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NEW DEVELOPMENTS IN THE THEORY OF HTSC

A. The Layered S-N Model, B. Extended Saddle Point Singularities and
Long Range Interaction (E-L Model) , C. Reconciliation on the Nature of
the Order Parameter

A.A.ABRIKOSOV,
Materials Science Division, Argonne National Laboratory, bldg 223,
9700 South Cass Avenue, Argonne, IL. 60439

ABSTRACT

A.The superconductor is supposed to consist of alternating layers of
two kinds: (1) layers with an attractive electron interaction and an effective:
-mass of usual magnitude, (2) layers without interaction and with a large
effective mass. The overlap between the layers is assumed to be small, its -

energy, t, being much less than A. It is shown, that such a model explains
the most peculiar property found in experiments on electronic Raman light -
scattering in BSCCO 2212; different threshold values for the Raman satellite .
measured at two different polarizations of the incident and scattered light.

The tunneling conductance G(V) = dJ/dV is analyzed for the same
model. In order to fit the qualitative features of experimental data, it is -
assumed that the tunneling probability to the normal layers is much less,
than to the superconducting layers. The conductance is calculated for the .

case t « A. A brief analysis is given for the case t ~ A, which proves that
such an assumption definitely contradicts the experimental data for BSCCO.
The possible nature of the electronic states in the normal layers is discussed.

B. In connection with the experimental discovery (angle resolved
‘photoemission spectroscopy, ARPES) of the extended saddle point
* singularities in the electron spectrum of a variety of HTSC consequences are -
derived for Tc and A in a simple model. A large enhancement of
superconductivity is possible if the singularity has a sufficient extension and
1s Jocated close to the Fermi energy.

In order to explain the anisotropy of the energy gap, observed in ARPES
experiments, on the basis of the "extended saddle point singularities”-an
assumption is done that the Coulomb interactions are weakly screened, i.e.
the Debye screening radius is much larger than the lattice period; this makes
the electron interaction long ranged (E-L model). The consequence of this
model is the change of the isotope effect with composition and also the
change of T¢ . The idea is that if the energy difference between the Fermi
level and the saddle point is less than the Debye energy, this distance
defines the effective energy scale, and hence there is a small isotope effect,
whereas in the opposite case the Debye energy defines the cut-off, and the
usual isotope effect is restored. Simultaneously T¢ decreases.
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[t also follows that at low temperatures the normal state resistivity is
mostly defined by electron-electron scattering, and its temperature

dependenceispoc T .

‘ C. Several data on the phase determination by single and multiple
Josephson junctions, and on the temperature dependcncc of the penetration
depth are in favor of an order parameter; changing its sign as function of
momentum, and, consequently, the energy gap having nodes. These data
can be mcorporated in the model described above if, apart from long-ranged

phonon mediated attraction, a short range rcpulsmn of another origin is-
assumed (E-L-U model).

1. ELECTRONIC RAMAN SCATTERING [1]

The problem of Raman light scattering fmm electrons in HT SC becamc

very important, since these results are critical i in defining what kind of o

pairing takes place: ordinary BCS-type pamng, or something more

complicated. One of the most important points is whether or not the energy’ =

gap vanishes at certain Jpoints or contours along the Fermi surface. In the

latter case BCS-type pairing is possible (although not necéssarily achieved - L

by phonons). Vanishing of the gap somewhere along thc Fcrm1 surface
would require non-BCS-type pairing.

Raman scattering is a contactless cxpenmcnt. The laser spot may be
very small so that a good smglc-domam piece of the surface is selected. It

- is possible, that the properties of the surface are different from those of the

bulk, but the penetration depth of light is of the order of 103 A so is onc

-expects that bulk properties are being measured
“According to the theory for an anisotropic metal [2,3] the Raman

satellite forms a wide band starting from @ — @ "= 24in ‘with a sharp

increase from zero to some maximal value in the region @ — @ -24,;, ~A

and then decreases with o (as (@-@) -2 for a short coherence length .
In various experiments (see references in {3]) with different substances the
sattelite starts at @ — @ * = 0 with a lincar dependence do ~ w — @’ and then
follows essentially the theoretical predictions. This could mean that the
energy gap turned to zero along lines, which could be possible due to the
cylindrical shape of the Fermi surface in a quasi-2-d metal. However in the
- experiments by Boekholt, Hoffmann and Guentherodt [4], a definite energy

gap was observed. They studied very pcrfect single crystals of

B1,Sr,CaCy 08 +5 with a surface thoroughly characterized by a high-

resolution electron microscope, and the temperature of the laser spot was
well controlled by comparison of intensities of the Stokes and anti-Stokes

satellites. An anisotropic gap was observed with ZA/ / ITe =57, 24 1

/Tc =3.4, where 4, means an experiment in the Z(XX)Z geometry and
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4 a Y(ZZ)Y geometry (here Z(XX)Z means that the direction of -

incidence is along Z - the main axis, the scattered beam is observed in the
backward direction and both polarizations are along X in the plane). Since
this definitely contradicted our previous theoretical prcdxctxons {2,3] it
created doubts in the applicability of the model of an anisotropic metal
which we have used.

Recently, models taking directly into account the layered structure of the
HTSC have become popular. These models can explain some properties of
the vortex structure in the mixed state, pinning and the current-voltage
characteristic. Tachiki et al.(TTSA) [5] have shown, that such a model
explains qualitative features of the tunneling conductance; and the present
study was carried out to learn whether a model of this type could explain, at
least qualitatively, the the Raman scattering results. It was shown , that this

is really the case. Even the fact that 4y is almost twice the observed A

becomes understandable. In the calculations we supposed T=0

In the TTSA model it was assumed, that the superconductor consists of
5 penodxcally repeated layers of whlch layers 1 and 5 have an electron
" attraction leading to Cooper pairing, whereas layers-2,3.and 4 have no such' -

Lo

attraction and are normal. There is hopping between adjacent layers. Here |

our task is to study qualitative features of the electronic Raman scattering

‘and to find an explanation of the main observed properties; viz. dependence " .

on polarization and appearance of two different gaps. We did not find it
very.useful to seek exact numerical agreement with experiment taking a’.
' many-layered Hamiltonian with many adjustable parameters, and considered

- 'a model with only two alternating kinds of layers: (1) supérconducting with. . - L

an attractive electron interaction and (2) normal w1th no interaction (Fig.1).

