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NEW DEVELOPMENTS IN THE THEORY OF HTSC 

A.  The Layered S-N Mo.&l, B .  Extended Saddle Point Singularities and 
Long Range Interaction (E-L Model) , C .  Reconciliation on the Nature of 
the Order Parameter 

A.A. ABRIKOSOV, 
Materials Science Division, Argonne National Laboratory, bldg223, 

9700 South Cass Avenue, Argonne, IL 60439 

ABSTRACT 

A.The superconductor is supposed to consist of alternating layers of 
two kinds: (I) layers with an attractive n interaction and an effective 
mass of usual magnitude, (2) layers on and with a large 
effective mass. The overlap between the layers is assumed to be small, its 
energy, t, being much less than A. It is shown, that such a model explains 
the most peculiar property found in experiments on electronic Raman light 
scattering in BSCCO 2212 different threshold values for the Raman satellite , 
measured at two different polarkations of the incident and scattered light. 

The tunneling conductance G O  = dJ/dV is analyzed for the same 
model. In order to fit the qualitative features of experimental data, it is 
assumed that the tunneling probability to the normal layers is much less, 
than to the superconducting layers. The conductance is calculated for the . 
case t << A. A brief andysis is given for the case t - A, which proves that 
such an assumption definitely contradicts the experimental data for BSCCO. 
The possible nature of the electronic states in the n o d  layers is discussed. 

B. In connection with the experimental discovery (angle resolved 
photoemission spectroscopy, ARPES) of the extended saddle point 
singularities in the electron spectrum of a variety of I-ITSC consequences are 
derived for TC and A in a simple model. A large enhancement of 
superconductivity is possible if the singularity has a sufficient extension and 
is located close to the Fermi energy. 

In order to explain the anisotropy of the energy gap, observed in ARPES 
experiments, on the basis of the "extended saddle point singularities" an 
assumption is done that the Coulomb interactions are weakly screened, Le. 
the Debye screening radius is much larger than the lattice period; this makes 
the electron interaction long ranged (E-L model). The consequence of this 
model is the change of the isotope effect with composition and also the 
change of Tc . The idea is that if the energy difference between the Fermi 
level and the saddle point is less than the Debye energy, this distance 
defines the effective energy scale, and hence there is a small isotope effect, 
whereas in the opposite case the Debye energy defines the cut-off, and the 
usual isotope effect is restored. Simultaneously Tc decreases. 

c 
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It  also foilows that at 1 0 ~  temperatures the nornial stale resistivity is 
mostly defined by electron-electron scattering, and its temperature 
dependence is p = T - 

C.  Several data o n  the phase determination by single and multiple 
Josephson junctions, and on the temperature dependence of the penetration 
depth are in favor of an order parameterj changing its sign as function of 
momentum, and, consequently, the energy gap having nodes. These data 
can be incorporatd in the model described above if, apart from long-ranged 
phonon mediated attraction, a short range repulsion of another origin is 
assumed (E-L-U model). 

1. ELECTRONIC RAMAN SCATERING [ 11 

The problem of Raman light scattering h m  electrons in HTSC became 
very important, since these results are Critical in defining what kind of 
pairi9g takes place: ordinary BCS-type pairing, or something more 
complicated. One of the most important points 'rs whether or not the 
gap vanishes at certain' points or contours along the Fami su 
latter case BCS-type pairing is possible (although not achieve!d 

would require non-BCS-type pairing. . .  
- .. by phonons). Vanishing of the gap somewhere do Fami surface . . * *  

very small so that a good single-domain piece of the s d a c e  is selected. It 
is possible, that the properties of the surface 
bulk, but the penetration depth of light is of the order of 103 A: so is'one 

Raman scattering is a contactless experiment. The laser spot may be ' . .  . 

. .  . .  . .  different from those of the : 
. .  . 

t r  

. .  expects that bulk pmperties are being measured 
According to the theory for an anisotropic metal [2,3]'the Ram? 

satellite forms a wide band starting from w - o ' = 2Amin with a sharp 
increase from zero to some maximal value in the region w - o -2%inl;l 

and then decreases with o (as (@-O') -2 for a short coherence length . 
In various experiments (see references in [3]) with different substances the 
sattelite starts at o - o ' = 0 with a linear dependence do- co - o' and then 
follows essentially the theoretical predictions. This could mean that the 
energy gap turned to zero along lines, which could be possible due to the 
cylindrical shape of the Fermi surface in a quasi-2-d metal. However in the 
experiments by Boekholt, Hofhann and Guentherodt 141, a defrnite energy 
gap was observed. They studied very perfect single crystals of 

B $ S ~ Z C ~ C ~ O ~ + ~  with a surface thoroughly characterized by a high- 

resolution electron microscope, and the temperature of the laser spot was 
well controlled by comparison of intensities of the Stokes and anti-Stokes 
satellites. An anisotropic gap was observed with 24 j l / T c  = 5.7, 2 A L  

/Tc =3.4, where 4 I means an experiment in the Z(XX)Z geometry and 

, by a EonlraClor of the U. S. Government 
under contract NO. W-31-104ENG-38. 
Accordingly. Ihc  U. S Gowernmenr retaim a 
nonexclusive. royelty.liee licenre to publish 
or Rproduce *he Wished lorm 04 t h i s  
contribution. or allow ochers to do so. for 
U. S. Government wrmses. 
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a Y(2Z)y geometry (here Z(XX)z means that the direction of 
incidence is along 2 - the main axis, the scattered beam is observed in the 
backward direction and both polarizations are along X in the plane). Since 
this definitely contradicted our previous theoretical predictions [2,3] it 
created doubts in the applicability of the model of an anisotropic metal 
which we have used. 

