  range of in tegra t ion .  I n  p a r t i c u l a r ,  l e t  us, say, double 

the  lower l i m i t  on the  x i n t e g r a l ,  so t h a t  (1-y] > l / b .  Moreover, l e t  

us replace the  upper. l i m i t  on t h e  q2 i n t e g r a l  by 2’?94€ /& Elm) , 
where y is some pos i t i ve  parameter. Next observe t h a t  

2 

Y 

where o( 7 0 , p > 0 

bound i n  Eq. (8) and require ,  i n  t h e  nota t ion  of Eq. ( 9 1 ,  t h a t  

and d +- 1 4 . W e  now invoke the 

Then it  read i ly  follows t h a t  

where C(d) depends on the  parameter bu t  not on t h e  energy & e 



The inequa l i ty  of Eq. (141 holds f o r  a l l  p o s i t i v e  values of f , d ,* and /Q , 
sub jec t  t o  Eq. (13) and ' to  

quant i ty  

o(+p < 'y)6 . We the re fo re  seek t o  minimize t h e  
hc, 

wi th in  these  cons t r a in t s .  From familiar i n e q u a l i t i e s  on moments of a p o s i t i v e  

func t ion  one has  t h a t  

Thus, f o r  f ixed &! one minimizes 8 wi th in  the  cons t r a in t  of Eq. (13) 

by l e t t i n g  / approach zero. Then from Eq. (13) it follows t h a t  

It remains the re fo re  t o  minimize 

with respec t  t o  d i n  t h e  range 0 C d< y)6 . Since i n  t h i s  

s ec t ion ,  corkervatively,  w e  allow f o r  t h e  p o s s i b i l i t y  t h a t  no may b e  

small, w e  s h a l l  simply set  d z b .  Recalling t h a t  f(O)=O, w e  the re fo re  

have the  bound 
~. . .  
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where 

The function f w ,  which i s  r e l a t e d  t o  t h e  exponent func t ion  an by Eq. ( 9 ) ,  

can be  computed e x p l i c i t l y ,  given t h e  gauge group and quark content of t h e  

underlying theory. For de f in i t eness  w e  adopt t he  theory of Refs. ( 5 ) ,  (6), (7) 

based on t h e  co lo r  group SU(3)' and containing these  quark t r i p l e t s .  

t h i s  theory one f inds  

For 

To summarize w e  f i nd  ( f o r  neu t r inoso r  an t ineu t r inos )  t h a t  

is bracketed a t  l a r g e  energies wi th in  the  l i m i t s  

where $ is an a r b i t r a r i l y  s m a l l  p o s i t i v e  constant and where F, which 

depends on the  s t r u c t u r e  of t he  underlying theory, is a cons tan t  of order  

un i ty ;  f o r  SU(3)' the  value is  given by Eq. (20). I n  der iv ing  these  

bounds w e  have made the  mild assumption t h a t  t he  moment func t ion  F2 

can be  continued a small, bu t  f i n i t e  d i s tance  

For t h e  rest t h e  r e s u l t s  depend s o l e l y  on Eq. (2 ) ,  which represents  t he  

(n) (q2) 

t o  the  l e f t  of n = 0,  f o r  a l l  q 



c h a r a c t e r i s t i c  p red ic t ion  of asymptotic freedom. The key technica l  f a c t  t h a t  b 
made i t  poss ib l e  t o  ach.ieve such c lose  bounds is  the  f a c t  t h a t  an=O f o r  n=O. 

What emerges from a l l  t h i s  is t h a t  t h e  t o t a l  c ross  sec t ions  are 

predic ted  t o  grow asymptotically i n  a way t h a t  cannot be  too d i f f e r e n t  

from l i n e a r .  

(which leads  t o  a l i n e a r  growth a t  l a r g e  energ ies )  is  expected t o  b e  

I n  t h i s  p a r t i c u l a r  respec t  t he  depar ture  from strict s c a l i n g  

1 very mild. On t h e  o t h e r  hand, deviations from s c a l i n g  have a chance 

t o  b e  more s u b s t a n t i a l  f o r  t h e  s t r u c t u r e  functions themselves, i n  t h e i r  

d e t a i l e d  dependences on q2 a t  each W .  To proceed f u r t h e r ,  however, one 

has t o  introduce'new assumptions t h a t  go beyond Eq. (2). We s h a l l  

introduce these  i n  t h e  following s e c t i o n ,  and a t t empt the re ' t o  follow out 

some of t h e  q u a l i t a t i v e  implications.  

111. THE STRUCTURE FUNCTIONS 

The discuss ion  i n  t h i s  s ec t ion ,  which is addressed t o  t h e  p rope r t i e s  

of t h e  s t r u c t u r e  functions at  l a r g e  q2, w i l l  b e  based on a highly specu la t ive  

assumption. Namely, le t  us suppose t h a t  t h e  moments F,(")(q*) are w e l l  

represented by t h e  asymptotic expression on the  r i g h t  hand s i d e  of Eq. (2) 

once q2 exceeds a c e r t a i n  l i m i t ,  ca l l  i t  qo , where q is  independent 

of n; i.e., l e t  us suppose t h a t  t h e  asymptotic behavior described i n  Eq. (2) 

is uniform i n  n. At t h e  present  s t a g e  of t h e o r e t i c a l  understanding t h i s  

2 
0 

. is t o  b e  regarded as a f rankly  phenomenological conjecture;" w e  s h a l l  r e t u r n  

t o  warnings and comments later on. For t h e  present ,  l e t  us see what follows. 