Fig. 1. Layered S-N models of a High-Tg Superconductor 4

- Our Hamiltonian has the form
H= Hj+Hp+T+I . (1)
Here Hj .y are the bare Hamiltonians of the S- and N-planes, T is the

hopping part, and 1 - the BCS interaction in the S-planés. The y-operators
entering H are of the tight binding type

v o) iz 1/2z ) oM 2)eikP ok 2md




ikp ik, (2m+1)d

+ C%z)ko_l/fz)[z-(Zma-I')d]e )

Here k= (k, kz), S is the normalization area in the plane, N - the number of
periods along z, Y1) and Y2) are the localized wave functions of the
superconducting and normal layers, and the a ( ko - the corresponding

annihilation opcrators. We assume that H; has only diagonal matrix
elements between Vf 1) kP with the same m, and they correspond to the
kinetic energy in the S-planes, and similarly for H, for the N-planes. The
hdpping part, T, hag off-diagonal matrix elements between 1733 and
Y2 ),with adjacent m's and'ihc sanic o's which are equal to /2 (it can be

said, that the operator T’ transforms %1) (z-2md) into /7) )[ z-(2m+1)d] and

vice versa). The interaction part I has matrix elements equal to -g only in the
same superconducting layer.

Substituting (2) into H-Nu we gct

_ +
H-Np= ;z; a1 )c3Fa (I)ka (2)k 2% ko

+tcoskd ("(1 o X2k %2 )ka"(z)ko”

. L 5 at at : @)
SN t1ekpkskg =0 (1 k1- 4 (Dk2+ YDk3+ Y1 )ks-
indices o=+,- refer to the spin projections, gIZ = vy (k - ky).

In the self-consistent field approximation we substitute the interaction term
by '

' + +
“AE ANk AT A1) (D “)

where
A=S§N2< a(])k_,_c“)_k) ) | (5)

We shall make the following assumptions: ¢ « A\j_ B = mylmy « 1. Then
the exgenvalucs are
2 .2 12 4 2112
g = [§1+A+ 2t (k)] . = [éﬂ(k WA]

g§=-5, g=-§ ; t(l%)ztcoslgd (6)



. 2, L.
(the reason for leaving the term 27 in €9 and £4 is its dependance on
k ,). At the first glance there are two finite gaps. However since # k)
=t cos(k,d) the second gap vanishes at the boundaries of the Brillouin zone:

k ,— m2d or k,—> -mi2d.

In the (ZZ) geometry the scattering is defined by the A, component of

the vector potential. In the tight-binding modcl it enters thc wave functions
through the factors

exp(-is IA ,dz )

therefore if v and ‘l’+ appear with the same argument, the f;actor_'s are

cancéled out, and the only terms in the Hamiltonian contzumng A are the
hopping terms. They contain factors of the type '

(2m+1)d
ie
expt + & Adz | ,
2md '

and assuming that A, doesn't i/ary noticeably at atomic distances these,
factors can be replaced by

expl + 22 4,(2md)] . o

The result is that in the hopping terms kare replaced by k- ( elc)A z- |

Omitting the detailes of calculauons and formulas, thc ﬁnal answer can
be illustrated by Fig.2.

"Fig. 2. Electronic Raman scattering cross-section for the geometry X(ZZ)X

/
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The scattering is accompanied by hopping of the clcctron between Nand S -

planes. The threshold is therefore 4, asin -
tunneling between a normal and superconducting metal. After a logarithmic

: 2 .y - .
singularity at @ - @’= A + 2t~ /A, which is the maximum of the sum of the

gaps in both bands (in the sence of the dependence on k,; the bands are
assumed to be isotropic in the plain), the cross section decreases as [A/(w—

2
®')] . The average scale for reasonable values of parameters is

w
do ~ 10 12-%—- dq.

In the case of parallel polarisation Z(XX)Z the interaction of electrons

with light appears in the kinetic energy terms of the Hamiltonian and is
ngen by

.

2 2

(4 2 e 2 .
‘Va( S vix Ax 74 Svox A gAY ) VAV §)
2myc 2myc

As was shown in [2], the terms linear in A x contribute only minor - .

corrections to do, and so we consider only the quadratic terms. They

contain the band mass in the denominator. In ordcr to obtain a finite .

_threshold value of o - o’ we have to assumc that my » my.Then the main

‘contribution is due to the supcrconducnng layers The result can be
illustrated by Fig. 3.

fig. 3. Electronic Raman scattering cross-section for thie geometry Z(XX)Z

The threshold is at 24. A discontinuous jump (it can be smoothed out, if the
anisotropy in the plane is taken into account) is followed by a logarithmic

2
singularity at the maximum of the double gap 2(A+7/A4) and then falls off

2 . . -12do’
as [A/(w—w’)] ~. The scale is again of the order do ~ 10 —Z— df. At

smaller w~w’'< 24 there can be a small contribution from the normal band
but other sources of additional scattering cannot be excluded.



According to this l'hcory the threshold value for doy should be exactly

twice the one for qu. The experimental result is not exactly the same:

24,41 T. =57, 2A.L /T, = 3.4. There is, however, a‘.simplc way to

correct this difference. We have assumed that there is no interaction of
electrons in the "normal” planes. But this is quite impossible. So let us

assume that there is a very small interaction, g3. Then it is natural to
beleive that a condensate is formed, and hence a nonvanishing

<a(2)k+q2)-k-> exists. If we assume A >0 the threshold will become
4, = A + 4 , and this could explain why 4, is not equal to A/ / /?.
" From the experimental-values quoted above we obtain AT, = 285,

4, "/'Té =0.55, i.e. A is more than five times larger than 4. ™

2. TUNNELING CONDUCTANCE (6]

Another method of diréct measurement of the energy spectrum and
particularly of the energy gap is the tunneling conductance G = dJ/dV.
as a function of the voltage V. It is well known that G is proportional to the

electronic density of states. Here we meet a paradox. ‘According to the last - i

measurements of Hasegawa [7] the main contribution comes-from the

superconducting layers, and a clear gap of the order of the one obtained

from Raman experiments on B&S‘rZCaClQOg +5 is séen. On the other hand
- the tunneling conductance reflects the electronic density of states which is

proportional to the effective mass in any dimensionality. Since we had to
assume for interpretation of the Raman experiments that the effective mass:

 of the normal layers is much larger than the mass of the superconducting

layers, the contribution of the normal layers to the density of states would .

dominate in contradiction with the experiment. There is a way to resolve this
paradox assuming the tunneling probabilities to the S- and N-layers to be
very different. We leave the detailed discussion of the possible origin to'the
end of this part.