Recently, models taking directly into account the layered structure of the 
HTSC have become popular. These models can explain some properties of 
the vortex structure in the mixed state, pinning and the current-voltage 
characteristic. Tachiki et al-fTTSA) [S] have shown, that such a model 
explains qualitative features of the tunneling conductance; and the present 
study was carried out to learn whether a model of this type could explain, at 
least qualitatively, the the Raman scattering results. It was shown, that this 

is really the case. Even the fact that A,, i s  almost twice the observed AL 

d l  

becomes understandable. In the calculations we supposed T=O. 
Ip the =SA model it was assumed, +at the superconductor consists of 

5 periodically repeated 1ayers.of which layers -1 and 5 have an electron 

attraction and are normal. There is hopping between adjacent layers. Here ." . 
our task is to study qualitative features of the eIectronic Raman scattering 
and to find an explanation of the main observed properti= vii  dependence 
on polarization and appearance of two different gaps. W e  did not find it 
very usefid to seek exact numerical agreement with experiment @king a' 
many-lay& Hamiltonian with many adjustable parameters, and considered 
a model with onIy two alternating kinds of layers: (1) superconducting with. 
an attractive electron interaction and (2) normal with no i n t d o n  (Fig.1). 

. .  

. attraction leading to Cooper pairing, whereas layers 23.and 4 have no such 
1 .  

. .  
-. . 

. .  . .  . . .  . .  

Fig. 1. Layered S-N models of a High-Tc Superconductor 

OurHamiltonian has the form 

H = H i + R j + T + I  . 
Here HI .2 are the bare Hamiltonians of the S- and N-planes, T is the 

hopping part, and I - the BCS interaction in the S-planes. The y'-operators 
entering H are of the tight binding type 

* 
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Here k= (k, kz), S is the normalization area in the plane, N - the number of 
periods along z, vI, and y(2) are the localized wav nctions of the 

superconducting and normal layers, and the u(i)ko - the corresponding 

annihilation operators. We assume that HI has only diagonal matrix 

elements between eikP with the same m, and they correspond to the 

kinetic energy in the S-planes, and similarly for H2 for the N-planes, The 

hopping part, T, has off-diagonal matrix elements between v l ) and  

with adjacent m's and the same ds which are equal to t/Z (it can be 

said, that the operator T transforms yI)(z-2md) into y2Jz-(2m+l)d] and 
Vice v&a):The interaction part I has matrix elements equal to -g only in the 
same superconducting layer. 

(4 

Y2).  

. . 

Substituting (2) into H-Np we get 

+ + 
a ( I )  kl- a ( I ) b +  Vl)k3+ 7l)kq- ; (3) c -1! 

k1+k2-k3-Q =O 

indices c= + ,- refer to the spin projections, cl = VI ( k  - ko). 
In the seff-consistent field approximation.we substitute the interaction term ' 

bY 

where 

A = g < c7(l)k+ql)-k-> (5) 

We shall make the following assumptions: t a A+, p = m l / q  cy 1. Then 
the eigenvalues are 

. .  

, 
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2 
(the reason for leaving the term 2r in ~2 and €4 is its dependance on 

k z). At the first glance there are two finite gaps. However since ~ ( 4 )  
=C cos(4d) the second gap vanishes at the boundaries of the Brillouin zone: 

k + d 2 d  or k, + -3d2d. 

In the (ZZ) geometry the scattering is defined by the A, component of 
the vector potential. In the tight-binding model it enters the wave functions 
through the factors 

z 

e x p ( - i :  JA = d z  ) 

+ .  
therefore'if y and y appear with the same .argument, the factors art: 

can&led out, and the only terms in the Hamiltonian containing A, are the 
hopping terms. They contain factors of the type 

and assuming that 4 doesn't vary noticeably at atomic distances these. 
factors can be ~p1aced by 

The result is that in the hopping terms &are replaced by kz- (&)A z. 

be illustrated by Fig.2. 

. 

Omitting the detailes of calculations and formulas, the final answef can + 

. . .  . 

Fig. 2. Electronic Raman scattering cross-section for the geometry X(Z)% 
/ 
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The scattering is accompanied by hopping of the electron between N and S 
planes. The threshold is therefore A, as in 
tunneling between a normal and superconducting metal. After a logarithmic 
singularity at o - o'= A + 2t /A, which is the maximum of the sum of the 

gaps in both bands (in the sence of the dependence on &; the bands are 
assumed to be isotropic in the plain), the cross section decreases as /A'(@ 
o')] . The average scde for reasonable values of parameters is 

2 

2 

-12 d o  
d o - 1 0  --fit. 

A 

In the case of parallel polarisation Z(XX* the interaction of electrons 
with light appears in the kinetic energy terms of the Hamiltonian and is 
given by 

c 2 
e e 2 e  e 2 

2 J$( - VI, Ax + y A ,  - 2 v2, 4 +-A, w p  (8) . 
2 m1c 2 w  

. .  

As was shown in 123, the terms linear in A, contribute only minor 

covections to do, and so we consider onIy the quadratic terms. They 
contain the band mass in the denominator. In order to obtain a finite . 

, threshold value of w - P q. Then the main 
contribution is due . The result &I be 
illustrated by Fig. 3, 

. . 
. . . 

fig. 3. Electronic Raman * cross-section for the geometry ZQCX)Z 

The threshold is at 2d A discontinuous jump (it can be smoothed out, if the 
anisotropy in the plane is taken into account) is followed by a logarithmic 

singularity at the maximum of the double gap 2(A+t /A) and then falls off 

d 0 .  A t  as /A/(w-w')J . The scale is again of the order da- 10- - 
A 

smaller 0-o'c 2 4  there can be a small contribution from the normal band 
but other sources of additional scattering cannot be excluded. 

