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ABSTRACT 

Asymptotically free gauge theories of the strong interactions 

are constructed and analyzed. The reasons for doing this are 

recounted, including a review of renormalization group techniques 

and their application to scaling phenomena. The renormalization 

group equations are derived for Yang-Mills theories. The para- 

meters that enter into the equations are calculated to lowest 

order and it is shown that these theories are asymptotically free. 

More specifically the effective coupling constant, which determines 

the ultraviolet behavior of the theory, vanishes for large space- 

like momenta. Fermions are incorporated and the construction of 

realistic models is discussed. We propose that the strong inter- 

actions be mediated by a "color" gauge group which commutes with 

SU(3)xSU(3). The problem of symmetry breaking is discussed. It 

appears likely that this would have a dynamical origin. It is 

suggested that the gauge symmetry might not be broken, and that 

the severe infrared singularities prevent the occurrence of 

non-color singlet physical states. The deep inelastic structure 

functions, as well as the electron position total annihilation 

cross section are analyzed. Scaling obtains up to calculable 

logarithmic corrections, and the naive lightcone or parton model 

results follow. The problems of incorporating scalar mesons and 

breaking the symmetry by the Higgs mechanism are explained in 

detail. 
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I. INTRODUCTION 

In recent years the renormalization group has played an 

increasingly important role in the study of the asymptotic 

behavior of renormalizable field theories. This approach has 

acquired new importance due to the recent discovery that non- 

abelian gauge theories are asymptotically free. (1,2,3) In this 

paper we shall amplify and extend the results reported in 

Reference 1. 

The renormalization group dates from the fundamental 

work of Gell-Mann and Low (4) , who studied the asymptotic behavior 

of the photon propagator in quantum electrodynamics. The remarkable 

discovery of Gell-Mann and Low was that the asymptotic form 

of the photon propagator was determined by the zeroes of a certain, 

calculable, function of the coupling constant and not by the 

actual value of the charge. The renormalization group equations 

were extended by Bogolubov and Shirkov to the vertex function (5) 

and employed to analyze the ultraviolet and infrared behavior 

of quantum electrodynamics and other field theories. (6,7) (For 

a review of this work see Reference 8). 

The basic idea underlying the renormalization group equations 

is very simple. A renormalizable field theory contains two types 

of parameters--masses or coupling constants with positive dimen- 

sions of mass (i.e. due to MT9 or X4 3 terms in the Lagrangian) 

and dimensionless coupling constants (i.e. due to A$ 4 or TA'$JA~ 

terms in the Lagrangian). Coupling constants with negative 

dimensions of mass give non-renormalizable theories. If one 

considers a Green's function for large and spacelike momenta 

(so as to exclude any Landau singularities), then one would 
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expect that the generalized mass terms in the Lagrangian (MT+ or Xrj3) 

could be neglected. In other words the leading asymptotic behavior 

of the Green's functions should be the same as would be calculated 

in a massless theory. This can be proved, to any finite order 

in perturbation theory, by using Weinberg's theorem. (9) . The 

massless theory contains no dimensional parameters to set the 

scale of momenta, therefore one might expect that the asymptotic 

behavior of the amplitudes would be determined by pure dimensional 

analysis. This is called naive or cannonical scaling. It does 

not occur in practice, since the massless theory does contain 

a hidden dimensionful parameter. This parameter, u, must be 

introduced in order to perform the subtractions necessary to 

renormalize the theory and render it finite. Due to infrared 

singularities these subtractions, for the massless theory, must 

be performed off-shell, L z say at some space-like momenta p = - u . 

The subtractions then define the physical coupling constants and 

the scale of the fields (which are determined by the wave function 

renormalization constants). The subtraction point, u, is arbitrary. 

If we change the subtraction point the net effect is to change 

the value of the coupling constants and the scale of the fields. 

This fact is expressed by the renormalization group equations. 

A change in the subtraction point, )J, is equivalent to a 

change in the scale of all momenta since )I is the sole parameter 

that fixes the momentum scale. Therefore one can use the renor- 

malization group to relate Green's functions for one set of 

momenta and coupling constant to Green's function for a scaled 

set of momenta and different values of the coupling constants. 
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To do this one only needs to know the functions which determine 

the change in coupling constant and scale of fields due to 

a change in p. In particular the asymptotic form of the ampli- 

tudes (for large space-like momenta) can be replated to amplitudes 

at some fixed momenta and an effective coupling constant (which 

would be determined by performing the subtractions at asymptotic 

values of the momenta). The asymptotic value of this effective 

coupling constant will determine the ultraviolet behavior of 

the theory. It is given by the zeroes of a calculable function, 

which are called fixed points of the renormalization group. 

For about ten years there was little interest in the 

renormalization group. (10) This was probably due to the following 

reasons. First the renormalization group provided information 

about Green's functions for large space-like momenta, which are 

of no direct physical interest. This approach is much less 

informative about Minkowski momenta and on-shell amplitudes - 

since we lack an extension to this region of Weinberg's powerful 

theorem.(') Second it was soon discovered, in all the cases 

investigated at the time, that the ultraviolet behavior 

was not calculable using perturbation theory. Thus it appeared 

that the renormalization group provided a framework in which 

one could discuss, but not calculate, the asymptotic behavior 

of amplitudes in a physically uninteresting region. 

This situation has changed in the last few years due to the 

following developments. First there was an increased interest 

in the matrix elements of local currents at short distances (11) 
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(or their Fourier transforms for large space-like momenta). 

This interest was further increased by the advent of new 

experiments on deep-inelastic lepton-hadron scattering at 

SLAC, and by Bjorken's prediction and the experimental 

indications of scaling (12) 
. The theoretical framework for the 

discussion of products of currents at short distances was 

provided by Wilson's operator product expansion (13) . Although 

Wilson had emphasized that, in general, one does not expect naive 

scaling the experimental indications of Bjorken scaling moti- 

vated the development of phenomenological scaling models. One 

approach was to abstract from free field theory, or interacting 

field theories with an ultraviolet cutoff, the short distance 

structure of current products (14) ,the other was to hypothesize 

the existence of point-like constituents of hadrons (partons). (15) 

Assuming a quark field theoretic model, or that the partons had 

the quantum numbers of quarks many relations and sum rules were 

derived. At present the experimental data is consistent with 

spin-one-half'16) quark-like constituents. All attempts to 

provide dynamical explanations for these models were unsuccessful. 

Meanwhile significant developments of the renormalization 

group techniques were made. The equations that determine the 

change in momentum scale of massive field theories were derived 

by Callan(17) and Symansik.(18) These equations, for large 

space-like momenta, reduce to the differential form of the 

renormalization group equations already derived by Orsiannikov 

in a little noticed paper in 1956. (19) In addition it was 

realized that the renormalization group approach is the key 

to asymptotic behavior of the coefficient functions in Wilson's 
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operator-product expansion, and thus the related behavior of elec- 

troproduction structure functions in the Bjorken region. (20,21,22,23) 

In particular it was realized that Bjorken scaling could be 

understood within the framework of the renormalization group 

if there was an ultraviolet (UV) stable fixed point of the 

renormalization group. At the fixed point, however, the anomalous 

dimensions of the relevant operators in Wilson's expansion would 

all have to vanish. All the indications are that this can only occur 

if the value of the fixed point of the renormalization group is 

zero. (24,25) This has recently been proved in a large class of 

field theories. (26) In such a theory the effective coupling 

constant vanishes for large space-like momenta and we describe 

this phenomena by saying that the theory is asymptotically free. 

An asymptotically free theory will exhibit Bjorken scaling 

(up to, perhaps, logarithmic corrections) and in addition will 

lead to all the naive lightcone or parton model results. (26) 

The possibility that a given field theory is asymptotically 

free is easily explored by simple perturbation theory calculations. 

Quantum electrodynamics was known, from the original work of 

Gell-Mann and Low, not to be asymptotically free. A. See 

extended this result to scalar-fermion theories involving one 

coupling constant. (27) Recently S. Coleman and one of us 

(D.J.G.) have proved that no theory which does not involve 

non-abelian gauge mesons can be asymptotically free.(28) 

Together with the recent discovery that non-abelian gauge 

theories are asymptotically free (1,2,3) these developments 



6 

provide a compelling case for a non-abelian gauge theory of the 

strong interactions. Indeed if one accepts the renormalization - 

group approach and the experimental reality of Bjorken scaling 

as an asymptotic phenomena then there is, probably, no other 

choice.(2g) This possibility is explored in the following. 