We consider a contact between some normal metal and the S-N
superconductor. According e.g. to ref.[8], § 22.3, we have

T = 2ze(2d)” m 8(E, - Ep)((A byl s Ino
i=12;pq m
+ ,+ + +
+ (Api’bq—)om (Api“bq- ;no’(Apibq+)om(Apibq+)mo
(A ol Apibg I - ©)

.......




The factor (2’d)'1 was introducéd to define the current denstty. We assume
that the phases of tunneling amplitudes of the superconducting (i=/ ) and
normal (i=2 ) layers are uncorrelated. The operators bq O_com:spond to the
normal metal. The operators for the superconductor are the same, as used
previously, but rewritten in the Nambu representation: namely the A pi
mean annihilation of quasiparticles in layers i=1 (S) and i=2 (N) with
momentum p and spin 1/2; the Api' mean creation of quasiparticles with

momentum -p and spin -1/2. The temperature is taken to be zero, the index
zero means the ground state, summation is taken over the final states m.

After that we pass over to the band representation with the energy levels

El = g, EZ" 5, E:;= -8, 'E4Q-=k - §. We will assume the tunneling
probability to the N-layers to be much smaller than to the S-layers

V)G 1)2 o
T pIT g myimy e el
and first consider the case of small hopping  « A\/E.
The result for this case is
Pp m
J = 4med)” - ! f d§
. (I q )

0

X ITOF (ﬂ 1T,

+n< W (n

ez-eV ez+eV)

g-ev” e rev? . _ (1 1)
where nare the Fermi funcnons of corresponding arguments, é—\y(/k/ -

k,). g=cos kd. The contnbuuon from thc band (2) is $mall coming either

from small wunneling to the N-layers or from the small hybndxzatlon with
the S-layers. Nevertheless it is of some importance since in the conductance

G=dJ/dV it is the only one at eV < A. The shape _of the curve G(V) is
presented at Fig.4. We have a jump at the threshold eV = A followed by a

logarithmic singularity at the maximal gap of the § band and a subsequent
decrease to the normal state value. There is a small contribution of the §

band at eV < A but in experimental conditions it may be obscured by surface
defects or other phenomena. '



Fig. 4. Tunneling conductance for small hopping, £ « A\/E

For generality we considered also the case ¢ ~ 4, since in the S-N model the

assumpuon t» Aleads to suppressxon of supcrconductxvxty [9). The result
is plotted at Fig.5.

.

Fig. 5. Tunneling conductancc for large hopping, ¢ ~ A

-As the voltage is mcreased from zero, the oonductance G starts with the .
" value 1/R, correspondmg to a normal metal, at voltages much less than Afe. .

After a smooth maximum it drops dxsconunuously at ¥, to a very small . .

value; then at V, it jumps up again to a finite value on the order of I/R.

After that, it has a logarithmic singularity at V}, and at still larger voltages it

tends to I/R. In experiment, a dip is always found around V=0 , and
although a small maximum is sometimes seen at very low voltages, it never

reaches values comparable to the main maximum, which occurs at Vo=

aT, with a~3. This all makes it very unlikély that the S-N layered model
with 7 ~ A is good for BSCCO. On the other hand, the assumption

D¢ 12 .
t« A'\f B together with T « B IT®) leads to results resembling the
experimental data (see e.g. ref. [6]).

Now we retrurn to our basic assumption The only way to achieve
agreement of the model with the tunneling data is to assume
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2. 2

IT® «f T , and this means that the states of electrons in the N-layers
have to be different from those in the S-layers. If one thinks more
thoroughly about the S-N model, one encounters another assumption,
which looks rather strange. In the original Hamiltonian (3) it is implicitly
supposed that the Fermi-circles in the normal and superconducting layers
are exactly the same. Otherwise the energy and momentum conservation
laws would be violated. But this means equal number of electrons (or holes)
in both types of layers, which is unlikely. If there were a pronounced
anisotropy in one of the layers (as in YBCO) that would not be necessary,
since the Fermi surfaces could just cross at some points. But in BSCCO
there is no substantial anisotropy.

There is a possible way to resolve these contradictions, namely to
assume that the electrons in the N-layers form a continuous band of
localized states (as occurs in Anderson localization). Then there is no
momentum conservation. Such an assumption is compatible with small

‘tunneling matrix elements, since for effective tunneling a rapid change of

occupancy of the surface states is necessary, and if the states are essentially
localized, this happens very slowly. -

In this connection it should be mentioned that the situation in the 1-2-3
substances is entirely different. A model of two types of superconducting
layers, one of them being isotropic and the other-quasi-1-dimensional, looks
more appropriate. :

3. EXTENDED SADDLE POINT SINGULARITIES [10].

Usually the angle resolved photoemission spectroscopy (ARPES) is
applied for determination of the Fermi surface in cases where the usual
methods, e.g. de Haas - van Alfen, or Gantmakher oscillatory effects in thin
single crystalline films, fail for some reason. Such a situation happens in the.
high T, cuprates, because the normal state corresponds to such high -
temperatures that all the oscillations vanish, and destruction of

- superconductivity by magnetic. field at lower temperatures réquires

tremendously large magnetic fields. J.C.Campuzano and K.Gofron from
Argonne managed to increase the resolution of their experiments to such an
extent that they were able to find not only the Fermi surface but also the -

electron energy spectrum in the vicinity of the Fermi energy. Since the

cuprates are quasi-2D substances, the energy depends very weakly on one
of the components of the quasimomentum, say kz, and can be considered
mostly as function of k - the quasimomentum in the a-b plane. They
discovered that this dependence has not simple saddle points but what they
called "extended saddle points"” - rather long regions in the k plane, where
the energy depends only on one component of the momentum. These
regions are confined to the boundaries of the Brillouin zone. Their location

and the curves illustrating the function &ky,ky) are given at Fig.6, 7.
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Fig. 6. Location of the extended saddle point singulé:itics in the ( @‘,ky)
plane for YBa2Cu307-§ A

Fig. 7. The function &(k,.k,, ) near thé singularity o

Such singularities were found in YB_aqu306,§, YBa2Cu408 and

Bi2Sr2CaCu208+§ This discovery was confirmed later by the Srtanford -

group (Shen, Dessau et al:) {11] and by ﬁ@cﬁcal‘dctcmﬁnat_ioné of the

band structure in the same substances as well as-in HgBa2CuO4+3 and .