I n  genera l ,  t he  inverse  t o  Eq. (1) is given by 
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to tc 

(d where t h e  contour runs t o  t h e  r i g h t  of a l l  s i n g u l a r i t i e s  of Fi . 
(n) can b e  replaced 1 qo , is t h a t  t he  Fi 2 2 What w e  are assuming now, f o r  q 

by t h e  expression on the  r i g h t  hand s i d e  of Eq. ( 2 ) .  The exponent function6 

a (i) can be  e x p l i c i t l y  computed and are known t o  b e  r egu la r  f o r  a l l  

R e  n > -1. 

n 

W e  shall assume t h a t  t h e  b (i) are s i m i l a r l y  r egu la r  f o r  R e  n > -1. n 
(n) is r egu la r  i n  Altogether,  then, w e  are assuming f o r  q 2 qo2 t h a t  Fi 2 

t he  reg ion  R e  n > -1 and w e l l  approximated t h e r e  by t h e  r i g h t  hand s i d e  

of Eq. (2) .  

If we are given t h e  s t r u c t u r e  functions f o r  some va lue  of t h e  

2 momentum t r a n s f e r  i n  t h e  above asymptotic region, say a t  the  value qo , 
w e  could compute t h e  moments F (n) (qo2) and thereby the  c o e f f i c i e n t s  i 

2 2 
> qo bn(i)  i n  Eq. ( 2 ) .  From our  assumptions i t  then follows f o r  a l l  q 

t h a t  

where 

I n  p r i n c i p l e  t h e  f u l l  s t r u c t u r e  functions Fi(u,q2) can now be computed 

f o r  a l l  q > qo on the  b a s i s  of Eqs.  (22) and (23) .  The p r a c t i c a l  2 



implenta t ion  of t h i s  procedure, even apa r t  from quest ions about the  under- 

l y ing  assumption on which it is based, 

F i ( W 0  '), and a l s o  requi res  evaluat ion of t h e  complicated i n t e g r a l  of 

Eq. (22). The p r a c t i c a l  d i f f i c u l t y  arises, i n  p a r t ,  from the  f a c t  t h a t  

I 

requi res  the  "input" information 
L 

the  a (i) are complicated funct ions of n (digamma functions are involved). n 

There are no i s sues  of p r i n c i p l e  here ;  bu t  t he  s i t u a t i o n  calls f o r  numerical . 
approximations. L e t  us f i r s t  dea l  with these.  For de f in i t eness  we take the  

underlying theory t o  be based on the  gauge group SU(3) ', with th ree  quark 

t r i p l e t s .  Moreover, l e t  us concentrate  on the  s t r u c t u r e  funct ions averaged 

over pro ton  and neutron t a rge t s .  

For t h e  s t r u c t u r e  funct ion F2, the  re levant  exponent funct ion 

5 an(2) has the following key proper t ies  : 

(i) It vanishes a t  n=O, r e f l e c t i n g  the  f a c t  t h a t  t h e  stress 

11 tensor has  canonical dimens ions.  

a. (2)=0. 

(ii) For l a r g e  n,  a (2) grows l i k e  n 

a,(2) * log n. 

1 2  (111) The exponent funct ion develops a pole a t  n-1, 

-a 
an(2) -+ 

nc-1 n+l 

This can b e  t raced  back t o  the  presence of vec tor  gluons i n  t h e  under- 

l y ing  theory.  . .  

On t he  b a s i s  of t h e  exact  results given i n  Ref. ( 5 ) ,  w e  adopt t he  

fol lowing approximate expression f o r  an(2): 



I , *  
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1 For l a r g e  n the exact an(2) grows l i k e  A l og  n + B+ O(;;>. The approximation 

i adopted i n  Eq. (25) g e t s  t h e  c o e f f i c i e n t s  A and B r i g h t .  It a l s o  incorpora tes  I 

the  exac t  r e s idue  f o r  t h e  p o l e  a t  n=-1, and i t  s a t i s f i e s  a (2)=0. 
0 ! 

The exponent func t ion  a (3 ) ,  re levant  f o r  F has proper t ies  n 3' 

similar t o  those of  an(2), though with d i f f e r e n t  numerical coe f f i c i en t s :  

a log  n growth for l a r g e  n,  a zero a t  n = 0, and a pole  a t  n = -1. 

The following expression incorporates these  key f e a t u r e s  and represents  

a reasonable approximation t o  t h e  exact r e s u l t s  : 

'0 

W e  s h a l l  have some comments t o  make i n  the  next s e c t i o n  about t h e  

longi tudina l  s t r u c t u r e  func t ion  F L' 

however, w e  accept t h a t  FL/F2 f o r  electroproduction is already small 

compared t o  u n i t y  i n  the  q2 region of t h e  SLAC-MIT experiments. 

Moreover, the  ra t io  i s  predic ted  t o  vanish as q + O D ,  i n  t he  model under 

For t h e  purposes of t h i s  s e c t i o n ,  

1 

2 

discuss ion  as w e l l  as i n  t h e  simple quark-parton model. 

t h a t  F /F 

t h e  neut r ino  reac t ions .  

We s h a l l  suppose 

is also already small a t  modest values of q2 i n  t h e  case of L 2  
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Our nex t  task,  then, i s  t o  set t le  on t h e  input  information - 

F2(w,qo2) and F (w,qo2.). To be s a f e l y  asymptotic w e  would l i k e  t o  

have these  f o r  "large enough" q '. 
f o r  t he  neut r ino  r e a c t i o n s i s  however s t i l l  lacking. 

therefore ,  we  cannot a t  present  proceed i n  a r e a l l y  quantitativeway. 