In Section II we shall outline the derivation of the 

renormalization group equations for pure Yang-Mills theories 

(which involve only gauge fields). These equations are discussed 

in greater detail in Appendix I. We also discuss the notion 

of the effective coupling constant and exhibit the solution of 

the renormalization group equations. 

In Section III we calculate the renormalization group 

parameters for pure Yang-Mills theories. 

In Section 1" we incorporate fermions into the gauge 

theories, without destroying their asymptotic freedom. The 

large momentum behavior of the effective coupling constant and 

Green's functions is derived. 

In Section V the construction of realistic physical models 

of the strong interactions is discussed. We analyze the structure 

functions of deep inelastic scattering and the total electron- 

positron annihilation cross-section in these models. These 

applications will be explored further in a forth-coming publi- 

cation.(30) The major problem remaining in these gauge theories 

is how to break the gauge symmetry and provide masses for the 

vector mesons. Various dynamical possibilities are discussed 

in Section V. 
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In Section VI we incorporate scalar mesons into asymptotically 

free gauge theories. The difficulties encountered in achieving 

this are described, and the failure to construct models in which 

the Higgs mechanism generates masses for all the vector mesons 

is explained. 

Section VII contains some concluding remarks. 



II. THE RENORMALIZATION GROUP EQUATIONS 
FOR YANG-MILLS THEORIES 

In this section we shall derive the renormalization group 

equations for a pure Yang-Mills theory. The only restriction 

on the form of the theory will be the requirement that the gauge 

group be non-abelian and semi-simple. 

The classical Yang-Mills Lagrangian density is: 

L = -; Tr {aFiB" - 8 B - 
v lJ 

where 

B,, (x) = BUa (x) * t a 

(2.1) 

(2.2) 

is a matrix of Hermitien vector fields (summation over repeated 

indices is implied). The matrices ta generate a semi-simple Lie 

Group G: 

(2.3) 

and are normalized according to 

Tr tatb = i 6ab (2.4) 

This Lagrangian is singular due to its invariance under 

the gauge group. Therefore a proper quantization of (2.1) 

necessitates the addition of a gauge fixing term to the Lagrangian, 

say - $ Tr (au Buj2. The presence of this term then requires 

the appearance of Feynman-' Fadeev-Popov ghosts (31) . The net 

result is that the effective Lagrangian, used to derive the 

Feynman rules is 
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Tr {auBv - a B - g b,Bv, I2 - ; Tr (auBQj2 v u 

+ 2 Tr iallg*ap$ - gau$* [B,, $1 1 

where $I = eata is a massless, complex, scalar field which propagates 

in closed loops only and obeys Fermi statistics. The resulting 

Feynman rules are summarized in Figure 1. 

Due to the presence of massless particles and the resulting 

infrared singularities it would appear that the S-Matrix does 

not exist, at least in perturbation theory, for the pure Yang-Mills 

theory. One can however consider the off shell Green's function 

for such theories, (32 1 at all but exceptional momenta. In the 

following, this restriction is always to be understood. The 

large momentum behaviour of such Greens functions is not without 

physical interest since it bears directly on the ultraviolet 

behaviour of more realistic models with symmetry breaking and 

mass terms. 

Up till now we have discussed the Yang-Mills theory formally, 

that is without regard to the necessary renormalization procedure. 

There exist two ways of regularizing these theories. The most 

elegant method is that of dimensional regularization as discussed 

by t'Hooft and Veltman. (33) Alternatively, one can add gauge 

invariant higher derivative terms to the Lagrangian, following 

Lee, Zinn-Justin and Slavnov. (34'35both of these methods have 

the necessary virtue of maintaining explicit gauge invariance. 

With such a regularization the only primitively divergent 

amplitudes are the vector-meson and ghost two and three point 

functions and the vector-meson four point function. The necessary 
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subtractions are severely restricted by the Ward identities, 

which render all divergences logarithmic and and relate the 

various divergent amplitudes. This is merely a reflection of 

the gauge invariance which limits the renormalized couplings 

to those displayed in the Lagrangian (2.5).(36) 
The theory is then determined by specifying the subtraction 

constants at some convenient subtraction point. It is, of 

course, impossible to subtract at zero four momentum, due to 

the infrared singularities. One therefore performs the subtraction 

at an (arbitrary) Euclidean point p2 = - p2. 

We define the vector wave function renormalization constant 

Z3 in terms of the unrenormalized transverse vector propagator: 
I 

Dtr un (k);; = (2.6) 

the ghost wave function renormalization constant Z3 in terms of 

the unrenormalized ghost propagator: 

G 

the vector charge renormalization constant Zl in terms of the 

unrenormalized vector three-point vertex: 

r abc 
un (Ptqrr)uvA = Zil $$iE (P,q,r)llvh 

(2.7) 

(2.8) 

I P2 = q2 2 2 =r c-p 

and the ghost-vector charge renormalization constant ?1 in terms 

of the unrenormalized ghost-vector three point vertex: 



r:hbrc (p;q,r)ll = 21' relic biqrr)p 

p2 = q2 = r2 = - lJ-2 

11 

(2.9) 

The Ward identities (34,35) ensure that these constants are 

related by: 
Q, ?, 

z3'zl = z3/z1 

and that the longitudinal part of the inverse vector propagator 

is unrenormalized: 

D;; (k) ;‘: = . . . + ; kukv 
U 

(2.11) 

where CL u is the unrenormalized gauge parameter. 

The renormalized Green's functions are then defined by scaling 

the fields according to: 

(B;lr = Z3+ 'B;)U 

($aJr = ;;4 MalU 

and defining the renormalized charge to be 

+3 
gr = z 

2 z -l 
3 1 % 

and the renormalized gauge parameter to be 

-1 
a = z r 3 % 

The renormalized one-particle irreducible (1PI) Green's 

functions r:yf.lln (P1..Pn) C r (2) is the inverse propagator): 

(2.12) 

(2.13) 

(2.14) 

rcn) (P . ..P ) = zni2 rcn) 
vl..un 1 n 3 (P ul..lJn 1 "Pn)unrenormalized (2.15) 
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are then finite functions of the renormalized charge g, gauge 

parameter a, and the renormalization point p. (When g and c1 

appear without subscripts they will refer to their renormalized 

values). 

The choice of renormalization point, u, is arbitrary. Any 

change in p can be compensated by a corresponding change of the 

charge, the scale of the fields and the gauge parameter. The 

renormalization group equations reflect this fact. These 

equations are most simply derived (37) by noting that the 

unrenormalized 1PI's T dn)(A;gu) (we suppress the momenta and 

vector index labels of these lPI's), when expressed as functions 

of the cutoff, the bare coupling constant gu and the gauge 

parameter au are independent of p: 

a 
Y5J ru (n) (A,gu’“u) = 0 (2.16) 

Using equation (2.15) and the chain differentiation rule we 

have: 

{u iv + B(g,a)& - ny(g,cl + 6(g,u)&l rCn) (g,a,u) = 0 (2.17) 

where: 

22 B(gra) = lJap 
I LTptaur A fixed, (2.18) 

v(gra) = si!J a.enz3 
au I qlJr eu,h fixed, 

S(g,a) = 1-I g 
I gllrauI A fixed. 

(2.19) 

The fact that B,y,6 are finite functions of g and a is an 

immediate consequence of (2.17) and the fact that r (n) is 

finite when expressed in terms of the renormalized parameters. 
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The last term in the renormalization group equation is 

peculiar to gauge theories. As a consequence of Equation 2.14 

we have that 

=.- 2ay (g,a) 
gunaur A fixed 

(2.21) 

The renormalization group equations assume a particularly 

simple form in Landau gauge where au = CL = 0, for in that gauge 

6 = 0. This is a reflection of the fact that the longitudinal 

part of the vector propagator vanishes in this gauge, and a 

change in renormalization point does not change the gauge parameter. 

In the following we shall often restrict ourselves to this gauge. 

Ultimately we are interested in the physical consequences of 

these theories which are determined by gauge invariant amplitudes. 

For such amplitudes the change in gauge parameter can be reabsorbed 

by a change in coupling and scale of fields. This is explained 

in some detail in Appendix I, where we also show that the lowest 

order terms (of order g3) in B(g,c) are independent of a. 