HgBa2CaCu206+5[12]1 . - LT
Even a simple saddle point leads to the increase of the density of states,-

and to enhancement of superconductivity [13]. The extended saddle point -

means actually that the substance is not only quasi-2D, but quasi-1D with
the density of states in a rather wide energy range given by the formula

] Pyo(zn&)uz
Ve)=—5 72
(2m)" d (€ - €,)

, (12)

where PyO is the extension of the singularity (we assume here that it goes
along ky ), m, is the effective mass for kx,d 1is the period Aalong the c-

axis, €, the energy of the singularity. Substitution into the self-consistency
equation of the BCS theory gives in the limiting cases:
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5 2220 E0)1/2 |
T.=7(u-glexpi - — 77 , (13)
gmy Py
if g - g » ?;:, or
o2 )2
u—%«(%;,lg) ~E/1i, (14)

where E ~ 1 eV, A, is the usually normalized dimensionless interaction -

constant. In the opposite case, - « T,

/ 2

T = 0.0093 (——f—d—l’l] ~E Af, . - (15)
In this extreme case T, ~ 100K corresponds to 4, ~ 0.1, i.e. smaller than in
the usual low-temperature superconductors. However even in this case

" the ratio 24T, is 3.79S (in case p - g » g it has the usual value 3.52).

Since the experimental value is closer to 6, a weak coupling theory is -

- probably insufficient for numerical predictions and-can serve only for a
qualitative analysis. '

4. GAP ANISOTROPY. THE E-L MODEL [14];

The same authors as well as the Stanford group has observed another

property of the photoemission spectra: the anisotropy of the energy gapA. .
- This was done in BSCCO - the only substance, where the ARPES -

technique permitted to observe a gap. Since the value at the minima fell
below the resolution threshold, this was interpreted as a firm proof of the so
called d-wave pairing, where the order parameter changes sign and has

nodes. Actually none of these statements can be proven, since in these '
experiments only the magnitude of the order parameter is measured, and the - -

resolution is finite. In case when the interaction between electrons is
mediated by phonons (as this can be concluded from the isotope effect,
which we will discuss later) there are no arguments in favor of d-wave
pairing (such a simmetry of the order parameter appears, if the interaction is
mediated by spin fluctuations or is a result of Coulomb repulsion).
Therefore it can be asked whether such an anisotropy is possible within the
phonon scheme.

In usual superconductors, even with an anisotropic basic energy
spectrum the gap is rather isotropic (anisotropy less than 10%). This is due
to the isotropy of the interaction between electrons mediated by phonons.
Even in case of a high state density in some regions of the quasi-momentum
space the equation of the type
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Ap) = | Kip.p') 14RO dp(2n) a6

will connect A at any p with the singular region, and hence will not permit

A(p) to be anisotropic, except for the case, if K(p,p’) is anisotropic. In
principle this could be achieved by spin-fluctuation exchange, if their
relevant momenta were concentrated within narrow intervals around some
particular values. .

However we consider, as much more natural, the idea of a smali
momentum transfer. Although the high T¢ materials are certainly metals,
they are in some sense close to ionic crystals This can be traced from the
experimental observation that in the infrared as well as in Raman
measurements the phonon peaks are very high (see e.g. ref. {15], [4]). It
has also to be considered that structural models consisting of differently
charged ions are of much help, not less than band structure calculations
based on the LDA method. The cross-over from metals to ionic crystals can
be understood if one imagines that the Coulomb forces, which are the basis
of all real interactions, are poorly screened, i.e. the Debye screening radius
is not of atomic size, as in good metals, but much larger. The expression for

the square of the reciprocal Debye radius is ce2 = 47c(e21 €, )v(i), where g, -

is the part of the dielectric constant due to ionic cores, and V(1) - the state
density. Substituting eq. (12) we obtain: o :

2 112 P
em x Ty 0

€, d(u-so)uz

242N,
tzz(O) = s

, 17
where N is the number of singular poihts per Brillouin zone and we have

taken into account 2 spin projections.

From this formula it can be seen that a:z( 0) is small only in case of

large €. The experimental measurements of the dielectric constant as

function of frequency [16] give very different values, sometimes larger than
1000, but in case of a complicatéd energy spectrum it is not easy to decide-

how g _has to be extracted, and so we will simply make the assumption

that € » 1. There appear several momentum scales in the problem. For
simplicity we consider the extreme case

Py = - ) « @ « By« alek, a8)

where Pry isthe 1D Fermi momentum, d is the period along c, and K is the

reciprocal lattice period in the plane; in reality other cases are also possible.

There is no unique way to chose the model interaction. We will assume
that the square of the electron-phonon interaction matrix element entering the
phonon mediated electron interaction, as well as the electron-phonon
scattering probability, is multiplied by
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2 n
w .

T I (19)
k2 + a:z

where k - the transferred momentum, n>1. In the BCS equation this factor
will lead to the replacement, compared to the previous section:

g PyO g
2.7 32
(2n)d 8n(n-1)

Let us first consider the vicinity of the sihgularity. Substituting the modified
phonon mediated interaction into the BCS equation we obtain

;1 [€€ry? miesl) Pen o0
R N R o
. - ﬂl '

where By = 1- & « b, A is the large gap in the vicinity of the singularity,
and '

2
o (2"&)1/2

. @
(2xf(n-1) 4}

At T=0 we obtain from eq. (20) in the limit & » 4,

Loy o p=syelih | @2

4,

The order parameter not in the vicinity of the singularity is small for the
following qualitative reasons. In the BCS equation (16) the integration can
‘be split in two regions. If we integrate over the vicinity of the singularity,
the density of states (per unit angle) is high but the interaction is weakened
by the large momentum difference p™p.-If, however we integrate over P’
close to p the density of states is small. Assuming isotropy outside of the
singular points we get the equation S ,

A=

A 2 2n-12™p
1 y0 ,
—11 - 2- I l n = (23)
2n

where 4, is the order parameter far from the si»r»ngularity,’ p - the distance
from the singularity in the plane (B py )s
gme