2 

2 12 do' 
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According to this theory the threshold value for do/ should be exactly ' 

twice the one for dol The experimental result is not exactly the same : 

241 I Tc = 5.7 /Tc = 3.4. There is, however, a simple way to 
correct this difference. We have assumed that there is no interaction of 
electrons in the "normal" planes. But this is quite impossible. So let us 

assume that there is a very small interaction, g2. Then it is natural to 
beleive that a condensate is formed, and hence a nonvanishing 

<a(2)k+q2)-k-> exists. If we assume A2 >O the threshold will become 

Al = A + 4 and this could explain why AL is not equal to A/ /2. 

Fiom the experimental+values quoted above we obtain d/T, = 2.85, 
i 

A 2 flc = 0.55, i.e. A is more than five times larger than 4. 

2. TUNNELING CONDUCTANCE (61 

Another method of direct measurement of the energy specsnun and . particularly of the energy gap is the tunneling conductance G = cu/6c! 
as a function of the voltage V. lit is well known that G i s  proportional to the 
electmnic density of states: Here wemeet a paradox. According to the last 
measurements of Hasegawa 17] the main contribution comes -from the .. . 

from Raman experiments on B$S9CaC5084 is seen. On the other hand 
the tunneling conductance reflects the electronic density of states which is 
proportional to the effective mass in any dimensionality. Since we had to 
assume for intexpretation of the Raman experiments that the effective mass 
of the normal layers is much larger than the mass of the superconducting 
layers, the contribution of the normal layers to the density of states would 
dominate in contradiction with the experiment. There is a way to resolve this 
paradox assuming the tunneling probabilities to the S- and N-layers to be 
very different We leave the detailed discussion of the possible origin to the 
end of this pa& 

We consider a contact between some normal metal and the S-N 
superconductor- According e.g. to ref.[8], 0 22.3, we have 

* ,  

. 
superconducting layers, and a clear gap of the order of the one obtained . .  

c 
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- I  The factor (2d) was introduced to define the current density. We assunie 
chat the phases of tunneling amplitudes of the superconducting ( i=I  ) and 

normal (i=2 ) layers are uncorrelated. The operators b correspond to the 

normal metal- The operators for the superconductor are the same, as used 

Pi  previously, but rewritten in the Nambu representation: namely the A 
mean annihilation of quasiparticles in  layers i=I  (S)  and i=2 (N) with 
momentum p and spin 1/2; the Apr mean creation of quasiparticles with 
momentum -p and spin -112. The temperam is taken to be zero, the index 
zero means the ground state, summation is taken over the final states M. 

After that we pass over to the band representation with the energy levels 

El = €2, 4 = 9, E3=. - 9, E4 = 81. We will assume the tunneling 
probability to the N-iayers to be much smaller than.to the S-layers 

qa 

lTw<<~lTw . , . j = q / m 2 a ]  ; (10) 

and f h t  consider the case of small hopping t N A*. 
The result for this case is 

1 00 

where n are the Fermi functions of corresponding arguments, t=y(/k/ - 
kJ, ¶=cos $d. The con (2) is small coming either 
from small tunneling to e srnaIl hybridization with 
the S-layers. Neverthel since in the conductance 
G=dl/dV it  is the only one at eV < A. The shape of the curve G(V) is 
presented at Fig.4. We have a jump at the threshold eV = A followed by a 

logarithmic singularity at the maximal gap of the F band and a subsequent 

decrease to the normal state value. There is a small contribution of the &j 

band at eV 4 A but in experimental conditions it may be obscured by surface 
defects or orher phenomena. 

&. 

E 
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Fig. 4. Tunneling conductance for small hopping, t a A+ 

For generality we considered also the case t - A, since in the S-N model the 
assumption t Y A leads to suppression of superconductivity [9]. The result 
is plotted at Fig5 .. 

Fig. 5. Tunneling conductance for large hopping, t - A 

value I/R, corresponding to a normal metal, at voltages much le& than Me. 
After a smooth maximum i t  drops discontinuously at 3 to a very s m d  

.As the voltage is.increas& from zero, the conductance G stax?s with the . . .  

.. value; then at l& it jumps up again to a finite value on 'the order of IIR. 

Mer that, it has a logarithmic singularity 'at 5, and at still larger voltages it 
tends to IIR.  In experiment, a dip is always found around V=O , and 
although a small maximum is sometimes seen at very low voltages, it never 
reaches values comparable to the main maximum, which &curs at eVm= 

uTc with a-3. This all makes it very unlikely that the S-N layered model 
with t - A is good for BSCCO. On the other hand, the assumption 

E (( Afitogether with << p IT(')? leads to results resembling the 
experimental data (see e-g, ref. [6]). 

Now we remm to our basic assumption The only way to achieve 
agreement of the model with the tunneling data is to assume 
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- -  
IT(2)t'ccp IT'')?, and this means that the states of electrons in  the N-layers ' 

have to be different from those in the S-layers. If one thinks more 
thoroughly about the S-N model, one encounters another assumption, 
which looks rather strange. In the original Hamiltonian (3) it is implicitly 
supposed that the Fermi-circles in the no nd  superconducting layers 
are exactly the same. Otherwise the ene momentum conservation 
laws would be violated. But this means equal numbex of electrons (or holes) 
in both types of layers, which is unlikely. If there were a pronounced 
anisotropy in one of the layers (as in YBCO) that would not be necessary, 
since the Fermi surfaces could just cross at some points. But in BSCCO 
there is no substantial anisotropy. 

There is a possible way to resolve these contradictions, namely to 
assume that the ele nuous band of 
localized states (as 
momentum cons atible with small 
tunneling matrix 
occupancy of the 
loca&ed, this happens very slowly. 

In this connection it should be mentioned that the situation in the 1-2-3 . 
substances is entirely different. A model of two types of superconducting 
layers, one of them being isotropic and the other.quasi-l-dimensional, looks 
more appropriate. 