The utility of the renormalization group equations is that 

they determine the change in the Green's functions as we scale 

all momenta uniformly. Consider the 1PI amplitudes 

rCn) OPl, XP2 ..,Apn;g,~) (in Landau gauge), where pi is some 

set of non-exceptional Euclidean momenta, and X is a non-vanishing 

parameter. Pure dimensional analysis implies that: 

rCn) (hp i,..xPn:g,V) = !J 4-nr (n) (Xpl -, .., APn) 
!J T 

(2.22) 
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so that (2.17) can be rewritten as: 

I: a 
k 

a 
- B(g)q - 4 + n(l+y(g)) I 

rCn) (Xp l'"xPn;g,U) = 0. (2.23) 

The general solution of (2.23) is most transparently 

expressed in terms of the effective coupling constant FJ (t,g): 

t = anA 
(2.24) 

g T(t,g) = S(G), gto,gj = g 

This function is given implicityly by: 

5 s dx 
g m =t 

and satisfies: 
C 

a a 
%I- B(g) z 7 T(t,g) = 0. 

(2.25) 

(2.26) 

The physical meaning of the effective coupling constant 

g(t,g) is that it equals the renormalized coupling constant 

defined by performing the subtractions indicated in (2.6-g) at 

the Euclidean point p2 = - u2h2 = - p e . 2 2t It is expressed 

in terms of the renormalized coupling constant g (which was 

determined by subtracting at p2 = -l12). The renormalization 

group equation (2.24) then determines the effect on s of a 

change in the subtraction point. 

In terms of g we have: 

r(n) UP,, ..Ap,;g,!l) = r(n)(pl,...,pn;9(t,g),u)A4-n 
(2.27) 

-p-n St dx Y [ ?Cx,g;) . 
0 
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Of particular interest is the large X limit of this solution, 

for it determines the ultraviolet behavior of the Green's functions 

even in the presence of mass terms (which here must arise from 

symmetry breaking). This limit will in turn be controlled by 

the large t behavior of the effective coupling constant g(t,g). 

If equation (2.4) admits a solution such that 

Lim. S (t,g) = gra (2.28) 
t+- 

then we say that g, is an ultra-violet stable fixed point. The 

asymptotic behavior of r (n) is then controlled by g, according to: 

r(“)(;ip, ,..., hpn,g,p) + r(“)(pl ,..., p,;g,,iJ) i4.4-n-ny(g-) 

exp-n lgnhiy [ g(x,g;] -y (g,\ }dx 

(2.29) 

so that y(g,) is the anamalous dimension of the field. 

The fixed points of the renormalization group are determined 

by the zeroes of B(g); i.e. B(g,) = 0. However not all such 

zeroes are W stable. Thus if (3 has a simple zero at gm this 

will be W stable if and only if 

s (9,) = 0 ; %S(g_) (0 (2.30) 

a zero of B at which 9 > 0 is said to be an infrared (IR) stable 
dg 

fixed point, since q approaches such a fixed point when x+O(t+-a). 

A theory is said to be asymptotically free if gm vanishes. 

In that case y(g,) = 0 and the Green's functions can be expanding 

for large Euclidean momenta, in a asymptotic series in g(t) 

(plus a modification due to the integral in 2.29). Since in 

all theories B(0) = 0, the origin of coupling constant space 

is either W or IR stable. It has recently been proved (28 ) 
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that no renormalizable field theory without non-Abelian gauge 

fields can be asymptotically free. 

Asymptotically free field theories are clearly of great 

theoretical interest. They provide one with models in which 

the asymptotic behavior of amplitudes is calculable by ordinary 

perturbation theory. In addition there appears to be evidence, 

experimental and theoretical, that such theories are required 

to explain deep inelastic scattering. The phenomena of scaling 

predicted by Bjorken(") is, up to logarithmic corrections, 

a true asymptotic feature of asymptotically free theories. 

Furthermore, it now appears that Bjorken scaling can only occur 

if the strong interactions are asymptotically free. (26) The 

fact that the only theories that can be asymptotically free are 

those involving non-abelium gauge fields and that, as we shall 

see in the following, asymptotically free gauge theories can 

be constructed is a strong argument for a gauge theory of the 

strong interactions. 
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III. CALCULATION OF THE RENORMALIZATION GROUP PARAMETERS 

We shall now proceed to calculate the renormalization group 

parameters B and Y to lowest non-trivial order in perturbation 

theory, that is to order g3 and g2 respectively. To calculate 

these functions one must calculate the renormalization constants 

z3 and Zl to order gL and use Equations 2.18-19. These constants 

can only depend on the renormalization point )J via the ratio 
A 
C' where n is the ultraviolet cutoff. It is therefore sufficient 

to calculate the logarithmically divergent terms (of order g2) 

in Z 3 and Zl. It then follows that 

B(g,a) = - g k 
312 II I z3 

zl 

y,(g,a) = - + & RnZ3. 

(3.1) 

(We denote the anamalous dimension of the vector mesons by y,.) 

The calculations are thus greatly simplified. In particular 

it is not necessary to specify the regularization method employed. 

The wave function renormalization constant is determined 

by the vector meson self energy graphs shown in Figure 2. We 

calculate from these graphs and 2.6 that: 

z3 C2 (G) ihA (3.3) 

where C,(G) is the value of the quadratic Casimir operator for 

the adjoint representation of the gauge group G. Namely: 

c c 
c,d acdCbcd = C2 (G) 6ab; (3.4) 

in the case of SU(N):C2(SU(N)) = N. 

Similarly the charge renormalization constant is determined 



18 

by the Feynman graphs shown in Figure 3 and yield 

zl =I+$ (y - F) C2(G)9.nA (3.5) 

A useful check on the above calculations is provided by the 

Ward-identity, Equation 2.10, which relates the vector meson 

and the ghost renormalization constants. The latter are much 

easier to calculate. The relevant graphs are shown in 

Figures 4 and 5 and result in 

?i 2 

z3 
=I+% 

16s 
C2(G)LnA 

% 2 

z1 
,1+L 

161~~ 
(-a) C2(G)9.nA 

The calculation of B and y, is then mere arithmetic. 

result is: 

B (g,u) = - 2- 
16a2 

y C2 (G) + O(g’) 

v,(g,a) = - C2 (G) 

(3.6) 

(3.7) 

The 

(3.8) 

(3.9) 

It is obvious from the above that for these gauge theories 

the origin is W stable! If g 
2 is small enough then the solution 

to 2.24 will approach zero, as i for large t. We shall explore 

the consequences of this following the incorporation of fermions. 

We cannot provide a deeper understanding of why non-abelian 

gauge theories are so different from all other field theories 

in this respect. Perhaps the serious infrared singularities 

of Yang-Mills theories are reflected in the IR instability, and 

thus the W stability of the origin. 
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IV. INCORPORATION OF FERMIONS 

We now consider a gauge theory which includes matter fields. 

Fermions are easily incorporated without introducing any new 

coupling constants, and without destroying the asymptotic freedom. 

We add fermions by adding to the Lagrangian the term: 

LF =v (iJ-M-goa .Ba)JI (4.11 

where the c a are the matrices of the representation R of the 

gauge group G according to which $ transforms. The fermions 

may have non-vanishing, but symmetric, masses since we are not 

considering here chiral gauge groups. 

In the presence of a fermion mass the renormalization group 

equations are no longer valid. Instead one can derive the 

Callan-Symansik equations (17,18) which contain, in addition to 

the renormalization group operator, an inhomogeneous term 

arising from mass insertions. The renormalization group 

parameters are unaffected by these mass terms. For large 

Euclidean momenta the Callan-Symansik equations reduce to the 

renormalization group equations. This is a consequence, to any 

finite order in perturbation theory, of Weinberg's theorem. 

More precisely consider the large A limit of a Green's function 

r(") (Api) for nonexceptional Euclidean momenta. The leading 

power in h of rcn) to any finite order in perturbation theory 

is denoted by ri$ (Api) and satisfies the renormalization 

group equation (e.g. Eq. 2.23). We should emphasize that 

an important assumption is being made here, namely, that the 

leading power behavior of perturbation theory is identical 

with that of the actual solution. 
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The effect of the fermions on 5 and y is easily calculated. 

The fermions contribute to Z3 via the graph shown in Figure 6 

and to Zl via the graph shown in Figure 7. The.se yield the 

contributions 

ZF = ZF 
2 

3 1=- 33 
iT(R)knA (4.2) 

where T(R) is defined by: 

Tr (uaub) = T(R)Gab (4.3) 

We note the elementary identity between the value of the Casimir 

operator for the representation R and T(R) given by: 

rT(R) = d(R)C2(R) (4.4) 

where d(R) is the dimension of the representation R and r the 

dimension (number of generators) of the group. For example, 

in the case of SU(N) we have for the vector representation (N) 

T((N)) = %, C2((N)) = N2-1 whereas for the adjoint representation 
2N 

T(ADJ.) = N = C2(G). 