A = 24)
] .
(2x)in-1) p,




15

is the normalized interaction far from the singularity, p and m characterize

the spectrum in this region. From eq. (23) it follows that 4; decreases
rapidly with p and reaches eventually a value corresponding to the spectrum

without the singularity. On the other hand it is always finite, until 4, is
finite.
What concerns the singular region, it is not connected with external

regions, and 4, as well as T, are defined from the equation (20). As we

mentioned before, it gives the 24 /T, ratio not very far from the BCS

value. It follows that the E-L model, considered as a weak interaction
theory, cannot describe quantitatively all the properties of the HTSC.
Nevertheless it can be useful for understanding the origin of various
unusual phenomena in these substances. o : :
The results of the most recent experimental determination {17] of this
function is presented at Fig. 8. S : :

Fig. 8. The latest ARPES ‘data on the angular tdcpcndehcc of the . .-

- - superconducting energy gap in B'ESrZCaCIQOS +5

Apart from the smallest gap region (in sec. 7 we will show how this
" disagreement can be cured), it fits qualitatively to the predictions of the
" theory described here and definitely disagrees with the "d-wave" and -
"“isotropic s-wave" concepts. » : ;

5. ISOTOPE EFFECT [18]

The isotope effect is usually described by the power « in the presumed
dependence

T, e M (25)
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where M is the average ion mass (in the high-T¢ copper oxides O g 1s

usually partially substituted by O g). Hence the power o can be defined by
the relation

31)1'12,
=TI M 26

The dependence of type (25) is definitely true in the simplest electron-
phonon interaction model, where o = 1/2, but in most of the real cases the
connection is far more complicated. Since, however, the relative variation of
the ion mass is very small, formula (26) can be taken as a rather complete
characteristic of the isotope effect even in cases, when the original formula -
(25) is not correct, and the true dependence is far from a power law. .
There exists an observation that in cases, when the composition of a
layered cuprate superconductor can be altered in a regular way, and the
critical temperature varies with concentration, the isotope effect dependson -
composition, and the lower the critical temperature, the larger is o.. The. .-
known examples are (Y1-xPrx)Ba2Cu307-§ with varying x [19], [20],

YBa2(Cu}-xZnx)307-5 [21], Y(Ba2-xLax)Cu3O7 [22] and (La2-
xSrx)Cu04 as well as (Lag.xBax)CuO4 [_23], where in fact a
nonmonotonous dependence o(x) was observed. ' :

The small value of & of the order of 0.019£.005 for YBa2Cu307 {24]
has lead (and still does) to conclusions about the non-phonon mechanism of -

- eléctron interaction, although it was mentioned rather early by J.Labbe and .’

J.Bok [13] that a simple saddle point in the electron spectrum enhancing -
superconductivity due to an increased density of states in some region close
to the Fermi level, can replace the Debye frequency as a cut-off of the’
interaction, by some electronic energy limit independent on the ion mass.
Such an idea applies even better to the extended saddle point since the
singularity in the density of states is much stronger. R :
In the framework of the E-L model the momentum region of the -
singularity in case of small angle scattering is singled out in the sense of
definition of the order parameter: all the necessary information belongs only
to this region. On the contrary, the order parameter in other regions is
defined by its value in the singular region: it is finite until it does not vanish
in the singular region. This means that the critical temperature is also
defined only by the singular region, and hence we can consider only this
region and not bother about the rest. In the case of an extended saddle point
singularity the integral in the BCS self-consistency equation is convergent,

. and the corresponding energy scale is equal to

G =a-g : (27
i.e. the Fermi energy calculated from the saddle point. This energy does riot

depend on the ion mass. It can happen, however, that ,L§ ‘exceeds some @,

which is the true interaction cut-off. In this case ) becomes the integration

- limit despite the convergence of the integral, and hence the order parameter

and the critical temperature will start to depend on the ion mass. This all
happens gradually and for practical purposes it can be represented as
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variation of & as defined by eq. (26), since, as we mentioned, the actual «

variations of M are small. We will consider here the case 4 »T,, and at the
end we will briefly discuss the case ﬂ]f T . which corresponds to

* substances with the lowest & and highest T,

As before, we assume that the true interaction has the form

wZ n wz( k)

V(k) =g ’
Erat | @ef- o’k

(28)

where @ is the phonon energy and £, £ - the electron energies before and
after scattering. According to the previous considerations the order
parameter in the region of the singularity does not depend on momenta.

Since the electron energy dcpcnds only on p., we can integrate the

" interaction (5) with respect to VB, and p,, and after this we obtain

' 2 2
di,dk, g o o
Vik) — . . 29)
2 87(n-1) (E-EF - a°

where @), ~ ce is some characteristic phonon energy at k ~ e . Usually the.

factor with @), in the interaction (29) is replaced for simplicity by

wf, | {-1 &8 < ®, .
5 —_—
(&€) - o, 0 /5-51> @,

. Unfortunately, due to the singular density of states, which is
M C 12 , L
proportional to (&-g,) 12 = (E+ L) u the interaction (29) as well as its.

simplified form (30) lead to unphysical ﬁngulaﬁﬁ¢s- at iy = @}. The origin,
lies in the replacement of the integration over phonon frequencies by some

fixed frcquéncy @,- On the other hand such a replacement is very helpful

for simplification of the theory. Therefore, instead of (30), we will use
another simplified form, which has also the property of being confined toa
certain energy interval around the Fermi energy and at the same time permits
to avoid nonphysical singularities in the final expressions. We will
substitute the frequency dependent factor in (29) by

2

@y

Y Y G
(5‘5') + o
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Here we are interested in 4 at the Fermi surface, and hence we put £=0. °

The interaction (31) enters the BCS self-consistency rélation, and hence we
have

o<

g1 (e mead e -
27 e 22T B

~ #I
where A has the same meaning as before (eq. (21)).
AtT=T¢ A=0. Performing the integrations we will assume that T¢ « Ky
@,,. The result will be
Lo gy (33)
N A ”Tc | ) N : ’

x=aly,y= cC= 1.781. The asymptotic values of f{x) are

o4 1,4 7N\2
ln;— -5(31}--5 - x « 1

22x 2l .,
From formula (33) we define « according to ¢q. (26). Assuming that .
@, is proportional to M 2 we obtain: d(ln x) = <112 d(InM). According to .