3. EXTENDED SADDLE POMT SINGULARITlES [lo]. 

Usually the angle resolved photoemission spectroscopy (AWES) is 
applied for determination of the Fermi surface in cases where the usual . 
methods, e.g. de Haas - akher oscillatory effects in thin 
single crystalline films, fail 

E 

electron energy s 

mostly as function of k - the quasimomentum in the a-b plane. They 
discovered that this dependence has not simple saddle points but what they . 
called "extended saddle points" - rather long regions in the k plane, where 
the energy depends only on one component of the mo ese 
regions are confined to the boundaries of the Brillouin zone. Their location 
and the curves illustrating the function E(kx,ky) are given at Fig.67. 

. .  

. .  
*. 
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Fig. 6. Location of the extended saddle point singularities in the ($,k,,) 

plane for YBa2Cu3O7-6 

.. ' , i 

Fig. 7. The function e(%, 5,) near the singularity 

Bi2Sq$aCu208+~ This discovery was 6nfmed later by the Srtanford * 

group (Shen, Dessau et at.) ill] and by nuberkal'determinations of the 
band structure in the same substances as well as in HgBa2CUO4+6 and 

the density of st-,- 
and to enhancement of superconductivity 2131. The extended saddle point 
means actually that the substance is not only quasi-2D, but quasi-1D with 
the density of states in a rather wide . energy .1 range given by the formula 

U 

Such singularities were found in Y&QCU306,9, YBa2Cu408 and . . . .  

HgBa2GCu206+6 1123 
Even a simple saddle point leads to the &crea 

c 

where P is the extension of the singularity (we assume here that it goes 

along kr ), 5 is the effective mass for kx, d is the period along the c- 
YO 

axis, 
equation of the BCS theory gives in the limiting cases: 

the energy of the singularity. Substitution into the self-consistency 

, 
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if p - B q, or 

where E - 1 eV, A. is the usually normalized dimensionless interaction 

constant. In  the opposite case, p - 5 e ?& 

+ 

In this extreme case 
the usual low-temperature superconductors. However even in this case 

Since the experimental value i s  closer to 6, a weak coupling theory is . . 

qualitative analysis. 

- loOK corresponds to % - 0.1, i-e. smaller than in . . .  

. the ratio 2d/Tc is 3.795 (in case p - 5 1p it has the usual value 3.52). . .  
. 

. probably insufficient for numerical predictions a n d a n  serve only for a 

- .  4. GAP ANISOTROPY, TEE E-L MODEL [14]. 

The same authors as well as the Stanford group has observed another 
property of the photoemission spectra: the anisotropy of the energy gap A. 
This was done in BSCCO - nly substance, where the ARPES 
technique permitted Since the value at the minima fell 
below the resolution interpreted as a firm proof of the so 
called d-wave pairing, where the order parameter changes sign and has 
nodes. Actually none of these statements can be proven, since in these 
experiments only the magnitude of the order parameter is measured, and the 
resolution is finite. In case when the interaction between ele 
mediated by phonons (as this can be concluded 
which we will discuss later) there are no argum favor of d-wave 
pairing (such a s imet ry  of the order parameter appears, if the interac 
mediated by spin fluctuations is a result of Coulomb repu 
Therefore it can be asked whethe ch anvanisotropy is possible within the 
phonon scheme. 

In usual superconductors, even with an anisotropic basic energy 
spectrum the gap is rather isotropic (anisotropy less than 10%). This is due 
to the isotropy of the interaction between electrons mediated by phonons. 
Even in case of a high state density in some regions of the quasi-momentum 
space the equation of the type 

. 
C .  

. 
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will connect A at any p with the singular region, and hence will not permit 
A(p)  to be anisotropic, except for the case, if K(p,p') is anisotropic. In 
principle this could be achieved by spin-fluctuation exchange, if their 
relevant momenta were concentrated within n m w  intervals around some 
particular values. 

However we consider, as much more natural, the idea of a small 
momentum transfer. Although the high Tc materials are certainly metals, 
they are in some sense close to ionic crystals This can be traced from the 
experimental observation that in the infrared as well as in Raman 
measurements the phonon peaks are very high (see e.g. ref. fl51, [4]). It 
has also to be considered that structural models consisting of differently 
charged ions are of much help, not less than band structure calculations 
based on the I D A  method. The mss-over from metals to ionic crystals can 
be understood if one imagines that the Coulomb forces, which are the basis 
of allreal interactions, are poorly screened, i.e. the Debye screening radius 
is not of atomic size, as in good metals, but much larger. The expression for 
the square of the reciprocal Debye radius is ai2 = 4Ne /&Jv(CL), where 

is the part of the dielectric c o n s k t  due to ionic cor&, and v(p) - the state 
density. Substituting eq. (12) we obtaix 

2 a N s e r n ,  2 

2 ;  

2 2/2p 

z E,d(cL-Eo) 
(17) 

where Ns is the number of singular points per Brillouin zone and we have 
taken into account 2 spin projections. 

From this formula it can be seen that R: (0) is small only in case of 

large E-. The experimental measurements of the dielectric constant as 
function of frequency [1@ give very different values, sometimes larger than 
lO00, but in case of a complicated energy spectrum it is not easy to.de@de 
how has to be extracted, and so we will Simply make the assumption 

that E. B 1. There appear several momentum scales in the problem. For 
sim~lich we consider the extreme case 

112 ' e (0) = 

. 
2 

where is the 1D Fermi momentum, d is the period along c, and K is the 
reciprocal lattice period in the plane; in  reality other cases are also possible. 

There is no unique way to chose the model interaction. We will assume 
that the square of the electron-phonon interaction matrix element entering the 
phonon mediated electron interaction, as well as the electron-phonon 
scattering probability, is multiplied by 

c 

. .  
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< 

(19) 

where k - the transferred momentum, n > l .  In the BCS equation this factor 
will lead to the replacement, compared to the previous section: 

2 g P 0  g a  
-4 2 
(2xfd 8n:(n-I )  * 

Let us fmt consider the vicinity of the singularity. Substituting the modified 
phonon mediated interaction into the BCS equation we obtain 

-& .I 

where pl = p - 5 N p, A. is the large gap in the vicinity of the singularity, . 