The equality of Z; and Zf 1s an immediate consequence of 

the Ward identity, Eq. 2.10, and the fact that ?!l and x3 receive 

no contributions from fermion loops to lowest order. The resulting 

contributions to B(g) and y(g) are 
3 

B,(g) = + "2 
161~ 

g T(R) 

2 
ycF) (g) = + ";T; T(R) 

V 16a 

(4.5) 

(4.6) 

These contributions are opposite in sign to those arising from 

the vector meson loops. Thus the fermions tend to destabilize 

the origin. However there is room to spare. As long as 
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T(R) < 11 C (G) 4 2 (4.7) 

the theory will be asymptotically free. This requirement is 

not very restrictive as to the number of fermions allowed in the 

theory. For example if the gauge group is ~~(31 [ c2 = 33 

one can accommodate as many as sixteen triplets or two octets 

of fermions within losing asymptotic freedom. 

It is therefore possible to construct a large class of 

theories in which the renormalization group equations for the 

effective coupling constant g(t,g) take the form: 

where 

d ~ s2 = -4 
2gB(;?)= -bog -6 

+ big + . . 

b. = 1 

8a2 c 
F C2(G) - $ T(R) 1 . 

The structure of this equation assures us that as long as 

g(O,g) is small enough then for large t we will have 

s2(t,g) : b. -It-l 
t-t- + blbo -3t-2P.nt + O(s) . 

t 

(4.8) 

(4.9) 

(4.10) 

This will be the true asymptotic behavior of the effective 

coupling constant as long as s (o,g) = g is in the domain of 

attraction of the fixed point s = o (38) . The size of this 

domain is determined by the value of the first zero of B(g), 

namely if: 

B(g) = 0 for g = 41 (4.11) 

then the domain of attraction of the origin is given by: (39) 

0 q2 <g12 . (4.12) 
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Perturbation theory of course tells us very little about the 

non-vanishing zeroes of B. If we calculate S to any finite order 

we might expect zeroes to occur at values: 

T2 C2 (G) I O(1) 
4-r 

(4.13) 

since this is the effective expansion parameter. On the other 

hand such approximations to 5 are totally unreliable for these 

values of g. It is perfectly possible that in gauge theories 

t3 is negative semi-definite and all values of the coupling 

constant are in the domain of attraction of the origin. Clearly 

for such theories to describe the strong interactions it is 

necessary that this domain be relatively large. It would 

therefore be useful to know the value of bl, which we have 

not calculated. 

The value of bl would be interesting in another context. 

Since it is possible, by including the requisite number of 

fermions, to render b. very small, one might hope to construct 

models for which gl is very small. For example if the gauge 

group is SU(3) and we have 16 or 17 triplets of fermions then 

b. will equal 
5 Or - 5 respectively. This value 

is suppressed by a factor of roughly thirty compared to the 

'natural' scale of bo. Therefore unless there are similar 

cancellations in the calculation of bl, we would expect g12 

to be rather small, and calculable to a good approximation 

from the two loop expression for B. If this is so one could 

construct models which have UV stable fixed points at zero or 
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gl and IR stable fixed points at gl or zero respectively. These 

would provide interesting theoretical models in which both the 

ultraviolet and the .infrared asymptotic behavior would be 

calculable! 

The physical consequences of asymptotic freedom will be 

explored in the following section and in a subsequent paper. 

It is clear, from the discussion in II, that the ultraviolet 

asymptotic behavior of all Green functions can be calculated. 

Thus the n-vector meson 1PI will behave, for large Euclidean 

momenta according to Eq. 2.29. If we define (we shall work 

in Landau Gauge): 

u,(g) = cog2 + c1g4 + . . . 

where 
2 

C =- 
0 

+c2(G) -+I) 
1 

r 

(4.14) 

(4.15) 

then: 

rCn) (Xp,,..., A--, 
n 

x r(")(pl,...,P,;O,~) + r(")(P1,...Pn;&,u)+ O(T) (4.161 
0 

where: 
t 

In = exp-n 

s 
dx CY, [ h.gij - coy22 ---) const.+ 0 (- . 5 (4.17) 

A+= !LnX 0 



24 

In particular the transverse part of the vector meson 

propagator behaves like: 

kk 
Dtr W$ 2 6ab(gu, - - 

cO/b 

k -f-m 
E2" (ink21 o I2 . (4.18) 

To calculate the asymptotic behavior of Green's functions 

involving fermions we require the anamalous dimension of the 

fermion field yp. This is readily calculated (except for group 

theoretical factors it is the same as in QED): 

YF(g,a) = g2fo + 
2 

. ..=+ a C2(R) + . . . 
1611 

(4.19) 

Thus the fermion propagator behaves for large momenta according 

to: 
f 

O/b 
SF (P) 2 (Qnp2) 0 

p S.-.x 
(4.20) 

It is a important feature of asymptotically free theories 

that the Greens functions are not strictly given by their free 

field theory expression for infinite momenta, due to the presence 

of the logarithmic term in (4.16). These arise because the 

anomalous dimensions vanish like -2 -2 
g , and g vanishes only 

logarithmically as X+m. This, of course, is a consequence 

of the fact that B(g2) has a double zero at g = 0. 2 These 

logarithmic corrections to free field behavior are calculable 

and independent of the coupling constants. They can be computed 

by calculating the relevant anomalous dimension to second order. 

The above Green's functions are of little physical interest due 

to their gauge dependence. However, as we shall see shortly, 

the physically interesting Green's functions of gauge independent 



25 

operators (currents in particular) exhibit essentially the same 

asymptotic properties. 

We emphasize that the derivation of the Green's functions in 

asymptotically free theories does not require the existence of 

a convergent perturbation theory. It is sufficient to assume 

that perturbation theory yields an asymptotic expansion, for 

small coupling constant, of the relevant amplitudes. In that 

case the renormalization group equations provide, for asymptotical 

free theories, a true asymptotic expansion of Green's functions 

for large Euclidean momenta. 

lY 
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V. MODELS AND APPLICATIONS 

In order to construct realistic non-abelian gauge models of 

the strong interactions one must confront the issue of symmetry 

breaking. The standard means of breaking the gauge symmetry 

is to introduce scalar mesons explicitly into the Lagrangian. 

As will be explained in Section VI it is very difficult to pre- 

serve asymptotic freedom while incorporating scalar mesons, and 

perhaps impossible to include enough scalars to completely break 

the gauge symmetry. This is not too disappointing since the 

explicit introduction of scalar mesons, whose only role is to 

break the symmetry, is not very pleasing. An alternative is 

that the gauge symmetry is dynamically broken. In other words, 

a composite Goldstone-boson is formed and is eaten up by the 
(40) usual Higgs mechanism . Another possibility is that the gauge 

symmetry is exact! At first sight this would appear ridiculous 

since it would imply the existence of massless, strongly coupled 

vestor mesons. However in asymptotically free theories these 

naive expectations might be wrong. There may be little connection 

between the "Free" Lagrangian and the spectrum of states. 

The possibility of dynamically induced spontaneous symmetry 

breaking has been considered by many authors (43,44) , although 

no realistic model has been constructed which does not involve 

fundamental scalar fields. Of particular interest is the work 

of Coleman and Weinberg(44). They shown that theories involving 

massless particles often become unstable, due to infrared 

singularities, and exhibit spontaneous symmetry breaking. The 

infrared singularities of a Yang-Mills theory are particularly 



27 

severe. Furthermore, zero coupling,for such theories, is an 

ultra-violet stable fixed point and therefore infrared unstable. 

This means that (neglecting masses) as the momenta decrease 

the effective coupling constant increases. Perturbation theory 

is therefore totally unreliable insofar as the small momenta 

behavior of an asymptotically free theory is concerned. The 

same renormalization group techniques allow one (44) to discuss 

the small or large classical field behavior of the "potential". The 

infrared instability of the origin indicates the unreliability 

of the classical (free) approximation to this potential. Thus 

whether or not the theory exhibits symmetry breaking is a 

difficult dynamical question, requiring non-perturbative calcu- 

lations. 

If the gauge symmetry is broken by a dynamically induced 

Higgs mechanism then the vector mesons will acquire masses (say 

l-3 BeV) and the color degeneracy will be split. In that case 

one would still be faced with the fact that there is no experimental 

evidence for the existence of such neutral vector mesons, colored 

hadrons and especially quarks. The proponents of "red, white 

and blue" quarks(42) as a mathematical abstraction argue that the 

color SU(3) group should be exact, and that all non-color singlets 

suppressed completely. One clearly requires a dynamical explanation 

of such a miracle. It might very well be the violent infrared 

singularities of an asymptotically, free gauge theory provide the 

requisite dynamical mechanism. 