3 

Detailed s t r u c t u r e  function information 
0 

Apart from everything else, 

However, i n  order  t o  see q u a l i t a t i v e l y  what kinds of e f f e c t s  are t o  b e  

expected i n  t h e  present  framework, we adopt the  following i l l u s t r a t i v e -  

2 hypothesis. L e t  us suppose t h a t  q o 2 2  5(GeV) is already J u s t  s u f f i c i e n t l y  

asymptotic so t h a t ,  f o r  electroproduction, w e  can employ the  SLAC-MIT 
2 r e s u l t s  f o r  F ( q ). W e  may then employ a simple parton model (from 

whose p red ic t ions  w e  are expecting s u b s t a n t i a l  departures only a t  much 

l a r g e r  q ) 

r eac t ions  a t  q . The d e t a i l s  of one such approach, and f i t ,  are 

~ 2 3 0  

2 t o  t r a n s l a t e  t h i s  i n t o  the  F s t r u c t u r e  func t ion  f o r  neut r ino  2 
2 

0 

discussed f o r  example by Albright and Jarlskog13. 

s l i g h t l y  m o d i f i e d . ~ e r s i o n ' ~  of t h e i r  Eq. (3.8~) t o  represent  t h e  

We s h a l l  adopt a 

neu t r ino  s t r u c t u r e  tunc t ion  F averaged over protons and neut r inos ,  2' 
a t  q: k 5(GeV)2. Concerning F3(w,q:) w e  make use of t h e  f a c t  t h a t  

at  CERN energies (where departures from scaling qre presumably st i l l  

small) t h e  c ros s  s e c t i o n  ratio2, 6Yr' = 2 0 6  2. 0.2, 

f a i r l y  c l o s e  t o  i ts  upper bound, 6 3 . 'Jhe bound 

is 

corresponds t o  F3=-wF2. It w i l l  s impl i fy  matters, and w i l l  perhaps not 

be too  misleading f o r  our q u a l i t a t i v e  purposes, i f  w e  accept t h i s  

r e l a t i o n  a t  t h e  re ference  momentum t r a n s f e r  q '. 
freedom implies 'at very l a r g e  q2 t h a t  I F3 I / w  F2 + 0 ,  hence t h a t  

I n  any case ,  asymptotic 
0 

67~; -7 / as. €+ W Our inpu t  hypotheses merely he lpsus  t o  
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, ’ get  s t a r t e d  on t h i s  road. When b e t t e r  s t a r t i n g  information becomes L 
a v a i l a b l e  one w i l l  be  -in a 

ex t r apo la t ion  

pos i t i on  t o  do a more ser ious  and q u a l i t a t i v e  

i n t o  the  asymptotic region than is  now possible.  

Given t h e  approximations of Eqns. (25) and”(26), which are 

reasonably good, and given t h e  input  s t r u c t u r e  functions,  which are perhaps 

only i l lustrat ive,  one can now work ou t  t h e  s t r u c t u r e  functions f o r  a l l  

on t h e  b a s i s  of Eqns.(22) and (23); This has t o  be done . 
2 

q 7 90 

numerically, and a number of t echn ica i  comments are assembled i n  t h e  

Appendix. The q u a l i t a t i v e  behavior of  t he  s t r u c t u r e  functions a t  

l a r g e  q2 can be  i n f e r r e d  r a t h e r  d i r e c t l y  from the  p rope r t i e s  of the  

exponent func t ions ,  as has already been discussed i n  the  l i t e r a t u r e .  

Consider F2(x,q ), f o r  example, where f o r  convenience w e  now work with 2 

the  v a r i a b l e  X =&I- ’ i n  p lace  of c3 . Since a (2)=0 i t  is obvious 
O r l  

t h a t  ] F dx, the  area under t h e  F curve, must become independent of 

q i n  the  l a r g e  q region. However, the  shape of t h e  curve changes with 

2 . 2  
2 0 2 

2 15 changing q . The behavior nea r  threshold,  i.e., near  25 ’1, is c l e a r l y  

governed by the  l a r g e  n p rope r t i e s  of t h e  exponent function. Since 

an(2) grows, logar i thmica l ly ,  with n,  i t  follows 

t h a t  F2 should vanish increas ingly  rap id ly  as 

the  behavior as % 9 0 is  governed by the  pole  t h a t  an(2) develops a t  

2 f o r  increas ing  q 

?I -p I . On t h e  o t h e r  hand, 

2 12,16 n=-1. At l a r g e  q , t h i s  leads  t o  an unbounded growth as y*o ,  

propor t iona l  t o  exp {2  I& 132 %g z”J% 3 
and 1 is propor t iona l  t o  log  q . The rate of growth as X J O  

, where a is a constant 
2 

2 inc reases  wi th  inc reas ing  q . It is obvious t h a t  these  p rope r t i e s  of 

F are a l l  shared a l s o  by the  s t r u c t u r e  function F 3’  2 
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re the  r e s u l t s  of our  d e t a i l e d  

computations of  t h e  s t r u c t u r e  functions themselves. 

be  some t i m e  be fo re  F2 and F 

as functions of 

t he  behavior nea r  F = /  and 9 = 0 has already been discussed i n  

the  l i t e r a t u r e .  Ins tead ,  w e  s h a l l  d i sp lay  the  s t r u c t u r e  functions 

i n  what are e f f e c t i v e l y  p a r t i a l l y  in t eg ra t ed  froms. Namely w e  consider 

t he  p a r t i a l l y  d i f f e r e n t i a l  c ross  sec t ions ,  @tf'/&J and ar/@ X 

obtained by i n t e g r a t i n g  92s/arail over one o r  the  o the r  of t h e  two 

var i ab le s .  For given beam energy E t h i s  requi res  knowledge of t h e  

s t r u c t u r e  functions f o r  a l l  q 

It w i l l  probably 

can be  experimentally determined i n  d e t a i l ,  

Moreover, i n  p a r t i c u l a r  f o r  F2, 
3 

2 and l a r g e  q . 