At T=O we obtain from eq. (20) in the limit 4 3 4 

(22) . -= 1 ln- ,or Ao=8y e -iia 
A. A, ' 

The order parameter not 
following qualitative reason 

by the large momentum 
close to p the density of states is small. Assuming isotropy outsidebf the 
singular points we get the equation 

(23) 

gularity, p - the distance 

. . *besplitintworegions. 
the density of states (per . .  

2(n-Ilp 2(n-I)a y o  

2 " d  

where 4 is the order parameter far from 

from the singularity in the plane (9; ,p,,), 

g m e  
2 

(24) = 
(24 ( n -  1 )  Po 
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is the normalized interaction far from the singularity, po and rn characterize 

the spectrum in this region. From eq- (23) it follows that dl decreases 
rapidly with p and reaches eventually a value corresponding to the spectrum 
without the singularity. On the other hand it is always finite, until L), is 
finite. 

What concerns the singular region, it is not connected with external 
regions, and as well as Tc are defined from the equation (20). As we 

mentioned before, it gives the 2t$,/Tc ratio not very far from the BCS 
value. It follows that the E-L model, considered as a weak interaction 
theory, cannot describe quantitatively all the properties of the HTSC. 
Nevertheless it can be useful for understanding the origin of various 
unusual phenomena in these substances. 

function is presented at Fig. 8. 
The results of the most recent experimental determination 1171 of this , .  

.. 

Fig. 8. The latest AWES data on the angular dependence of the . . 

- superconducting energy gap in BbSqCaC908, . .  

Apart from the smallest gap region (in 'sec.'7 we will show how this 
disagreement can be cured), it fits qualitatively t6 the predictions-of the 

"isotropic s-wave" concepts. 
' theory described here and definitely disagrees with the "d-wave" and . *  

5, ISOTOPE EFFECT [18] 

The isotope effect is usually described by the power. a in the presumed 
dependence 

q = M - " ,  (25) 



where M is the sv,erage ion mass (in the high-Tc copper oxides 016 is 

usually partially substituted by 9 8). Hence the power a can be defined by 
the relation 

d i n  q 
a=m * 

The dependence of type (25) is definitely true in the simplest electron- 
phonon interaction model, where a = 1/2, but in most of the real cases the 
connection is far more complicated- Since, however, the relative variation of 
the ion mass is very small, formula (26) can be taken as a 
characteristic of the isotope effect even in cases, when the 
(25) is not correct, and the true dependence is far from a power law. 

There exists an in cases, when the composition of a 
ed in a regular way, and the 

n, the isotope effect depends on 
composition, and the lower the critical temperature, the larger is a. The ::: - 
known examples are ( Y 1 - # r ~ B a 2 C u 3 ~ - ~  with varying x [19], (201, 
YBa2(Cu 1-xZnx)307-6 [213* Y(Ba2-xLax)CuS07 [22] and (La2- 
xSrx)Cu04 as well as (La2-~Bax)Cu04  1231, where in fact a 
nonmonotonous dependence a ( x )  was observed. 

The small vdue of a: of the order of O.OlWOO5 for YBa2Cu3m 1241 
has lead (and still doesjto conclusions about the non-phonon mechanism of . 

. elktron interaction, although it was mentioned rather early by JLabbe and . 
J.Bok [13] that a simple saddle point in the 

to the Fermi level, can replace the Debye fkequency as a cut-off of the' 
interaction, by some electronic energy limit independent on the ion mass. 
Such an idea applies even better to the extended saddle point since the 
singularity in the density of states is much stronger. 

In the framework of the E-L model the momentum region of the 
singularity in case of small angle scattering is singled out in the sense of 
defiaition of the order parametm all the necessafy information belongs only 
to this region. On the contrary, the order parameter in other regions is 
defined by its value in the singular region: it is finite until it 
in the singular region. This means rhat the critical 
defined only by the .singular region, hence we can consider only this 
region and not bother about the f e s t  .In the case of an extended saddle point 
singularity the integral in the BCS self-consis equation is convergent, 

. and the corresponding energy scale is equal to 

. 

spectrumenhancing . 
superconductivity due to an increased density in some region close 

* 

. .  

P j = P - &  9 (271 
i.e. the Fermi energy calculated fro e saddle point. This energy does not 

depend on the ion mass. It can happen, however, that /+ exceeds some w0 

which is the true interaction cut-of€. In this case % becomes the integration 
limit despite the converzence of the integral, and hence the order parameter 
and the critical temperature will stan to depend on the ion mass. This all 
happens gradually and for practical purposes it can be represented as 

. 1 .  , 

. .  . .  
. .  
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variation of a as defined by eq. (26), since, as we mentioned, the actual , <  

variations of M are small. We will consider here the case y YT,, and at the 

end we will briefly discuss the case p l z  T ,  which corresponds to 

substances with the lowest a and highest q- 
As before, we assume that the true interaction has the form 

where w is the phonon energy and 5,e - the electron energies before and 
after scattering. According to the previous considerations the order 
parameter in the region of the singularity does not depend on momenta. 