To illustrate some of the strange things that could occur 

in the region of small momenta consider a pure Yang-Mills theory 
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(no fermions). Then the renormalization group equations, 

Equation 2.23, as well as the general solution, Equation 2.27, are 

exact. One can use them to discuss the on-mass shell, or infrared 

behavior of the theory by letting: h-+0, t=Rnh-+-m. The effective 

coupling constant S, which controls the dynamics in this region 

is given (in terms of Fj(t=o, g)=g) as usual by 

s 4(t) &=t g 5.1 

The behavior of s as t+-m will depend on the actual form of 

B(g). We can distinguish two cases: 

A. B(g) vanishes at g=gl<m. In this case g(t) will 

approach glas t+--, its rate of approach will depend on the 

nature of the zero. This is the simplest case to envisage, 

the Green's functions will scale according to Equation 2.29 with 

some anomalous dimension. 

B. B(g) is always negative. Here we must further specify 

whether the integral 

s 

m 

T= 

g 

5.2 

is finite or not. 

If T=m then s(t) approaches infinite values 4s t+--. Indeed 

if B(X) 2 xu, 
- 

cccl, for large x then s (t) * (-t)'-" for larse t. 

If on the other hand T is finite then the effective coupling 

constant diverges for finite momenta. In fact g(T,g)=m. 

The infrared behavior of Green's functions in this case is 

determined then by the strong coupling limit of the theory. It 
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may very well be that this infrared behavior is such so as to suppress 

all but color singlet states, and that the colored gauge mesons 

as well as the quarks could be "seen" in the large Euclidean 

momentum region but never be produced as real asymptotic states. 

This is an exciting possibility which requires further examination. 

In any case it might be valid to assume that whatever happens 

to the theory for small momenta does not affect the ultraviolet 

behavior. We shall therefore construct models and calculate 

quantities of physical interest leaving the problem of symmetry 

breaking (or the lack of it) to further work. 

Since we are not to worry about symmetry breaking,our models 

need not include scalar mesons. We therefore have only to specify 

the strong interaction gauge group, G, and the fermion represen- 

tation R. We would like, of course, to preserve Gell-Mann's 

(approximate) SU(3lxSU(3) symmetry. This is simply achieved by 

taking the gauge group to commute withthe ordinary SU(3)xSU(3) 

generators; and having the fermions belong to a representation 

of SU(3)xSU(3)xG. (41) We shall take the fermions to be ordinary 

triplet quarks. The fermions can then be represented by a matrix 

of spinor fields: 

p1 "1 9 

Y= p2 "2 A2 

I i . 

PL nL AL 

5.3 

The generators of SU(3)xSU(3) transform the columns of this matrix, 

whereas the generators of G transform its rows. The fermions thus 
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transform as an L dimensional representation (R) of the gauge 

group G. 

In such a scheme the vector mesons associated with the 

generators of G are neutral with respect to SU(3)xSU(3). 

The labels 1,2... L which distinguish the different quark triplets 

can be thought of as colors, so that the strong interactions 

are mediated by colored gauge mesons. Colored quarks have been 

considered before (42 1 for other reasons, and there is some 

evidence that three colors would be welcome. We shall therefore 

consider a model in which the strong gauge group is SU(3) and 

the fermions are color triplets (L=3) (although as far as asymp- 

totic freedom is concerned any group will do). 

In this model '4 transforms under an infinitesimal gauge 

transformation according to: 

yw -+ Y (x)+ica (x) XaY (x) 5.4 

and under an ordinary SU(3) x SU(3) transformation according to: 

Y(x)+Y(x)+iY(x)hasa 5.5 

(the Aa are the usual SU(3) matrices). Our Lagrangian is: 

L = Lv + TrI~(i~-g~aXa)J,-~$M~ 5.6 

where L v is given by Equation 2.5 and M is the fermion mass 

matrix. This model is asymptotically free. The numerical value 

of B(g) is: 

b 
B(g)= -.+- g3+ a-- = -g3 F (-%J)t. -** 5.7 

The ordinary SU(3)xSU(3) vector, V a, u and axial vector, 

Aa Fi , currents are given by: 
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Va u = Tr [T~,,$x~] 
5.8 

Let us now discuss deep inelastic scattering in such an 

asymptotically free theory. Due to the fact that the vector 

mesons are neutral and that the theory is asymptotically free 

one can derive all the sum rules and relations previously derived 

in the parton or lightcone models. In addition there will be 

logarithmic deviations from Bjorken scaling which can be calcu- 

lated. The full analysis will be given in a subsequent paper (30) , 

here we shall give a simplified discussion. 

The structure functions of deep inelastic scattering are 

Fourier transforms of the product of electromagnetic currents. 

In the scaling region one probes this product for lightlike 

separation of the currents. To discuss this one employs Wilson's 

operator product expansion: 

J(x)J(-x) :: 

x2:0 

x c Cn) (x2,g)xu1.. .xPn,:;!. .u;o) . 
n 

5.9 

(Where we have suppressed the vector and SU(3) labels on the 

currents as well as the tensor and SlJ(3) structure of the 

operator product expansion). The dominant operators in the 

scaling region are those of twist (=dimension-spin) two. These 

are denoted by Ocn). The c-number function, C (n) cx2 ,g), con- 

tains the lightcone singularity and controls the asymptotic 

behavior of the structure functions. In fact the momenta of 

the scaling structure functions measure the Fourier transform 

of Ctn): 
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s 
1 

dx xn-2 Fi(x,q2) : G(n) 2 

2 
i (q ,g)<nlO(")ln> 5.10 0 -q +m 

-q2 (where x is the standard Bjorken variable, x = -and F 2v i stands 

for vW2 or xW1). Of course the moment is also proportional 

to the nucleon matrix element of the operator 0 (n) , however 

the q2 dependence is contained in C - (n) (cl2 9) , . 

One can apply renormalization group techniques to Wilson's 

expansion to derive an equation relating the dependence of C (n) 

2 on x and g (21,22,23) . If the operator 0 (n) is multiplicatively 

renormalizable (renormalization constant Z,), then one derives 

that: 

[ 
+-t B(g) g + 2YJ(g)-Yn(g) 

3 
CW(& = 0 

lJ 4 u Jg 
5.11 

where yJ is the anomalous dimension of the "current" J(x), and 

yn the anomalous dimension of 0 (n) : 

5.12 

In the case under consideration the currents (linear com- 

binations of Va,, and AaP ) are conserved or partially conserved. 

They therefore have vanishing anomalous dimension, so that the 

solution of Equation 5.11 is 

C(n) (+,,) = ,in) i (l,G(t,g)) exp.- 
1-1 

s' Y,~(x.g;ldx. 5.13 

In our asymptotically free models, y+o and y,(F) vanishes as t+-. 

However y,(q) does not vanish fast enough to render the integral 

in Equation 5.13 convergent. Let 
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5.14 

-1 -1 then since q2+bo t we have that 

-T6;; m 
(l,O) (Qnq2) exp.- 

s 
$$(x,gjl-yn~21dx 5.15 

0 

Therefore the logarithmic deviations from Bjorken scaling are 

obtainable from the lowest order calculation of vn(gL). 

In general a given operator 0 (n) will not be multiplicatively 

renormalizable. In particular if there exists more than one 

operator with the same spin, quantum numbers and physical dimension 

than one must take linear combinations of these to obtain operators 

with definite dimensions. This mixing occurs for the twist two, 

SU(3) x SU(3) singlet operators in our theory; since there 

exist more than one such operator. Thus, for example, 

for spin two both 

we have 

,(2) 
?JV 

= Tr{T y,(<?v-2gBtha)$} + (u-v) - trace terms 

and 5.16 

o(2) = Fa F” _ kg Fa .F@’ 
UV ~a av vv a6 a 

contribute to the operator product expansion 

(F,,va=aPBva-ayBua-ig fabcB,,bBvC). This mixing and the calculation 

of the resulting anomalous dimensions will be discussed in a 

forthcoming publication. (30) 

The nonsinglet SU(3)xSU(3) twist two operators however are 

uniquely given in terms of the fermion fields, and have 
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definite dimensions. Let us denote these operators by 

o (n)a 
Ul...Un 

(x,r), where r(= 21) denotes the chirality of the 

operator. They are given by 

,(n)a 
.n n 

lJl...Un 
(x,r)=l C TrfAay(x) a . . .a 

2nk,l Pl 
uk-lYpkauk;iaun (l+rY5)Y (X) 1 

5.17 
- trace terms. 