2 up t o  t h e  kinematic l i m i t  2 W E .  

The preceeding d iscuss ion ,  given the  b a s i c  assumptions adopted f o r  t h i s  

2 2 sec t ion ,  dea ls  only with the  asymptotic region q > qo , where, i d e a l l y ,  

should b e  taken "large enough". 

somewhere i n  t h e  SLAC-MIT region w i l l  do; and w e  have somewhat 

I n  p r a c t i c e  w e  are supposing t h a t  40 
2 

qo 
2 o p t i m i s t i c a l l y  taken qo2 2 5(GeV) . To d iscuss  t h e  d i f f e r e n t i a l  c ross  

2 2 sec t ions  we must a l s o  know t h e  c ross  sec t ions  f o r  q < qo . Here w e  

r e l y  on t h e  observation t h a t  s c a l i n g  seems i n  f a c t  t o  hold well enough 

2 2 2 2 f o r  modest q , s a y , f o r  q1 4 q < qo , where q12 is perhaps of o rde r  
ri 

a (GeV)L. 

t r a n s i t i o n  from s c a l i n g  t o  asymptotic behavior sets i n  sharp ly ,  f o r  a l l  Z, 
a t  some p a r t i c u l a r  q '. 
This introduces c e r t a i n  a r t i f a c t s  i n  t h e  f i n a l  r e s u l t s ,  e spec ia l ly  f o r  low 

It is  s t r e t c h i n g  th ings ,  however, t o  suppose t h a t  t h e  

Nevertheless, w e  are forced t o  t h i s  assumption. 
0 

2 2 2 beam energies E where both the  q '< qo and q 7 qo2 regions are 
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* making comparable cont r ibu t ions  t o  the  c ross  sec t ion .  These e f f e c t s ,  however, 

become less se r ious  as- one goes t o  l a r g e  energies.  There is a l s o  the  problem 

2 2 2 of s c a l i n g  breakdown a t  the  o t h e r  end, f o r  q q1 . The low q region 

2 2 (q 4 q1 ) cont r ibu tes  s i g n i f i c a n t l y  t o  the  c ross  sec t ions  even f o r  

subs t a n t i a l l y  l a r g e r  than q 

therefore ,  even when strict s c a l i n g  is assumed t o  hold beyond q 

why t h e  t o t a l  c ross  sec t ions  become so near ly  l i n e a r  i n  ’ 

a few GeV. 

S W E  

It has always been something of a puzzle,  * 
1 ’  

2 2 
(GeV) , 1 

E already a t  

2 
These unce r t a in t i e s  about s c a l i n g  breakdown a t  low q make 

themselves f e l t  i n  our computations he re ,  although the  e f f e c t s  become 

unimportant f o r  l a r g e  beam energies.  I n  p r a c t i c e  w e  have simply c u t  o f f  

a l l  4% i n t eg ra t ions  below q = l.0(GeV)2. For a l l  of these reasons 1 

w e  restrict ourselves t o  l a r g e  energies . For t h e  remaining 

parameter, t h e  scale & I ,  w e  take 

proton mass. 

a 1 ,& = 6.5 3u, , where m i s  the  

(i) The y-d is t r ibu t ion:  

From Eqs. (3) and (4), and ignoring t h e  long i tud ina l  s t r u c t u r e  

func t ion  FL, w e  have 
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I f  strict s c l a i n g  were t o  hold,  both H and R would be constants  and 8 . 

3 the  t o t a l  cross  s e c t i o k .  6 and fl' would grow l i n e a r l y  with 

s F 3 = - F  i t  would follow t h a t  H=K, which 2 energy. Moreover, wi th  

implies:  gv/6c 3 =constant ,  and afl 'hd Y (1-J): 

2 Except f o r  t he  quest ion of s c a l i n g  breakdown a t  very small q , these are 

p rec i se ly  the  r e s u l t s  t h a t  we are adopting as input  f o r  small energies  

(2m < q = 5.0 m 1. As w e  go up i n  energy, departures  begin t o  

develop, s i n c e  w e  are assuming onset  of asymptotic behavior f o r  

q me funct ions  H and R b e g i n  t o  acqui re  a dependence on t h e  

argument 6 . The behavior a t  small y s t i l l  comes exclusively from 

the  s c a l i n g  region,  whereas the  l a r g e  y behavior (y-31) r e f l e c t s  

cont r ibu t ions  from q2 i n  t he  asymptotic region. With increas ing  energy 

2 

0 

2 2 > qo . 
8 

t h e  t r a n s i t i o n  moves increas ingly  towards small values  of y. 

The funct ions H and IC i n  t h i s  region are s e n s i t i v e  t o  our assumption t h a t  

t he re  & a sharp  t r a n s i t i o n  from s c a l i n g  t o  asymptotic behavior.  

both undergo v a r i a t i o n s  i n  t h i s  region bu t  then become smooth and slowly 

varying funct ions f o r  l a r g e r  values  of  y.  

They 

To g e t  t he  t o t a l  c ross  sec t ions  w e  have t o  i n t e g r a t e  over a l l  y 

i n  the i n t e r v a l  0- l , .and t h i s  includes the  problematic t r a n s i t i o n  region. 