* eq.(9). The asymptotic values at small and large values of x are

%‘%(5-31@’[—}2 x <1

x_ x »1
82x : :
Experimental results are always given in the form of the dependence

o(T,). Although we have obtained equations describing T. and «, they

include an unknown interaction. More important, the characteristic phonon
frequency can be renormalized, and hence depend on the electron density of

states, i.c. on fy. At least, our attempts to compare the theory with the

)~ 34)

ox) = . (35)

experiment on the basis of the assumption of a constant @ have failed.

‘Since we do not want to introduce doubtful concepts about the phonon
renormalization, we will perform the comparison in a different way.

From experiments we have the connection between T¢ and «.
According to our concept there should be little difference between com-
pounds with different substitution of the constituents, provided that the
CuO2 planes are left intact. This is in fact confirmed by the data for
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(Y 1-xPrx)Ba2Cu307.§ and Y(Ba2.xLax)Cu3O7 (Table Il in ref. [25]), °
and we will approximate them by a linear dependence (see Fig.9):

a=0.623 - 0.00637 T (K) ,383K <T¢ £92.3K (36)

Fig. 9. Experimental data on the dependence of o on T¢ for
Y(Baz-xLax)Cu307 [22] (wriangles) and (Y1-xPrx)Ba2Cu307[19],[20]
(circles). The points were taken from table III of the review article .
by J.P.Franck [25]. The dashed straxght line is the least square fit .
~ (eq. 36)).

This we can use to define the dcpcndence of xonT¢ with the help of the .
- equation for ofx) . Substituting x in eq. (33) we can obtain the connection
between K and T¢. This will be the prediction for future experiments, since

the photoemission experiments permit to measure. 1, for compounds with

“reduced Tg, provxded that smglc crystalline samples will be avallable
" For convenience we rewrite eq. (33) in the form

g8 ) -
In T + f(x) ln—-ﬁ— buflz. s IR 37
where
1 .
b= : (38)
112
AHg _

is the unknown constant (independent on Ky ). The program was to define
- I(Tc) for different values of the constant b and to leave the choice to

-experiment. It happened, however, that the right hand side as function of K
and the left hand side as function of T are nonmonotonous and have

maxima. The only possibility to obtain a continuos dependence ;5( Tc)isto

chose the constant b in such a way that the two maxima have equal values
(otherwise we get either a discontinuity or no solution at all). This value is -
b=0.137, 3G9

and the corresponding dependence ;5(’1‘ ¢) s plotted at Fig.10.
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Fig. 10. Predicted dependencé of the location of the Fermi energy with

respect to the saddle point, 4, on T¢ (both quantities are measured
in K) {18]. ' '

This definiteness is no surprise, since the basis of these calculations is the -
experimental dependence ofT¢) for definite compounds.

In the previous derivation it wask_as‘sumcd that both, 7 and @), are
much larger than T¢ . This happens not to be the case for the largest Tg
( ;LI':TC is presented by tlie dashed line at Fig:10). Of course this can be

corrected (actually already for Te = 90K the correction is small), however )
this region is suspicious in the sense that the small value of the isotope shift -
is likely not entirely defined by the cut-off of the integrals, and the phonon

frequency can enter the interaction, reducing the value of a. Otherwise
small values of o require large values of x (see €q.(35)), and hence -
unphysically large values of @),;; see Fig.11 representing the dependence .'

@,(Tc ) obtained from x(T¢ ), ;ﬁ(Tc) and x = Qlly.

Fig. 11. The variation of the effective phonon frequency @, with T¢ (both
in K) [18].

The fact that the isotope shift for Cu®3-Cu65 is négative and increases in
magnitude with increasing T¢ (see ref. {26]), can also be considered as
evidence for inapplicability of the theory, based on the assumption of the

purely cut-off nature of the isotope shift, to substances with extreme 7.. On

5
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the other hand for the lower 7(': substances the values of @, are reasonable, .

and their variation can be ascribed to renormalization.
The predictions of the present theory are rather definite, but in order to

check them direct determinations of the function ox) have to be performed.

This is possible, in principle, by measuring a and 4 (by ARPES), using
the same samples.

6. RESISTIVITY IN THE NORMAL STATE [14]

The linear temperature dependence of the normal state resistivity of -
high-T¢ cuprates was always a puzzle for theorists, and one of the checks
for the theory to be correct was this dependence. Unfortunately, people
always managed to get the linear dependence in their theories based on
completely different assumptions, e.g. RVB (Anderson and Zou) [27],
-nested Fermi surfaces (Virosztek and Ruvalds) [28], spin fluctuations
(Morita et al.) [29], oxigen chains (Abrikosov and Falkovsky) [30]. °
Therefore such a result can neither prove nor disprove a theory. The easiest .
way to obtain a linear temperature dependence is an assumption that the -

- electrons interact mainly with some optical mode having a low frequency, - Y

and the T comes_from the Bose distribution [exp( a)olT) -1 ]"1 atT » @,
This sort of explanations is likely to be wrong because the high frequency -
resistivity 'o(cofl at @ »T varies linearly with @ (see e.g. ref. [32]), i.c.o

replaces T; this can happen only if T,0 « @), - the limiting energy of quasi-
particles mediating the interaction. o ) o

We are not going to make an exception and will also obtain the linear
resistivity in the framework of the theory presented above. We will show
that scattering of electrons from electrons at low temperatures is much larger.
than scattering from phonons; therefore we will consider it first (the same
was true for the model of nested Fermi surfaces {28]). In the previous
section we have assumed that the interaction between electrons due to
exchange of phonons is stronger than the Coulomb repulsion (actually they
are of the same order of magnitude). Here however the situation can be
different. The matrix clczment of the Coulomb interaction is

dne’le_,
22 (40
k+ &
whereas the interaction via phonons is
wz Xk )2

7 2 @1

Pr & | 8P or)®

In the forthcoming the integral over k will require k ~ e, and since 8§ will
be of the order of T, the second matrix element will be much less than the
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first one in the case T » @, = a)(az) If on the contrary T « @), , the second ‘

factor in eq. (16) becomes -1, the same as in the gap equation of the
previous section. Then the interaction %cqmrcs the same form as a pure