Since the electron energy depends only on h, we can integrate the 

inteiaction (5) with respect tog, and pl, and after this we obtain 

.. where q, c& is some characte+tic phonon energy at k - e. Usually the. 

factor with q, in the interaction (29) is replaced for simplicity by 

-I /e-{'/ e iwO 
2 

@O 
(30) 

. Unfortunately, due to the singular density of states, which is 
(5-5.l"- 

-112 - the interaction (29) as well as its 2a proportional to (E-@ = (e+&) . 
simplified form (30) lead to unphysical Singularities at = s. The origin 
lies in the replacement of the integration over phonon frequencies by some 

fixed frequency %. On the other hand such a replacement is very helpful 
for simplification of the theory. Therefore, instead of (30), we will use 
another simplified form, which has also the property of being confined to a 
certain energy interval around the Fermi energy and at the same time permits 
to avoid nonphysical singularities in the final expressions. We will 
substitute the fiequency dependent factor in (29) by 

2 

(31) 
00 

(5-5?+ 0: 
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Here we are interested in A at the Fermi surface, and hence we put <=O. ' 
The interaction (3 I )  enters the BCS self-consistency relation, and hence we 
have 

J 

-P1 
& 

where A has the same mearhg as before (q. (21)). 
At T=Tc A=O. Performing the integrations we will assume that Tc (< pi, 

oo. The result will be 

(33) 
'. 

x = oo/pl, y = e'= 1.781. The asymptotic values of f(x) are 
- 4  1 

Z P Z ~ $ - $ ) ~  x I . (34) 
f 0  = 

X B l  

according to From formula (33) we define Assuming that . 

oo is proportional to M-" we obtain: d(lnx).= 4 2  d(ZnM). Accordidbg'to . . ' 
eq.(9). The asymptotic values at small and large values of x are 

= (35) 

x 3 1  

Experimental results are always given in the form of the dependence 

a(Tc). Although we have obtained equations describing and a, they 
include an unknown interaction. More important, the characteristic phonon 
frequency can be r e n o d z e d ,  and hence depend on the electron density of 
states, i.e. on pl- At least, our attempts to compare the theory with the 

experiment on the basis of the assumption of a constant 9 have failed. 
Since we do not want to introduce doubtful concepts about the phonon 
renormalization, we will pe comparison in a different way. 

From experiments we have the connection between Tc and a. 
According to our concept there should be little difference between com- 
pounds with different substitution of the constituents, provided that the 
C u m  planes are left intact. This is in  fact corifirmed by the data for 

. .  

. .  . ' . .  

. .  

.. 
. .  
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(Y 1 -xPrx)Ba2Cu30't-6 and Y(Ba2-xLax)Cu307.(Table 111 in ref. [as]), ' 
and we will approximate them by a linear dependence (see Fig.9): 

a = 0.623 - 0.00637 Tc (K) ,38.3K 5 Tc S 92.3K (36) 

Fig. 9. Experimental data on the dependence of a on TC for 
Y(Ba2-~Lax)CU307 WJ (mangles) and ( Y 1 - ~ p r X ) B a ~ ~ 3 ~ ~ 1 9 1 , [ 2 0 ]  
(circles). The points were taken from table III of the review article 
by J.P.Franck [23. The dashed straight line is the least square fit 

This we can use to define the dependence of x on Tc with the help of the 
equation for a(x) . Substituting x in eq. (33) we can obtain the connection 
between 6 and Tc. This will be the prediction for future experiments, since 

the photoemission experiments permit to measure 4 for compounds with 
reduced Tc, provided that single crystalline samples will be available. 

.- (es. (36)). 

. 

For convenience we rewrite eq. (33) in the form 

where 

(38) 

is the unknown constant (independent on 3 ). The program was to define 

pl(Tc) for different values of the constant b and to leave the choice to 

experiment. It happened, however, that the right hand side as function of 4 
and the left hand side as function of Tc are nonmonotonous and have 
maxima. The only possibility to obtain a continuos dependence y(Tc) is to 
chose the constant b in such a way that the two maxima have equal values 
(otherwise we get either a discontinuity or no solution at all). This value is 

and the corresponding dependence y f rc )  is plotted at Fig.10. 

* 

b = 0.137, (39) 
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Fig. 10. Predicted dependence of the location of the Fermi energy with 
respect to the saddle point, 9, on Tc (both quantities are measured . 
in K) [lS]. 

This definiteness 
. .  

much larger than TC . 
( p1=Tc is presented by the dashed line at Fig.10). Of course this can be 
corrected (actually already for Tc = 9OK the 
this region is suspicious in the sense that the s 
is likely not entirely defined by the cut-off of, the 
frequency can enter the interaction, reducing the value of a. Otherwise 
small values of arequire large values of x (see eq.(35)), and hence -_ 

unphysically large values of %;; see Fig.11 representing the dependence 

. .  

Fig. 1 1. The variation of the effective phonon frequency ut, with TC (both 
in K) [lQ. 

The fact that the isotope shift for C U ~ ~ - C U ~ ~  is negative and increases in 
magnitude with increasing Tc (see ref. [26]), can also be considered as 
evidence for inapplicability of the theory, based on the assumption of the 
purely cut-off nature of the isotope shift, to substances with extreme q. On 
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the other hand for the lower substances the values of 00 are reasonable, , 
and their variation can be ascribed to renormalization. 

The predictions of the present theory are rather definite, but in order to 
check them direct determinations of the function Wx) have to be performed. 
This is possible, in principle, by measuring a and rf (by ARPES), using 
the same samples. 

6. RESISTIVITY IN THE NORMAL STATE 1141 

The linear temperature dependence of the normal state resistivity of 
high-Tc cuprates was always a puzzle for theorists, and one of the checks 
for the theory to be correct was this dependence. Unfortunately, people 
always managed to get the linear dependence in their theories based on 
completely different assumptions, e.g. RVB (Anderson and Zou) 1271, 
nested Fermi surfaces (Virosztek and Ruvaldi) [28], . spin fluctuations 
(Mofita et al.) 1291, oxigen chains (Abrikosov and Falkovsky) 001. 
Therefore such a result can neither prove nor disprove a theory, The easiest . 
way to obtain a linear temperam dependence is an assumption that the 

- electrons interact mainly with some optical mode having a Iow I%quency, 
and the T comes from the Bose distribution lexp(q,ff) - I]-’ at T a o0. . 
This sort of explanations is likeiy to be wrong because the high frequency 
& s t i h y  olw) at o uT varies linearly with o (see e.g. ref. [32]), i.e..w 

replaces T; this can happen only ifT,w cy O& - the limiting energy of quasi- 

. 