For small energies  t h e  r e s u l t s  are s e n s i t i v e  t o  the  choice of cu tof f  and 

t o  a r t i f a c t s  assoc ia ted  wi th  the  t r a n s i t i o n  region. Once l a r g e  energies  

are reached, roughly E 3 50 GeV, the  behavior becomes smooth. Indeed, 

t o  wi th in  the  numerical accuracy of t h e  computation f V / E  is then 

e s s e n t i a l l y  constant  up t o  the  h ighes t  energies  ( 350 GeV) t h a t  w e  

have considered; and 6'k 
Eventually,  as E 3 gv/C v' must approach uni ty  - on the  

- 
rises very slowly toward 6'& . 
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present  model b u t  a l s o  i n  f a c t  f o r  any i n t e r a c t i n g  f i e l d  theory. This 

is  because t h e  s i n g l e t '  opera tors  i n  t h e  Wilson expansion must have 

smaller dimensions than t h e  corresponding non-singlet opera tors ,  owing 

t o  p o s i t i v i t y .  However, f o r  asymptotically f r e e  theor ies  t he  approach 

t o  uni ty  is very slow,. r e f l e c t i n g  t h e  f a c t  t h a t  departures from s c a l i n g  

are only logarithmic. Thus, we f i n d  t h a t  t h e  r a t i o  fV/flLI 

which was  equal t o  t h r e e  i n  the  s c a l i n g  region, has dropped only by 

about 10 percent a t  E = 200 GeV. Because of t he  t r a n s i t i o n  region 

a r t i f a c t s ,  however, w e  c a n ' t  b e  too p rec i se  about t h i s  number. What 

is less s e n s i t i v e ,  a t  l a r g e  energ ies ,  are the  d i f f e r e n t i a l  c ross  sec t ions  

Sfy/08 and &/B& a t  l a r g e  values of y. For E = 200 m and - 
112 4 y e  1 

i n  p a r t i c u l a r ,  w e  

t hese  are displayed i n  Figs. 1 and 2. For abv/gJ 

which 2 show f o r  comparison t h e  input curve (1-y) 

ob ta ins  a t  low energies.  The changed behavior r e f l e c t s  t h e  f a c t  t h a t  

H and K, though they are slowly varying i n  y away from t h e  s m a l l  y 

region, are no longer equal i n  magnitude away from small y. 

(ii) The x-d is t r ibu t ion:  
2 As was discussed earlier, with increas ing  va lues  of q w e  

expect t he  s t r u c t u r e  functions t o  f a l l  o f f  increas ingly  rap id ly  as 

z 4 / , and to  grow increas ingly  rap id ly  as 2 -9 Q . For 

l a r g e  energies E , which allow f o r  cont r ibu t ions  from l a r g e  va lues  

of q , something of t h i s  comes through i n  t h e  $- d i s t r i b u t i o n s  2 

v r v / B g  ' and as'/*. This is  e spec ia l ly  the  case so f a r  as 

the  7! 9 behavior is  concerned. Unfortunately, s i n c e  f o r  given x, 
2 q cannot exceed 

are somewhat washed ou t  i n  t h e  c ross  sec t ions  9 6 / 0 ~  . Nevertheless, 

f o r  l a r g e  energ ies  the  e f f e c t s  are v i s i b l e .  

Figs. 3 and 4, f o r  E = 50 and 250 m. . 

J . r v , & ~  , t he  small p .  e f f e c t s  i n  t h e  s t r u c t u r e  functions 

The r e s u l t s  are shown i n  

I, 



. I  

i .  , - 22 - 

I V .  CORRECTIONS TO THE CALLAN-GROSS RELATION 

In ou r  d i scuss ion  o f  t h e  d i f f e r e n t i a l  c ross  sec t ions  w e  have 

ignored poss ib le  cont r ibu t ions  from t h e  long i tud ina l  s t r u c t u r e  function 

F =F -2$F1. 

small already i n  t h e  SLAC-MIT region. 

and f o r  t h e  neu t r ino  reac t ions ,  asymptotically f r e e  f i e l d  theo r i e s  and 

the  quark-parton model both agree t h a t  t h i s  r a t i o  must go t o  zero as 

q + 00 : 

e f f e c t s  a r i s i n g  from FL may indeed b e  small, i t  is  never the less  i n t e r e s t i n g  

t o  t r y  t o  d e t e c t  i t s  cont r ibu t ions  experimentally. 

o f  t he  photon propagator t h i s  may be  easier t o  do a t  l a r g e  q2 i n  

For e lec t roproduct ion  t h e  r a t i o  F /F is known t o  be L 2  L 2  
Moreover, both f o r  electroproduction 

2 t h i s  is t h e  Callan-Gross relation.’ However, although the  

Owing t o  t h e  absence 

t h e  

neut r ino  r eac t ion  than i n  electroproduction. I n  t h i s  s e c t i o n  w e  s h a l l  

consider t h e  l a r g e  q FL/F2 i n  t h e  context 

of asymptotic freedom. 

2 prope r t i e s  of t h e - r a t i o  

This w i l l  a l s o  provide an opportunity t o  b r i e f l y  

1 7  review some of t h e  ideas  of asymptotic freedom. 