We define rotnja to be an 1PI Green's function with the insertion 

of the operator O~~]a.un(x). This amplitude will satisfy a 

renormalization group equation. In particular if Ocnja is 

inserted into the fermion two-point function we obtain: 

c u& + 6 (4)k +v;w - 2YF (9) 1 r (2) 
,(n)a = Or 5.18 

where yF is the anomalous dimension of the fermion field. Since 

6 is of order g3 we may calculate the combination yna - 2yF to order 

g2 by evaluating the logarithmically divergent contributions to 

r (2) to order g2. These are given by the Feynman graphs of 
o(n) 

Figure 8 and yield: 

Y;(g) = u;g2 +...= + C2W 
n 

8s 
&y + 4 z 1 

k=2 I 
E +. . . 5.19 

(in the three triplet model C2(R) = $1. As expected the anomalous 

dimensions are independent of a and r. Having performed this 

calculation we can now compute the scaling behavior of the 

nonsinglet pieces of the deep-inelastic structure functions 

according to Equation 5.15. If we denote by N(x,q2) one of 

these structure functions, say 
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proton neutron 
F2 - F2 , then: 

s 

1 
dx x"-~N$~~) 

2 
u const. (llnq2) 

-a 
"(l+o( 

0 q +-a 

where: 

An = 
3C2(R) 

22C2 (G)-BT(R) 

5.20 

5.21 

We note that the power of the log is independent of the physical 

coupling constant and is determined solely by the gauge group (G) 

and the fermion representation (R). For the three triplet SU(3) 

model: 16 A2 = gp A3 = g and for large n, An 1 &&n(n). 

In a forthcoming publication we shall analyze lepton-hadron 

scattering in great detail, meanwhile a few comments are in order. 

a. The approach to asymptopia in these theories is logarithmic. 

All asymptotic relations will be corrected up to terms of order 

-1 2 

[ I 

-1 
b. il,p . The rate of approach to asymptopia depends on 

the unknown low momentum behavior of the theory. 

b. Bjorken scaling is violated by logarithmic terms, as in 

Equation 5.20. These logarithmic corrections are given by second 

order perturbation theory calculations, and depend only on the 

gauge group and the fermion representation. The only case where 

such logarithms are absent is when the relevant operator in the 

Wilson expansion has zero anomalous dimension. This is the case 

for vector and axial vector currents as well as the energy-momentum 

tensor. Thus the first moment of the iso-scalar component of the 

structure functions does scale: 
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s 

1 
dx F;='(x ;q2 

0 

whereas the higher 

) --j const. + O(-+) 5.22 
2 -q +m Rnq 

moments decrease logarithmically as in 

Equation 5.20. Similiarly the total neutrino-hadron cross 

section will scale, since it is given by the same (spin two) 

moment. 

It is an open question whether such a picture is consistent 

with experiment. The deviations of the asymptotic forms 

of the moments from exact scaling are quite small, and one 

would need rather large variations of q2 to see any marked 

change. Verification of logarithmic deviations, as well as 

the numerical values of an, would be strong evidence for the 

above class of theories. 

C. Sum rules and other relations between the various 

structure functions measured in electron or neutrino scattering, 

which previously were derived from current algebra, the parton 

model or a naive lightcone expansion, are all true theorems in 

our models. This is because, as is seen in Equation 5.15, 

the SU(3)xSU(3) and tensor structure of the Wilson expansion 

will be (for large q2) that of the free quark model - the 

coupling constant effectively vanishing in this region. There 

is no point in listing these predictions here - they have been 

reviewed by many authors (14,151 . However, we note that these 

relations are approached logarithmically. Thus, for example, 
1 (16) since the charged constituents have spin - z 
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> 2 f(Lnq2) + -+ g(11nq2) 
T q-+--m q 

where 5.23 

f(Qnq2) * + . 
q2+-m Rnq 

d. Electron-positron annihilation at large energies is 

controlled by the identity operator in the Wilson expansion of 

two electromagnetic currents. Since these all have cannonical 

dimensions the cross section scales: and the coefficient is 

determined by the free field limit Cs = center of mass energy 

squared) 

uf- e e +hadrons 
U+- +u+u- 

= ; ZQi2 1 + O(in%)-1 . 
e e v 1 

5.24 

Finally let us discuss the incorporation of weak and electro- 

magnetic interactions into our models. After all the recent 

revival of gauge theories was for the purpose of constructing 

a unified and renormalizable theory of the weak interactions (45) . 

Is there any problem in combining these theories? Since in our 

models the strong gauge group commutes with SU(3)xSU(3) one can 

easily incorporate the weak plus electromagnetic interactions 

according to any one of the various schemes proposed recently (45) . 

In fact, as far as the weak interactions are concerned there is 

no difference between our models and an abelian vector gluon 

interaction. 

One would have to go to extraordinarily high energies to 

ascertain experimentally whether the weak or electromagnetic 



38 

interactions are asymptotically free (e2Rn & z 1). If however 
%7 we assume that these theories are asymptotically free (in which 

case one is restricted to semi-simple gauge groups and one must 

worry about symmetry breaking as before) then the Baker-Johnson- 

Adler approach to QED(") would be unnecessary. The ultraviolet 

behavior would be controlled by the fixed point at zero coupling. 
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VI. THE INCORPORATION OF SCALAR PARTICLES 

We shall now consider non-abelian gauge theories which 

include scalar fields. There are a variety of reasons for 

considering such theories. One might want to incorporate spin 

zero fundamental fields as such, or one might want to employ 

such fields to provide masses for the vector mesons by means 

of the Higgs mechanism. Indeed the only known way of breaking 

the gauge symmetry spontaneously is via scalar mesons which 

develop non-vanishing vacuum expectation values. We have explored 

whether one can incorporate a sufficient number of scalar mesons 

to break the gauge symmetry completely, or at least retain only 

an abelian gauge group. In both these cases one would thereby 

have a theory which is both asymptotically free and which possesses 

an S-matrix in perturbation theory (and not just off-shell 

Green's functions). 

It is well known from the proofs of the renormalization 

of Higgs theories (35) that their ultraviolet behavior is that 

of the underlying symmetric theory. In other words the symmetry 

breaking is a "generalized mass term" and does not affect the 

asymptotic (Euclidean) behavior of the theory. The argument that 

this so is implicit in the proof of renormalizability of 

Higgs theories, (35) where one shows that the subtractions which 

render the symmetric theory finite are sufficient to make the 

asymmetric theory finite. 

Let Ten) (pl,...,p,, 'v) be any Green's function of the asymmetric 

theory, where v is the vacuum expectation value of a scalar field 

which breaks the symmetry. r(n) may be represented as a functional 

derivative (n-times), with respect to the fields, of the generating 
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functional of 1PI's. It is an immediate consequence of this 

definition that: 

rCn) (p 1,...,p,;v) = 8 + rCn+j) (pl,...,Pn;O,...,O;O) (6.1) 

where on the right hand side of (6.1) the rCn+j) are the Greens 

functions of the symmetric theory with j insertions of the 

scalar field carrying zero momentum. Now, by simple power 

counting the 1PI's rCn+j) are less and less divergent in the 

ultraviolet region as j increases, so that the ultraviolet 

behavior of (6.1) is controlled by the first term: i.e. by 

the ultraviolet behavior of the summetric theory. Thus the 

desirable properties of the symmetric theories discussed below 

will remain intact in the presence of symmetry breaking. 

Before we plunge into the analysis an overview is in order. 

In the case of pure gauge theories asymptotic freedom provides 

no constraint. When the theories include fermions a weak 

constraint (not too many fermion multiplets) must be satisfied. 

On the other hand the requirement of asymptotic freedom will 

severely constrain gauge theories involving scalar particles. 

This is because such particles will necessarily have their own 

self couplings. One must therefore investigate the asymptotic 

freedom of these new (dimensionless) coupling constants. It is 

well known that a scalar field by itself, with a X$4 coupling 

is not asymptotically free. Therefore the only hope is that 

the gauge mesons will help render the fixed point X = 0 ultra- 

violet stable. This turns out to be very difficult to achieve - 
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in fact it is remarkable that it is possible at all. Unfor- 

tunately in order to have asymptotic freedom one is forced to 

large gauge groups and representations. Furthermore we have 

not been able to find any examples of models in which the gauge 

symmetry is completely broken. For these reasons the results 

presented below reinforce our expectation that if asymptotically 

free theories of the strong interactions are to be sensible then 

the symmetry breaking must be dynamical. 

Let us now analyze the renormalization group equations for 

gauge theories involving scalar mesons. First we note that the 

scalars have essentially the same effect on s as the fermions. 