2
Coulomb (40) with the replacemcnt47re /e, — -ge . The sign is of no

importance, since only the square of the interaction enters the scattering
probability, and the order of magmtude of both interactions is likely to be
the same. Therefore we will write the interaction in the form (40) with the

2 2
possible replacement 4ze /€_—> -ge in case T « @, We obtain
S, 7 [—
T oe £,

nz(l-nl)(l—nz)ﬁ(q-!-%il ?2)(1-cos 9) djp 1d3p2

; - (42)
[(pl-pl) + e ] (2zr)

where 0 is the angle between the velocities before and after scattering, and -
n; arethe Fermi funcnons Intcgraung we obtain the ﬁnal cxprcssmn '

eP , -'ezmu2 oo :
: =§1‘ 2: ;T . xuzT @3
T - £d @ n-g 4\J_N e(u%)

(here we have substituted the formula (17) for @& )
The reason why we get in this case a linear T dependence instead of the

usual quadratic one is that in a 3D or 2D dm:cnsxonal case the 8-function ~ -

fixes the angle between the momenta whereas in the 1D situation therc ismo
angle to fix, and the d-function reduces two momentum mtegrauons to one.

The coefficient in the linear dependence (43) would be largc (e Ivp~1 for

an ordlnary metal, and here Ve is much smallcr) if not for g, » I

Therefore this requirement is actually the condition for the Landau Fermi-
liquid theory to be applicable to the layered cuprates under consideration.

Now we calculate thc scattering probability from phonons it is given by
the expression -

I o w. "w(k) 6[£(p) g(p-k)] (1 - cosb) d3kl(27r)
—=ing (a4)

Tep (k+ az) {exp[co(k)/T] 1}
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For T » %

] ga:znm > ckzd k ga:zm X
T ep Jr/pl/ (k+ &) [exp(ckiT) - 1] /px/ :

-~ For F « @), the result is

oo

2
] gm, ckdk 2C(3)gn5c73 46)
= fexp(ckiT) - 1] = 2 :
Tep TP/ 7c 1 pyd
The ratio of the probabilities for T » ‘@) has the order of magnitude
. 2 ’
T gxE,_, : .
. _‘:%12 ~—s— sl ‘ Aan
Toe € . :

However for T « @, the electron-electron scattering is dominant. The
dominance of the electron-electron scattering over the electron-phonon. .

scattering can be concluded also from the experimental fact that with .~

* decreasing temperature below T, the lifetime of quasiparticles obtained .
from infrared measurements starts to increase rapidly [32]. If such a -

dominance takes place below T, it must definitely continue in some

temperature range above T... :

If the singular points are at all the boundaries of the Brillouin zone, the
resistivity in the ab-plane is : . _

2
r_md 7
p=g —— — . ' : (48)
Pyo(i-g) €.
The crucial idea for all results obtained in the foregoing is the

assumption £_» 1. Apart from that we have preSumed a modification of the

electron-phonon interaction (square of the matrix element) which is
described by formula (19). We realize that this treatment is not complete.
The Coulomb repulsion has not been seriously considered. In the model of
strongly compressed matter [33], it compensates almost entirely the phonon
attraction due to longitudinal phonons (in this case n =1); we hope that this
analogy cannot be extended to such extremely anisotropic substances, as
layered cuprates. ‘ ‘
The quasi 1D spectrum appearing as a result of the "extended saddle
point singularities” puts also questions about the applicability of the Fermi
liquid approach, since the purely 1D interacting Fermi system is more likely
to be a "Luttinger liquid". We hope that the non-1D features will be
sufficient to suppress the logs leading eventually to the breakdown of the
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Fermi-liquid; this all, however, has to be checked. On the other hand the .

quasi 1D situation may be more favorable for the "preformed pairs” idea
(see e.g. ref. [34]).

7. ON THE NATURE OF THE ORDER PARAMETER (35]

One of the hottest topics in the theory of high-T¢ cuprates is the
symmetry of the order parameter. One point of view is that the pairing is of
"s-type”, possibly anisotropic. According to this hypothesis the order
parameter does not change its sign along the Fermi surface, and the energy
gap has no nodes. This is confirmed by several experiments which
definitely demonstrate a finite energy gap, e.g. the Knight shift [36],
tunnclmg conductance in BiSCCO [37] and HgBCCO [38] The most
convincing argument in favor of this point of view is the strong isotope shift
of the critical temperature in YBCO with a partial substitution of constituents

(Y—Pr, or Ba—La), which we discussed before. This is a clear cv1dcnce of. .

a phonon mechanism of supcrconducuvny which leads to an order

parameter with no nodes. One of the examples 1s the model descnbed in the-

previous sections.
On the other hand there exists also strong evidence in favor of the so

called "d-wave" pairing. These are the linear temperature dependence of the |
penetration depth at low temperatures [39] the Josephson experiments-on .

single crystals [40] and rings, consisting of several grains [41]. One must
have in mind, however, that these experiments demonstrate actually only the
fact that the order parameter, as function of momentum changcs sign and

has nodes but do not exclude dependencies differing from thc.form A(k) =
cos k. - cos IS’ which is usually advocated by the proponents of the d-
wave hypothesis. Recent direct measurements of the angular dcpcndence of

the energy gap by photoemission (J.-C. Campuzano et al,, see Fig. 8) did

not confirm this form. The only result, which favors it, is the absence of the =

Josephson effect in a BlSCCO—Pb tunnel junction (surfacc { ¢) [42] but this

result, which could mean that the integral of A(k) over the whole Fermi
surface vanishes, is in contradiction with the observation of the Josephson

effect in the same geometry with YBCO instead of BxSCCO and w1th the
gap measurements already mentioned.

Our goal is to demonstrate that most of the obscrvatlons can bc

explained by a very simple idea which is a development of the E-L model.