L e t  us first recall how parton model r e l a t i o n s  among s t r u c t u r e  

functions are p a r t i a l l y  recovered i n  an asymptotically free theory. W e  

adhere c lose ly  t o  t h e  nota t ions  

restrict  ourselves a t  f i r s t  t o  SU(3) non-singlet s t r u c t u r e  functions.  

of Ref. (5); and f o r  s impl i c i ty  w e  

The ana lys i s  presented i n  Ref. (S), which is based on the  work18 of 

Wilson, Callan and Symanzik, l eads  t o  relat’ions of t h e  form: 
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where F is a gener ic  s t r u c t u r e  func t ion ,  M is the  matrix element of t h e  n 

opera tor  of s p i n  n+2 appearing i n  t h e  Wilson expansion, and Cn is  the  Fourier 

/K is ' transform of the  t o e f f i c i e n t  of t h i s  operator.  The parameter 

a re ference  momentum a t  which t h e  coupling constant g is  defined. 1 

me funct ion  c ( ~ )  s a t i s f i e s .  a renormalization group equation 

whose s o l u t i o n  is 

The e f f e c t i v e  coupling constant 'g(x) is defined through 

I n  an asymptotically f r e e  theory 

so t h a t  on the  r i g h t  hand s i d e  of Eq. (31) 

C(n) (1,g) approaches i ts  f r ee - f i e ld  value.  

rl 

t he  Wilson c o e f f i c i e n t  

I n  t h i s  sense  one recovers 

t he  a lgeb ra i c  r e l a t i o n s  of the  par ton  model, such as the  Callan-Gross 

r e l a t i o n  F2-2$F =F -0. Deviations from s c a l i n g ,  which formed the  sub jec t  
I 1 L' 

of the  previous sec t ions ,  come of course from t h e  exponential  f a c t o r  

i n  Eq. (31). 



f 

LJ By eva lua t ing  C(")(l,g) t o  the  next  order  i n  pe r tu rba t ion  r 

theory one ob ta ins  co r rec t ions  t o  t h e  parton model r e l a t i o n s .  A simple 

ca l cu la t ion  

non-vanishing cont r ibu t ion)  leads t o  the  (quark operator) r e s u l t  

involviqg t h e  graphs of Fig. 5 ( i n  f a c t  only 5a gives a 

where 

t h e  quarks. 

be  emphasized again t h a t  Eq. (32) r e f e r s  t o  the  SU(3) non-singlet combinations 

of s t r u c t u r e  func t ions ,  e.g., t h e  proton-neutron d i f fe rence .  The 

l e f t  hand s i d e  of Eq. (32) is an experimentally defined quant i ty  and 

provides a d i r e c t  determination of t he  e f f e c t i v e  coupling cons tan t  as a 

C (R) is  t h e  quadra t ic  C a s i m i r  opera tor  f o r  t h e  representa t ion  of 2 
For t h e  colored quark model w e  have C2(R)=4/3. It should 

z func t ion  of q . The smallness of is required f o r  s e l f  consistency of 

our  expansions, i n  the  l a r g e  q region t h a t  w e  are considering. One 

can now i n v e r t  Eq. (32) ,  a t  f ixed  q t o  ob ta in  

2 
\ 

2 

where w e  have switched t o  dd= %.! I n  t h i s  way w e  see t h a t  

bi 
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, where K and K are constants which may b e  computed from Eq. (33) i f  w e  

. For ins tance  i f  

1 2 

know the  growth p rope r t i e s  of  F2 as a func t ion  of 

F2+fdoI'.as h+U' as expected from Regge arguments f o r  t h e  proton- 
J 

neutron difference, .  then JL,. =8C2(R)/3(K1-32/9 f o r  t h e  colored quark 

model). I f  F2 ( a - 1 )  p(q2) as &+/,  then K2 = 4C2(R)/(P+1). For 

q i n  the  region of several (GeV) experiment suggests t h a t  P z  3. With 2 2 

more r e l i a b l e  input  da t a  one could t r y  a g loba l  f i t  based on Eq. (33). 
2 2 2 

The q 

determined by Eq. (33). 

dependence of FL(N,4 ) / F 2 ( d , q  ) is of course a l s o  

Once q2 is l a r g e  enough so t h a t  g2/8 t ' is  

small compared t o  uni ty  w e  expect 

2 
where the  cons tan t  A is  computable. 

Since is an experimental quan t i ty ,  Eq. (35) the re fo re  permits an 

experimental determination of t he  parameter /cc . 
group formalism pa is. of course an a r b i t r a r y  parameter, b u t  w e  

might conventionally de f ine  i t  by r equ i r ing  a good f i t  to Eqk. (34) and (35). 

For t h e  colored quark model A=8n"/9. 

z I n  t h e  renormalization 

. z  Defined i n  t h i s  way, /u 
the  rate a t  which the  s t rong  i n t e r a c t i o n s  "turn o f f "  i n  the  deep Euclidean 

region. 

is a fundamental parameter, which descr ibes  

I n  our previous discussion of t h e  asymptotic invers ion  assumptions 

. we had t o  express s t rong  caveats about t h e  uniformity i n  n of t h e  

onse t  of asymptotic behavior f o r  t he  moments. The question bo i l ed  down 

t o  whether one can trust per turba t ion  theory f o r  t he  anomalous dimensions 

rm, espec ia l ly  with respec t  t o  t h e  growth a t  l a r g e  n and t h e  



s i n g u l a r i t y  a t  n=-1. 

danger t h a t  h i g h e r  o rde r  terms i n  per turba t ion  theory lead  t o  cor rec t ions  

which increase w i t h  n. 

can t r u s t  pe r tu rba t ion  theqry f o r  CL(n)/C2(n'. Here we  be l i eve  t h a t  w e  cre on 

firmer ground, f o r  t he  following reasons: 

(a) I n  each order  of pe r tu rba t ion  theory t h e  leading cont r ibu t ion  t o  

C p )  as n +@ is given by v e r t e x  co r rec t ion  graphs, as displayed 

Concerning the  former i n  p a r t i c u l a r ,  t he re  is  the .  i 

I n  t h e  present context w e  must ask  whether w e  

i n  Fig. 6a. These g ive  no cont r ibu t ions  t o  CL (n) . However, t he  graphs 

of Fig. 6b, down by exac t ly  one power of n as n -> 03 , do cont r ibu te  

t o  CL (n) . There is no obvious non uniformity, therefore ,  and the  + 

behavior i n  Eq. (32) may therefore  be  real is t ic  

order  i n  pe r tu rba t ion  theory. 