-I 

particles mediating the interaction. . . .  
We are not going to make an exception and will also obtain the linear 

resistivity in the framework of the theory presented above. We will show 
that scattering of electrons from electrons at low temperam is much larger 
than scattering from phonons; therefore we will consider it first (the same 
was me for the model of nested Fermi surfaces [ZS]). In the previous 
section we have assumed that the interaction between electrons due to 
exchange of phonons is stronger than the Coulomb repulsion (actually they 
are of the same order of magnitude). Here however the situation can be 
different The matrix element of the Coulomb interaction is 

c) 
L 4ne /E, 

2 2 ’  k +  LZ 
whereas the interaction via phonons is 

In the forthcoming the integral over k will require k - E ,  and since will 
be of the order of T ,  the second matrix element will be much less than the 



22 

first one in the case T D ~0 = #(E,) - If on the contrary T c 00,  the second ' 

factor in eq. (16) becomes -1, the same as in the gap equation of the 
previous section. Then the interaction acquires the same form as a pure 

Coulomb (40) with the replacement 4m / E ,  + -ga . The sign is of no 
importance? since only the square of the interaction enters the scattering 
probability, and the order of magnitude of both interactions is likely to be 
the same. Therefore we will write the interaction in the form (40) with the 

2 2 
possible replacement 4m /E-+ -8" in case T c oo. We obtain 

2 2 

. 

where 8 is the angle between the 
n i are the Fermi function ng we obtain the final expression. . ' 

2 (here we have substituted.the formula (17) for a ) . 
The reason why we get in this case a hear T dependence instead of the 

usual quadratic one is that in a 3D or 2D dimensional case the &function 
fixes the angle between the momenta wh 
angle to fix, and the &function reduces 

The coefficient in the linear dependence (43) would be large (e / VF - I for 2 

. . .  

an ordinary metal, and here is much smaller) if not for &, u 1. 
Therefore this requirement is actuaJly the condition for the Landau Fermi- 
liquid theory to be applicable to the layered cuprates under consideration. - g probability from phonons; it is given by 

3 
e, o ( k )  Sfe(p) - &(p-k)] (I - cose) 2 k / ( 2 x )  

= 2 n g  - (44) I 
(k2+ ~ ~ ~ ) ~ j e x p [ m ( k ) / T ]  - I) 
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For T B o. 
co 

(47) 

However for T B( oo the electron-electron scattering is dominant. The 
dominance of the electron-electron scattering over the electron-phonon 
scattering can be concluded also from the experimental fact that with 
decreasing temperature below the lifetime of quasiparticles obtained 
from infrared measurements starts to increase rapidly [32]. If such a 

dominance takes place below Tc, it must definitely continue in some 

temperature range above q. 
If the singular points are at all the boundaiies of the Brillouin zone, the 

resistivity in the ab-plane i s  

.( 

2 

(48) 
* mxd - T 

P " 8  
Pyo~P-@ €00 . 

The crucial idea for all results obtained in the foregoing is the 
assumption s 1. Apart from that we have presumed a modification of the 
electron-phonon interaction (square of the matrix element) which is 
described by formula (19). We realize that this treatment is not complete. 
The Coulomb repulsion has not been seriously considered. In the model of 
strongly compressed matter [33], it compensates almost entirely the phonon 
attraction due to longitudinal phonons (in this case n =l); we hope that this 
analogy cannot be extended to such extremely anisotropic substances, as 
layered cuprates. 

The quasi 1D spectrum appearing as a result of the "extended saddle 
point singularities" puts also questions about the applicability of the Femii 
liquid approach, since the purely 1D interacting Fermi system is more likely 
to be a "Luttinger liquid". We hope that the non-1D features will be 
sufficient to suppress the logs leading eventually to the breakdown of the 

c 
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Fermi-liquid; this all, however, has to be checked. On the other hand the 
quasi 1D situation may be more favorable for the "preformed pairs" idea 
(see e-g. ref. (34)). 

7. ON THE NATURE OF THE ORDER PARAMETER [35] 

One of the hottest topics in the theory of high-Tc cuprates is the 
symmehy of the order parameter. One point of view is that the pairing is of 
%-type", possibly anisotropic. According to this hypothesis the order 
parameter does not change its sign along the Fermi surface, and the energy 
gap has no nodes. This is confi vera1 experiments which 
definitely demonstrate a finite ene .g. the Knight shift 1361, 
tunneling conductance in BiSCCO [37] and HgBCCO [38]. The most 
convincing argument in point of view is the snong isotope shift 
of the critical tempemhm in 
(Y+I?r, or Ba+La), which we discussed before. This is a 
a phgnon mechanism of superconductivity w h leads to an order 
parameter with no nodes. One of the examples is the model d 
previous sections. 

On the other hand there exists also strong evidence in favor of the so 
calld "d-wave" pairing. These are the linear temperature dependence Of the . . . . 
penetration depth at low temperatuns 1391 the Josephson experimentson . 
single crystals 1401 and rings, consisting of several grains [41]. One must 
have in mind, however, that these experiments demons 
fact that the order parameter7 as function of momentu 
has nodes but do not exclude dependencies differing from the form A(k) = 
cos - cos $ which is usually advocated by the proponents of the d- . . .  

with a partial substitutio 

. .  

. . .  
. .  

. .  . .  . . . .. 