In the vicinity of the origin in coupling constant space, the 

renormalization group equation for the gauge coupling s does 

not involve the scalar self couplings. These would contribute 

terms to Eq. 4.8 of order q2T2, where X is some scalar self 

coupling. However unless h 2 O(g2) then the scalar self couplings 

are not asymptotically free (see below) and thus these corrections 

are negligible. The net effect of the scalars is to contribute 

to B(g) a term equal to $($) of the fermion contribution if the 

scalars transform according to a real (complex) representation 

of the gauge group. Thus 

3 
B(g) = - 3 + C2(G) - C 

4 C2 (R)d CR) 

FERMIONS 7 r 

- I: 
1 C2 (RI d (RI 
F I 

=- b. 3 
r T- + . . . 

SCALARS 
(6.2) 
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(Where d(R) for the scalars equals the real dimension of the 

scalar representation R). There is, therefore, no problem in 

retaining aymptotic freedom for g, as long as the number of 

scalars is not too big. 

In addition we are now required to study the renormalization 

group equations for the scalar couplings. There are, in general, 

many such couplings. We are, of course, only interested in the 

quartic couplings. One such coupling exists for any representation 

of the gauge group, namely the square of the inner product (the 

quadratic Casimir operator). If the representation in question 

is real the vertex is given in Figure 9, and if it is complex 

the vertex is given in Figure 10. 

A general representation of the gauge group will, in general, 

possess many additional quartic invariants. For each such 

invariant there will be perforce a dimensionless coupling 

constant. (Some examples will be given below). Therefore, 

in general, the renormalization group equations will be a set 

of coupled linear differential equations. It is useful to 

consider first a simple example in which there is only one 

quartic self coupling. This is the vector representation (real 

dimension = 2N) of SU(N). If $ denotes the (complex) scalar 

field transforming according to this representation, the scalar 

interaction is given by: 

L = I (au -igB,,)@ I 2- ;(m*r)2 (6.3) 
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The renormalization group equation for X will now be: 

dX -- x = Bh(X,S) X(t = 0,A) = x 

where 

I Autgu,au,A fixed. 

(6.4) 

(6.5) 

Once again it is sufficient to calculate the logarithmically 

divergent corrections, in the one loop approximation, to the 

quartic scalar vertex. These are illustrated in Figure 10. 

(The graphs in Figure 11-C should be divided by two since it 

is the square root of the wave function renormalization constant 

that enters the renormalization group equations). The terms 

illustrated in Figure 11, a, b, c, and d contribute to Bx terms 

of-order A 2Jg2,hJ2 and g4 respectively. We therefore obtain 

an equation for the effective coupling constant 7: 

dx - = AX2 + 2irJ* dt + cF4. (6.6) 

The values of A, B' and C are readily calculated (they are 

gauge independent, but it is simplest to evaluate them in Landau 

gauge): 

(N + 4) (6.7) 

B’-+ 3(N2 - 1) 
N (6.8) 

87r 

C=+T- 
3(N - 1) (N* + 2N - 2) 

4N2 
(6.9) 

Equation (6.6) is most easily analyzed by introducing the 

parameter: 
- -2 - 

c1 = (9) h; a(o) = g -* A (6.10) 



We note that 7 must be 

since A > 0,the theory 

coupling a satisfies: 

da= 
dt F2 

I 
Aa + 

where 

B=B'f 
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of order s*, for if it were larger then, 

would not be asymptotically free. The 

Ba + C 
3 

(6.11) 

bO’ 
(6.12) 

The fixed points of (6.11) will be given by the zeroes of the 

quadratic form. These will be real and positive if: 

- v'%?i?? <B (0 (6.13) 

When this condition is satisfied (A and C are always positive) 

then there will exist two fixed points a1 and a2. If the coupling 

constant X = c(o)g2 is chosen so that: 

1 ctl== -B-/B2-4AC L 1 
1 < cx(o)<ci2 = z 

L 
-B+/B*-4AC 3 (6.14) 

we will be driven to the value T = cx 1 as t+m. In other words 

al is a W stable fixed point. Equation 6.11 can easily be 

solved by quadratures: 

s 
CL(t) 

dx 
a Ax2 + Bx + C S 

t 
= 

0 

For large t we have that: A(a2-, al) 

sz (t) - a1 _3 t bO I 
t-- 

-2 - 1 and since g Q F , 1 X(t) will approach zero like c. 

(6.15) 

(6.16) 
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It is easy to see that the condition 6.13 will be satisfied, 

for SU(N), as long as N 2 3 (not SU-2!) and b. is small enough. 

We can always make b. small by including fermion representations: 

whose only effect is to decrease b 
0’ 

(We can exclude Yukawa 

couplings by the discrete symmetry $+-$). In the case of SU-3 

we must incorporate 16 fermion triplets in order to make b. 

equal to - LJ. 
48~ 

We see already in this simplest of all cases that the W 

stability of A is extremely delicate. Even in the most favorable 

case, N>>l and b 
0 

1 0, we can at most accommodate two vector 

multiplets of scalar fields. Moreover if we do not include enough 

fermions to render b. sufficiently small we cannot include any 

scalars. Roughly speaking unless b. is small the gauge mesons, 

which are stabilizing the inherently unstable A$4 coupling, vanish 

too rapidly as t+-. 

Clearly we cannot include enough vector representations to 

break the gauge symmetry completely. We have also investigated 

many other models with scalar particles (i.e. other groups and 

representations). We shall just give a brief summary of the 

more interesting results. 

The adjoint and the symmetric tensor representation of 

SU (NJ , as well as the (N,E) representation of SU(N) x SU(N) 

are examples of theories with two scalar quartic couplings. They 

lead to renormalization group equations of the form 6.6, which 

can again be simplified by dividing by s2 as in 6.11. The 

result has the form: 



46 

1 de 
7 ;li = A"aa a* + A"e6 a8 + AY8862 + Bela + Ccc 

1 d6 = AB a2 + AB -- 
:2 dt cia a6 a6 + ABB6 B2 + BB 6 + C8 

(6.17) 

The fixed points of these coupled equations are easy to analyze. 
d6 - For each value of cx there will be two roots of x - 0. If these 

roots are real then the smaller, 8-(a), is attractive whereas 

the larger, B+(e) is repulsive. Similarly we define e-(8) and 

a+(B). The coupling constant plane is the pictured in Figure 12, 

in the case where all roots are real. We are clearly driven to 

the fixed point CX~, B, satisfying: 

cf. (6,) = af 

B- bf) = Bf 

as long as the initial values are small enough: 

cl(o) < a+ 6 (0) 

B(O) < 6, a (0) 

(6.18) 

(6.19) 

In practice the simplest way to search for a fixed point 

is to solve Equation 6.17 by iteration. We have mapped out some 

coupling constant trajectories on a computer, a sample result 

is given in Figure 13. 

We shall now briefly review the results for the above 

mentioned theories. The same Feynman graphs as in the case 

of the vector representation, Figure 12, must be evaluated, except 

that there are now two types of scalar couplings. In each case 
17 CL=? andE=g2. 
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a) The adjoint representation of SU(N): 

The scalars are Hermitean traceless N x N matrices M 

of fields. The quartic self couplings are given by: 

L=-$ Tr(M*) - 11 Tr M4 (6.20) 

b) The symmetric tensor representation of SU(N): 

The scalars are represented by an N x N symmetric matrix 

M of (complex) fields. Under the group transformation M+UMUT. 

The quartic scalar interactions are: 

+ 2 L = - A(TrMM ) - I? Tr(MMTj2 (6.21) 

c) The (N,F) representation of SU(N): 

The scalars are represented by an N x N matrix M of 

complex fields. The quartic self couplings are: 

(TrMMt)2 - 3 Tr (MM+)*. 

The results are shown in Table I. The main result is that 

all these theories are asymptotically free for N large enough. 

The W stability is, as before, delicate. One must make b. small, 

and additional symmetrically coupled scalars destroy the asymptotic 

freedom. 

Our experience in these and other cases suggests that it 

is the size of a representation, rather than its detailed nature, 

that determines whether the model will be asymptotically free 

or not. Indeed in all the cases enumerated in Table I the 

renormalization group equations are identical as N+m. If one 

considers larger representations the number of independent coupling 

constants rapidly increases and the renormalization group equations 

become quite complicated. For example we have analyzed a theory 
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involving an SU(N) x SU(N) gauge group, with the scalars trans- 

forming according to the (N,g) 9 (N,l) @ (l,@ representation. 

In this model there exist five independent scalar coupling 

constants. It is asymptotically free when N 2 5. 

Our original motivation for studying theories involving 

scalar mesons was to utilize the Higgs mechanism to break 

the gauge symmetry and provide masses for the vector mesons. 