(b) Graphs involving exchange of two gluons do not con t r ibu te  t o  t h e  

r a t i o  C p)/C2(n). Order by order i n  per turba t ion  theory, therefore ,  i t  

even beyond lowest 

seems t h a t  t he re  are no s i n g u l a r i t i e s  t o  t h e  r i g h t  of n=-2. Even i f  
/ 

t he  sum. over a l l  o rde r s  produces a moving s i n g u l a r i t y  (as .q 2 varies), 

s i n c e  t h e  e f f e c t i v e  coupling constant a t  l a r g e  q2 is small, such a 

s i n g u l a r i t y  shou ld 'no t  move much t o  the r i g h t  of n=-2. 

r e l evan t  because Regge arguments suggest t h a t  F2 

a t  n=-3/2 ( f o r  t h e  non s i n g l e t  case under discussio;l). 

t he  %* 0 behavior of FL(x,q2) obtained from the  invers ion  of 

This is 

has a s i n g u l a r i t y  
.:+i (n) 

Thcrcfore, 

w i l l  be dominated by t h e  s i n g u l a r i t y  of Ff). This means t h a t  t he  behavior 

pred ic ted  by Eq. (34) is  not  s e n s i t i v e  t o  t h e  s i n g u l a r i t y  s t r u c t u r e  of 

(n)/C:n) and should therefore  be  r e l i a b l e .  cL 
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1 ,  

1 

For SU(3) s i n g l e t  s t r u c t u r e  functions the  ana lys i s  is more 
I 

I , c o m p l i ~ a t e d , ~  and the  r e s u l t s  are weaker. Here one has  cont r ibu t ions  
i 

from t h e  gluon operators i n  t h e  l i g h t  cone expansion. 

vanish t o  zeroth order i n  g, bu t  i n  order  g w e  have t o  consider the  

graphs of Fig. 7. 

cont r ihu t ion  t o  C 

Their c o e f f i c i e n t s  

-2 

It turns  ou t  t h a t  only graph 7a gives a non vanishing 

(n) 
L O  

I n  f a c t ,  the  gluon cont r ibu t ion  leads  t o  

W e  see t h a t  f o r  l a r g e  n the gluon cont r ibu t ions  are n e g l i g i b l e  compared 

t o  t he  purely quark cont r ibu t ions ,  Eq. (32). Thus the  &+/ pred ic t ion  

of Eq. (34) appl ies  f o r  the  s i n g l e t  as w e l l  as the  non s i n g l e t  case. 

The Q + m  predic t ion  is a l s o  unchanged, i n  form, bu t  t h e  

c o e f f i c i e n t  K is  no longer determined. 1 

V. CONCLUSIONS 

Our discussion of devia t ions  from s c a l i n g ,  f o r  deep i n e l a s t i c  

neut r ino  reac t ions  i n  the  context of asymptotically f r e e  theo r i e s ,  has been 

a t  two levels. Concerning t h e  growth p rope r t i e s  of t h e  t o t a l  3 and 5 
cross s e c t i o n s ,  w e  could set  lower and upper bounds without recourse t o  

se r ious  assumptions going beyond the  b a s i c  f ea tu res  of asymptotic freedom. 

The bounds c lose ly  bracket a l i n e a r  growth, so t h a t  i n  t h i s  r e spec t  devia t ions  

from s c a l i n g  are predic ted  t o  be  small. 

LJ In  order t o  treat  the  s t r u c t u r e  functions i n  more d e t a i l ,  and 

thereby the  d i f f e r e n t i a l  cross sec t ions ,  w e  had t o  invoke uniformity 



assumptions of  a specu la t ive  character.  

expect s u b s t a n t i a l  devia t ions  from s c a l i n g  i n  t h e  s t r u c t u r e  functions a t  

l a r g e  q . 
crass 

d i s t r i b u t i o n s  as they change shape wi th  beam energy. 

Given these,  w e  are l e t  t o  

2 

s e c t i o n s  b u t ' a r e  s t i l l  v i s i b l e  there ,  e spec ia l ly  f o r  t h e  x 

The e f f e c t s  are somewhat washed ou t  i n  the  p a r t i a l l y  in t eg ra t ed  

It is n a t u r a l  t o  ask how these  r e s u l t s  compare with expectations 

f o r  o t h e r  poss ib l e  mechanisms of s c a l i n g  breakdown. I n  t h i s  connection 

i t  is espec ia l ly  interesting t o  contemplate a s i t u a t i o n  where the  s t r o n g  

i n t e r a c t i o n s  are governed by an abe l ian  r a t h e r  than a non abe l lan  

gauge theory. l9 Of course abe l i an  theor ies  are not  asymptotically f r e e  . 
That is, i f  t he re  is a f ixed  poin t  i t  is  no t  a t  the  o r i g i n  of coupling 

constant space. The anomalous dimensions, which are determined a t  the  

f ixed  po in t ,  cannot t he re fo re  be r e l i a b l y  got ten  by pe r tu rba t ion  theory - 
even i f  w e  knew where t h e  f ixed  poin t  is  located. 