Compared to it we introduce the following change. We will assume thatin =
addition to the phonon attraction considered in sec. 4 there exists a ‘small
and short ranged repulsive interaction U = const. which can represent either -

some part of the Hubbard repulsion at the coppcr sites, or the interaction
mediated by spin fluctuations (taken alone, such an interaction would lead to
d-wave palrmg) As in sec. 4, we will presume the following inequalities:

Ppjc @« POy « 1ld « K,

As shown in sec. 4, under these conditions A is constant in the singular
region. Substituting V(k) + U into the BCS self-consistency equation,
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assuming the density of states and A'in the singular region to be much larger

than beyond it and integrating over k, and k, we obtain

y
PN S Yy )
=§" N
Erpf? (Beal)P

- IJ I
where 4, is the value of 4 in the singular region, and
112 2 ;
(2m) [ga: 2U POy) ‘ 50)
= 212\n1 -~ d )

emuy  \"
We will assume the second term: in the brackets to be much less than the
first one, and neglect it. The solution of eq. (49) at T=0 in the limit A« g o
is

A

4, =8y et 6D

Now let us consider some point at the Fermi-surface, distant fromthe - -

. singularity. For simplicity we consider a ¢ircular Fermi surface (thereisno -
dependence on k), and ¢ will be the angular distance from one of the
singular "points” (the extension of the singularity, £, and the z-size of
the Brillouin zone, 27/d, are assumed to be small compared to the radius of .
the cylindrical Fermi surface; p o> Which is of the order of X'). The integral

in the BCS equation consists of two parts: along the singularity and beyond .

it. Since the density of states in the singular region as well as the value of
A=A, are large, we will assume that this part of the integral dominates

(estimate of the other part's contribution see below), and hcnce-A( @)

beyond the singularity will be defined by its value in the singular region.

The integral over £ will be the same, as in eq. (49), and we can replace it
using this equation. Eventually we obtain the equation

2n '
Ao 2( n-I)POy x [ ) -Zn(q))_i_ s -Zn(@'%]:‘ U 2)
= : sin in ’
s, &4 l2p z ) 8
o

where p, is the Fermi momentum, and % - the location of the next
singularity (in general a sum over locations of all singularities has to be
taken). This formula describes the behavior of A(¢) far from the

singularities, 1.e. at not too small values of ¢. For description at any angle a
simple interpolation

s
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: sinzq)/z — sinz<p/2 + const ,‘
with the const chosen so that A(Q) = A o Can be used. The minimal value of
the first term in the curly brackets of eq. (7) is at ¢= ?,2, and its value is

2( a:/(Zposm( 430/4 ))]2 If this is smaller than U/g, then A(@) has a negauvc
value somewhere between the maxima, and hence the gap has two nodes in’

this region. In case if ¢ ;= 72, as it happens in BISCCO the nodes have to
be located symmetrically around n/4, and this corresponds to the
observations of J.-C. Campuzano et al., which are presented at Fig. 8. If
¢,= 7, which is most likely to be the case in YBCO, the negative values of

A are located around /2, i.e. if the positive maxima corrcspond to the a-
-direction, the negatxvc ‘values are around the b—dxrcctmn, which is exactly
what is seen in experiments measuring the phase of the order parameter.

The necessary conditions for all that to be. true is a sufficxcntly small’ o [

value of U:

‘ U«gagzd/Poy. - SR 63 )
If this condition is fulfilled, 4, in the singular region will be defined self-

consistently by eq. (49) and hence the crmcal temperanne will be also -

defined by this equation. As shown in sec. 3, in case, when thé L SN
characteristic phonon frequency @, < u 7 (@, is an opucal frcqucncy, or. T

acoustical frequency at k=c), the integration in €q.(49) has to be cut off at

®,, and a regular isotope effect appears. Since this is observed in
experiment, we believe that the condition (53) is reasonable. Another -

concern could be the part of the integral in the equation for A(¢) outside the
singular region. With respect to the terms, which we have kept, it is either

of the order of p r1/D,, or [ UPOy I(gw dx( PR IlPOy) Both quantities are’
small.

Since there is no reason for the mtcgral Jac @)de to vanish, there should
be a Josephson current in the HTSC-Pb junction if the boundary is normat
to the c-axis, although it may be smaller than what could be expected from .

an estimate based on 4) The fazlure to observc itina BlSCCO-Pb contact

could be due to the weak hopping between the CuO2 laycrs The Fermi. '
surface in this case is an almost straight cylinder, and the c-component of
the electron velocity is very small. If the electron crosses the barrier keeping
the direction of its velocity, it has to go a very long path. This decreases
drastically the tunneling probability and can desroy the Josephson current.
This does not happen if the boundary is parallel to the c-axis, because then
the velocity normal to the boundary is large, and also in YBCO, where due
to the chains the hopping between the CuO2 layers is stronger, and hence
the c-component of the velocity is much larger. In these cases (hc Josephson
effect was really observed [42], [43].
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The idea presented above solves also an important problem about the «
suppression of superconductivity by nonmagnetic impurities. In case of d-

wave pairing one would expect the necessary condition to be 74 < [,

whereas in case of s-wave pairing it could happen only at 7g; < 1. This

criterion is rather difficult to apply, because in the HTSC the ratio Aleg is

not so small as in low-temperature superconductors, and it is also not very
clear which impurities behave as nonmagnetic. Nevertheless the general
opinion is more inclined to interpret experimental data in terms of the

condition tep < I (AlLeggett, concluding remarks at the Argonne

Workshop, June 1994). In our scheme it would be rather natural, since the
impurities ' '
are most likely ionized, the interaction of electrons with them is weakly
screened and long ranged, and it would not mix the singular and remote
regions of momentum space. This, however, has to be checked.

There is also a question about the tunneling conductanice. Experiments -

- on BISCCO [37], and HgBCCO [38] show a small conductance ateV less
than some large gap with 2A(0)/T¢ ~ 6 - 8 (see Fig. 12). This seems in
contradiction with the present results, as well as with the d-wave and
anisotropic s-wave concepts. Our scheme can explain the tunneling results

as follows. The tunneling conductance is proportional to the density of |

states. In the nonsingular regions not only the gap, but also the density of
states (per unit solid angle), is much lower than in the singular. region.

Therefore it contributes only a small background; only, when eV =4 is

Fig. 12. Tunneling conductance of HgBa2CuO4+§ (niobium tip) [38]

reached, the cdnductancc bécomes large (the background is usually

attributed to normal inclusions). -
The model, presented here, cannot explain all the data. Even with an
energy dependent one-dimensional density of states the maximal value of

2A(0)/T¢, which can be obtained from eq. (49), is less than 4 (see sec. 3),
whereas the experimental values are around 6 to 8. This contradiction can be
due to the fact that we apply the simple BCS-type theory, whereas the
increased density of states makes the effective interaction strong. This has 10
be resolved in future studies.
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