Some of the models considered above would appear to have the 

potential of accomplishing this aim. Take, for example, the 

gauge group to be SU(N) x SU(M), and the scalars to transform 

according to the (N,$ representation (which is asymptotically 

free for N 1 5). The scalars are represented by an N x N matrix 
M of complex fields, and they transform according to: M-+GMH+. 

If the scalar mesons develop a non-vanishing vacuum expectation 

value, <olMlo>=Mo, the symmetry will be broken. The criterion 

that the gauge symmetry be completely broken and that all vector 

mesons acquire a mass is that there be no subgroup of transfor- 

mations that leaves MO invariant. (46) If MO were an arbitrary 

N x N complex matrix this criterion would be satisfied. However 

M o is not arbitrary, rather it is determined by the form of the 

Lagrangian. Thus in lowest order MO is determined by minimizing 

the "potential" 

- LI = - J Tr (MM+) + X Tr (MM+) * +q Tr (MM t2 ) (6.23) 

Now MM+ is a positive hermetian matrix and the potential is a 

function of the squares of its eigenvalues. When one minimizes 

(6.23) one finds that these eigenvalues are all equal in magnitude 
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so that MOMOf is multiple of the identity. In that case MO is, 

up to a constant, a unitary matrix. There then exists an SU(N) 

subgroup of gauge transformations: G = G, H = MoGM -1 
0 

; that 

leaves MO invariant. Such a model will therefore contain N2 - 1 
3 

massive and N‘ - 1 massless vector mesons. 

In a similar fashion the other two asymptotically free 

models described above contain massless vector mesons even 

when the scalars have a non-vanishing vacuum expectation value. 

Basically the problem is that asymptotic freedom requires large 

gauge groups and small scalar representations. For such repre- 

sentations the potential in lowest order perturbation theory, 

being restricted to renormalizable couplings, is not sufficiently 

complicated to allow for complete spontaneous symmetry breaking. 

We clearly have not exhausted all gauge groups and all 

scalar representations. One interesting possibility that we 

have not fully explored is that the symmetry breaking occurs 

beyond the tree approximation, ala Coleman and Weinberg. (44) 

As we noted above a perturbation theory calculation of the 

potential is unreliable for small values of the classical 

fields (which corresponds to small momenta). However pertur- 

bation theory is reliable, for asymptotically free theories, 

for large values of the classical fields. Therefore there 

exists the possibility that the potential has a stable minimum 

for large vacuum expectation values of the scalar fields and 

that these are calculable using the renormalization group. This 

possibility is rendered more likely by the fact that in many models the 

quartic scalar coupling constants (X and n) can be negative for 

p2 = -u* but become positive as -p2 increases, approaching 
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zero from above as P2+-- (see Figure 13 ). Another possibility 

is to include Yukawa like coupli.ngs between the scalars and 

the fermions. In the absence of gauge fields Yukawa couplings 

are never asymptotically free, (28) but it is easy to see that 

this is no longer true in gauge theories. We have not explored 

this possibility in detail. 

In conclusion it appears to be very difficulty, if not 

impossible, to construct theories which are both asymptotically 

free and which contain no massless vector mesons in perturbation 

theory. Such a model would be of great interest in providing 

a theory which possesses an S-matrix in perturbation theory 

and is asymptotically free. However we do not believe that 

it would be of physical interest. First if such a 

model exists it must be rather complicated and almost unique. 

Second, as we have seen above, in order to achieve asymptotic 

freedom it is necessary to incorporate many fermions and render 

Bg very small. This might imply that Bg has an IR stable fixed 

point at a small value of g*, thus restricting the physical 

coupling constant g(o,g) to be small if we are to remain within 

the domain of attraction of the origin. Such a model would 

probably not be useful as a theory of the strong interactions. 

Furthermore if S 
g 

is small, for small g, then the approach to 

scaling, according to Equation 4.16, is very slow. This is 

clearly not a desirable feature. Therefore, to construct a 

physically meaningful model of the strong interactions one 

probably must pin one's hopes on the possibility of dynamical 

symmetry breaking. 



51 

CONCLUSIONS 

The theories proposed in this paper are incomplete. The 

main problem which requires investigation is whether one can 

obtain an infrared sensible theory without explicit Higgs mesons. 

One might expect, on physical grounds, that the infrared singu- 

larities induced by the gauge charges (color) are so strong that 

they must be completely shielded, so that only objects neutral 

under the gauge group could exist. This is an exciting possi- 

bility which might provide a mechanism for having a theory of 

quarks without real quark states. Whether this can be realized 

or whether the theory will exhibit dynamical symmetry breaking 

deserves much attention. 

What we have achieved so far is to find a large class of 

asymptotically free theories, We have shown that all semi-simple 

gauge theories are in this class, as well as many theories involving 

fermions. We have explored the consequences of this asymptotic 

freedom with respect to deep-inelastic scattering and we have 

constructed some models which contain scalar mesons. Finally 

let us recall that the proposed theories appear to be uniquely 

singled out by nature, if one takes both the SLAC results and 

the renormalization group approach to quantum field theory at 

face value. 
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APPENDIX I. THE GAUGE DEPENDENCE OF 
THE RENORMALIZATION GROUP EQUATIONS 

Let us consider the time-ordered product of gauge-invariant 

operators, Oi, which are multiplicatively renormalizable. These 

could be, say, gauge invariant currents. This renormalized 

Green's function, which we denote by G(n) will satisfy the 

renormalization group equation: 

+ B(gd& + x Yi(g,a)(l-2&) Gcn)= 0, 
i -I 

A.1 

where we have used Equation 2.21 and the sum runs over the 

anomalous dimensions of the operators Oi. 

The derivative with respect to the physical gauge parameter 

can be eliminated using gauge invariance. This implies that the 

(n) unrenormalized amplitude GU is independent of the bare gauge 

parameter c1 
U 

a 
Gcn) &-,,A 

Zip 1 = 0. A.2 

gu,A fixed 

When we recall Equat ion 2.14 and express Gc) in terms of the 

renormalized Green's function we have that 

Gcn) (g,Cf,U) = Or 

where 

o(g,a) = aZ3 
aclU gU,A fixed 

A.4 



ahz. 
ui(g,a) = z3 j-+ 

U 
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A.5 

1 gu,A fixed. 

ag E(g,a) = S3 K 
U 

gutA fixed* 

A.6 

This equation expresses the fact that a change in gauge parameter 

for gauge invariant Green's functions can be reabsorbed by a 

change in coupling constant and in the scale of the operators. 

It can be used to eliminate the 2 in Equation A.l. 

Finally let us note that to lowest order B(g,cO is independent 

of a. This is essentially because, to lowest order,the coupling 

constant is unique. In other words if we change LY we might change 

g to g', however g' (being the value of the three-point function 

at some point) can be expressed as a power series in g: 

g’ = g + O(g3). A.7 

The term of order g3 might depend on c(, however to lowest order 

g' and g must be equal. Therefore: 

1 I d ' 
6 (g 1 = u qp = B(g) + 0(g5) A.8 

gurccu,A fixed 

Thus that the lowest order term, of order g3, in B(g) must be 

independent of ~1. 

Similarly the lowest order term, of order g*, in the anomalous 

dimension of a gauge invariant operator (say those discussed in 

V) must be a-independent. This is, of course, not true of the 

anomalous dimensions of the vector meson and fermion fields. 
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FIGURE CAPTIONS 

Figure 1: The Feynman rules for a pure Yang-Mills theory (all 

momenta flow into the vertices). 

Figure 2: The vector meson self energy graphs. 

Figure 3: The trilinear vector meson vertex corrections. 

Figure 4: The ghost self energy graph. 

Figure 5: The ghost-ghost-vector meson vertex corrections. 

Figure 6: The contribution of the fermions to the vector meson 

self energy. 

Figure 7: The contribution of the fermions to the trilinear 

vector meson coupling. 

Figure 8: The lowest order correction to r (2) 
o(n) 

Figure 9: The cannonical quartic scalar coupling for real 

representations. 

Figure 10: The cannonical quartic scalar coupling for complex 

representations. 

Figure 11: The graphs that contribute to the B-functions for 

the quartic scalar couplings (the directed lines refer to 

the complex scalar mesons). 

Figure 12: An illustration of the fixed point trajectories 

in the e-B coupling constant plane. The cross indicates 

the presence of an ultraviolet stable fixed point. 

Figure 13: The coupling constant trajectories (c( and B move 

along one of the directed lines as t increases). The 

gauge group is W(6) x SU(6) and the scalars transform 

according to the (6 x r) representation. 
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