however, suppose t h a t  the  e f f e c t i v e  coupling constant a t  the  f ixed  po in t  is 

J u s t  f o r  o r i e n t a t i o n ,  

vary small, so t h a t  lowest order  pe r tu rba t ion  theory can be  used. I n  

t h a t  case t h e  anomalous dimensionswould have the same genera l  p rope r t i e s  

as i n  t h e  non-abelian case. The chief d i f fe rence  is tha t  the analog of 

2 2  2 2  Eq. (2) would conta in  q /v i n  place of log (q /v ) - 
2 2  the  s c a l i n g  devia t ions ,  t h a t  is ,  would go l i k e  inverse  powers of (q /u ) 

r a t h e r  than inverse  powers of l o g  q /u . 
d i f f e r e n t i a l  c ros s  sec t ions ,  therefore ,  t he  genera l  t rends  would resemble those 

of 

2 2  For the  s t r u c t u r e  functions and 

* .  
t he  non-abelian case, bu t  t h e  e f f e c t s  would be  g r e a t l y  magnified. 

There is another mechanism of poss ib l e  s c a l i n g  breakdown f o r  

neut r ino  processes t h a t  has  been discussed i n  t h e  l i t e r a t u r e e 2 '  The 

idea  he re  is t o  modify the  parton model s o l e l y  through endowing t h e  
20 

partons with form fac to r s .  The trends can be seen i n  t h e  paper by Barger. 
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APPENDIX 

We present here some of the details of our procedure for 

extrapolating the structure functions from one value of q2 to higher 

values of q . This involves inversion of the moments, Eq. (23), with 

the an given by Eq. (25) or Eq. (26). L e t  us quote three relevant 

theorems on Mellin transforms: 

2 
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' where I is the  modified Bessel function of index Y - /  . 
(c) I f  f (1 )  = 0 and f@)/dn+'+ 0 as #+ c6 , then 

v- t 

The moment problem t h a t  w e  encounter is  

where, wi th  the approximations t h a t  have been adopted, an has  the  form 

Our c o e f f i c i e n t s  C$ are 

pos i t ive '  w e  could i n v e r t  

pos i t i ve .  I f  a l l  t h e  c were s i m i l a r l y  

2-% by repeated convolutions, using (a) and 
P 

(b). 

are no t  a l l  pos i t i ve .  However, i f  a given c is negative w e  can use 

(c) t o  w r i t e  

One f u r t h e r  convolution would then  y i e l d  F( L3 ,q2). Actually,  the CLJ 
/ 

P 
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W 

is known from t h e  inpu t  da t a '  (which s a t i s f i e s  t h e  requirement t h a t  

F(1,qo2)=O). I n  t h i s  way w e  are l e d  t o  consider t he  moment problem 

where 

The new problem has  exac t ly  the  same s t r u c t u r e  as the  o r i g i n a l  one, 

2 2 with Fn(qo )+Gn(qo ; u$ and a 9 b By repeated use  of t h i s  n n 

t r i c k  w e  can arrange (over some range of  2 
our needs) t h a t  t h e  modified c 
s u f f i c i e n t  r t i t i o n  w e  can rrange t h a t  t he  index Y encountered i n  

(b) is always g r e a t e r  than unity.  

Bessel functions of nega t ive  index. 

o r i g i n  and would be  a nuisance f o r  numerical work, 

which is b i g  enough f o r  

are a l l  pos i t i ve .  Indeed, w i th  p 

This l as t  allows us t o  avoid modified 

The l a t te r  are s ingu la r  a t  t h e  
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FIGURE CAPTIONS 

A p l o t  of (T)  - - d b Y  f o r  E - 200 c1 ( so l id  l i n e ) .  For 
G m  E dY 

comparison w e  have p lo t t ed  (dotted l i n e )  t he  func t ion  0.50 
c 

(1-yI2 which is what (+) 1. =* would be i f  s c a l i n g  held 
G m  E dY 

with t h e  s t r u c t u r e  function given by Albright and Jar l skog  

(Ref. 13 and 14). 

f o r  E = 200 m. Note t h e  suppressed A p l o t  of (T)  1- 
zero. We see t h a t  ISBY is p r a c t i c a l l y  a constant from 

d b t )  

~m E ~ Y  

E dY 
y = 1/2 t o  1 which is what s c a l i n g  would p red ic t .  > 

IC dd’E) as a function of x f o r  two d i f f e r e n t  dx 

energies (Et50 m and E=250 m.) 

A p l o t  of (-) 
G2mE 

& 

as a func t ion  of x f o r  two ddY(E) 
dx A p l o t  of ( F )  

G mE 
d i f f e r e n t  energies (Et50 m and 6-250 m) . 
Feynman diagrams cont r ibu t ing  cor rec t ions  t o  the  Wilson 

coefficienLs f o r  fermion opera tors .  The graphs (b) do not  

modify the  Callan-Gross r e l a t i o n .  

Representative high order  Feynman diagrams con t ro l l i ng  t h e  n 

behavior of cor rec t ions  t o  t h e  Wilson expansion. (a) A 

t y p i c a l  leading cont r ibu t ion  t o  C2 . This graph gives no 

cont r ibu t ion  t o  C 

The bubbles represent  r a d i a t i v e l y  cor rec ted  v e r t i c e s .  

Feynman diagrams cont r ibu t ing  cor rec t ions  t o  the  Wilson c o e f f i c i e n t s  

f o r  gluon operators.  

(n) 

(n) (n) 
L *  (b) A l ead ing  con t r ibu t ion  t o  CL . 

The graphs (b) do not  modify the  Callan- 

L 

Gross r e l a t i o n .  

Lid 
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