As shown in sec. 4, under these conditions A is constant in the singular 
region. Substituting V ( k )  -i- U into the BCS self-consistency equation, 
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assuming the density of states and din the singular region to be much larger ' 

than beyond it and integrating over k and k, we obtain Y 
00 

-h 
where L& is the value of A in the singular region, and 

We will assume the s&nd t e r n  in the brackets to be much less' than the 
fmt  me, and neglect it. The solution of eq. (49) at T=O in'the limit A u pl 
is 

.. 

Now let us consider some point at the Fermi-surface, distant from the 
. singularity. For simplicity we consider a circular Fermi surface (there is no 

dependence on k, ), and q will.& the angular distance from one'of the 

singular "points" (the extension of the singularity, P 
the Brillouk zone, Z d d ,  are assumed to be small compared to the radius of 

and the z-size of . or' 
. 

the cylindrical Fermi surface, pd which is of the-order of K )..The integral 
in the BCS equation consists 'of two parts along the singularity and beyond 
it. Since the density of states in the singular region as well as the value of 
A=Ao are large, we will assume that this part of the integral dominates 

(estimate of the other part's contribution see below), and hence A(9)  
beyond the singularity will be defined by its value in the singular region. 
The integral over 5 will be the same, as in eq. (49), and we can replace it 
using this equation Eventually we obtain the equation 

. 

.. . .. 

.. . .  . 

. .  
.. . 

.:. 

t 

where po is the Fermi momentum, and qo - the location of the next 
singularity (in general a sum over locations of all singularities has to be 
taken). This formula describes the behavior of A(rp) far from the 
singularities, i.e. at not too small values of cp. For description at any angle a 
simple interpolation 

I 
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2 2 sin 4pl2 -+ sin 912 -e consf , 

with the  const chosen so that A(0) = A,, can be used. The minimal value of 

the first term in the curly brackets of eq. (7) is at q= q0/2, and its value is 

Z[~l(2p,si~(~o14))~n. If this is smaller than W g ,  then A((g) has a negative 
value somewhere between the m 
this region. In case if q0= d 2 ,  
be located symmetrically around z/4, and this corresponds to the 
observations of J.-C. Campuzano et al., which are presented at Fig. 8. If 
upo= 3t, which is most likely to be the case in YBCO, the negative values of 

A are located am 

value of u: 
(531, 

2 U << ~ C - E  dlPoy . 
. .  If this condition is 

consistently by eq. 
defined by this equation. AS.” 
characteristic phonon frequency oo 
acoustical frequency at k=c;e), the integration in eq.(49) has to be cut off at 

coo, and a regular isotope effect appears. Since this is observed in 
experiment, we believe that the condition (53) is reasonable. Another - 

concern could be the part of the integral in the equation for 49) outside the 
singular region. With respect to the tenns, which we have kept, it is either 
of the order ofpFIIpo, or [UPm /(ge d x (pFIlPc3,). Both quantities are’ 
small. 

be a Josephson current in the HTSC-Pb junction if the boundary is normal 
to the c-axis, although it may be smaller than what could be expected h m  
an estimate based on 4, . The failure to observe it in a BiSCCO-Pb contact 
could be due to the weak hopping between the C u m  layers. The Fermi . 
surface in this case almost straight cylinder, and the ccomponent of 
the electron velocity 
the direction of its velocity, it has to go a very long path. This decreases 
drastically the tunneling probability and can desroy the Josephson current. 
This does not happen if the boundary is parallel to the c-axis, because then 
the velocity normal to the boundary is large, and also in YBCO, where due 
to the chains the hopping between the CuO2 layers is stronger, and hence 
the c-component of the velocity is much larger. In these cases the Josephson 
effect was really observed [421,1431. 

ed, 4 in the singular region will be d 

2 

Since there is no reason for the integral f4cp)drp to vanish, there should . .  

small. If the efecmn mosses the 
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The idea presented above solves also an important problem about the ' 
suppression of superconductivity by nonmagnetic impurities. In  case of d- 
wave pairing one would expect the necessary condition to be -cd <, I , 

whereas in  case of s-wave pairing it could happen only at ~9 <, I. This 

criterion is rather difficult to apply, because in the HTSC the ratio 
not so small as in low-temperature superconductors, and it is also not very 
clear which impurities behave as nonmagnetic. Nevertheless the general 
opinion is more inclined to interpret experimental data in terms of the 
condition mF <, I (A-Leggett, concluding remarks at the Argonne 
Workshop, June 1994). In our scheme it would be rather natural, since the 

are most likely ionized, the interadon of electrons with them is weakly 
screened and long ranged, and it would not mix the singular and remote 
regions of momentum space. This, however, has to be checkd. . 

There is also a question about the tunneling conductance. Experimeqts 
on BfSCCO 1371, and HgBCCO [38] show a small conductance at eV 1 6 s  

contradiction With the present results, as well as with the d-wave and 
anisotropic s-wave concepts. Our scheme can explain the tunneling results 
as follows. The tunneling conductance is proportional to the density of 
states. In the nonsingular regions not only the gap, but also the density of 
states (per unit solid angle), is much lower than in the singularregion. 
Therefore it contributes only a small background; only, when eV = 4 is 

is 

impurities 

. 
than some large gap with 2A(0)/Tc - 6 - 8 (see Fig. 12). This seems in . .  

. -  

Fig. 12, Tunneling conductance of HgBa;? 

reached, the conductance becomes large (the background is usually 
attributed to normal inclusions). 

The model, presented here, cannot explain all the data. Even with an 
energy dependent one-dimensional density of states the maximal value of 
2A(0)lTc, which can be obtained from eq. (49), is less than 4 (see sec. 3), 
whereas the experimental values are around 6 to 8. This contradiction can be 
due to the fact that we apply the simple BCS-type theory, whereas the 
increased density of states makes the effective interaction strong. This has to 
be resolved in future studies. 

(niobium tip) [38] 
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