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 CRITICAL DIMENSIONS OF WATER-TAMPED SLABS AND
SPHERES OF ACTIVE MATERIAL

By E. Greuling, H. Argo, G. Chew, M. E. Frankel,
E. J. Konopinski, C. Marvin, and E. Teller

ABSTRACT

~ The magnitude and distribution of the fission rate per unit area

produced by three energy groups of moderated neutrons reflected
from a water tamper into one side of an infinite slab of active mate-
rial is calculated approximately in section II. This rate is directly
proportional to the current density of fast neutrons from the active
material incident on the water tamper.

The critical slab thickness is obtained in section III by solving an
inhomogeneous transport integral equation for the fast-neutron current
density into the tamper. Extensive use is made of the formulae derived
in THE MATHEMATICAL DEVELOPMENT OF THE END-POINT
METHOD by Frankel and Goldberg. (cf. LLA-258, LADC-76, or AECD-
2056.)

In section IV slight alterations in the theory outlined in sections
II and II were made so that one could approximately compute the
critical radius of a water-tamper sphere of active material.

The derived formulae were applied to calculate the critical
dimensions of water-tamped slabs and spheres of solid UFg leaving
various (25) isotope enrichment fractions. (cf. Fig. 6.) |

I. INTRODUCTION

The primary effect of placing water on one side of a slab of
active material is to return slow neutrons to the slab. Fissions pro-
duced by the slow neutrons reflected from the water give rise to a

LA-609 i
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2 LA-609

distribution of fast fission neutrons which decreases rapidly as one
goes into the active layer.

The multiplication of fission neutrons in the slab proceeds from
this essentially asymmetric source. One may describe the process by
which a time-independent fast-neutron density in the active layer is
established as follows:

Of the primary fission neutrons in the slab a certain fraction re-
produce fission neutrons without having left the active material. The
rest (a) suffer radiative capture before leaving the slab, or (b) they
escape into the water on one side of the slab, or (c) they leak off the
bare side never to return. Of those that enter the water, a certain
fraction are returned to the slab after moderation and produce fis-
sions. Let us indicate the number of fast neutrons per sec per‘cm2
incident on the water as I. The number of fission per cm? per sec that
slow neutrons returning from the water produce between x and x + dx
in the slab we shall call Ifg(x) dx

ACTIVE MATERIAL WATER

I fg(dx)

Fig. 1

The problem of calculating the critical thickness, d, is now con-
veniently broken up into two parts. The first is to determine the
magnitude and distribution of the source fission rate per cm®, If5(x).
The second is to compute the current of fast neutrons into the water
which depends on the source strength of fission neutrons, v I f5(x),
slab thickness, d, in units of fast neutron mean free path in the active
material, and the value of f, defined in the usual manner as the excess



LA-609 3

number of neutrons emerging per collision from an average nucleus
in the active layer.

II. DETERMINATION OF THE FISSION RATE PRODUCED BY
REFLECTED NEUTRONS

In order to calculate approximately the distribution in the slab of
fissions per unit fast neutron current into the water, f5(x), we defined
a penetration length, I, of fast neutrons into the water such that
I exp[—x/ 1] d(x/1) represents an isotropic source of neutrons of age
To = 1% in the water. We assumed arbitrarily that neutrons entering
the water had to suffer between 3 and 4 hydrogen collisions before
they were sufficiently disoriented to be considered as an isotropic
source. With such a source of neutrons in the water one may obtain
the subsequent neutron flux distribution in the age group between 7,
and 7 by solving the following diffusion-like equations:

In water A(nw){/3 — A(nw)y/37" + I exp[-x/1]/1 =0 (1a)
x=0
In active layer A;(Nv){/3 - a(‘)(Nv)1 =0 (1b)
xX=0

Here A is the transport mean free path in water, Ai is the first- -group
average transport mean free path in the active layer (assumed to ex-
tend to x = — =), and 0(‘) is the first-group average total absorption
cross section per cm® m the active material. The latter two quantities
were averaged over the first group energy range corresponding to
neutrons of age 7y to Ty.

The quantity 7\/31" is the absorptlon cross section per cm3, Oabs
effective in removing neutrons from the age group between 7’ = 0 and
T/ = T = -7y in water. It was estimated as 0 ,p = 05 (H)/N where og(H)
is the hydrogen scattering cross section per cm?® and N is the average
number of collisions required to moderate a neutron from age 7y to 7
or from an energy E, to E. Assuming unit average logarithmic energy
loss per collision in water, one obtains according to age theory:

N = In(Ey/E) = 3(7 — 7¢) 04 (H)/A (2)

Tinnel
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Therefore o, = og (H)/N 7/371’ where 7’ = T=To
At the interface between active material and water (x = 0) the usual
continuity of neutron density and current boundary conditions were

applied, namely:
ny(0) = Ny(0) and A(nv){ = Ay(Nv) (3)

In Eqs. 1 and 3 and hereafter the neutron density and mean free path
are designated respectively by lower case n and A in the water, and
upper case N and A in the active material.

Applying the boundary conditions (3) the solutions satisfying Egs. 1a

and 1b are

() = BIT)AD™ (4 — VT/1)™ Ar) [e*/1— (VT /1)1 + 8,1/)
B(r') eX/1V7]  (4a)

and

(Nv); = 8IT")(Al) ™! A(7’) B(r’) e**/L (4b)
where

A(T) =@ +Y77/D7L, B(r) = (1 + Sd‘r"/k)“ (5)

The diffusion length in the active layer, of neutrons in the age group
T/ =0to T’ = Ty — Ty is assumed constant; it is

Ly = VAy/3 oD | (6)

The dimensionless quantity S, is the ratio between the active layer
average mean free path and diffusion length of first-group neutrons.

8y = Ay/ Ly (7).

The flux, (Nv), expressed in Eq. 4b, gives the exponential distribu-
tion of those neutrons in the active material that have been reflected
by the water and have energies corresponding to the age range between
To and 7 (i.e., 0 to 7/ where 0 = 7/ =< 7 — 7y =r{). By differentiating
(Nv)y with respect to 7’ one obtains the flux between 7’ and 7’ + d7’.

s

g L
e
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Multiplying this differential flux in the active material by the fission
cross section per cms, o4, considered as a function of 7/ and integrat-
ing from 7’ = 0 to 7’ = 7{, one obtains the fission rate per cm? produced
between x and x + dx by first group neutrons reflected from the water.

(x) dx = I Fy exp(x/Ly) d(x/Ly), x =0 (8)

Here, Fi is a dimensionless constant representing the total fission rate
per cm? of slab, produced by first-group reflected slow neutrons, per
unit incident fast-neutron current into the water.

Fy = (38Ly)/(2A) [? dr’ o AB(A + B) )

A and B are the functions of 7’ defined in Eq. 5. For a given active
material F; may be determined by numerical integration.

A second group of neutrons, T = 74 to T,, where T, is the age of
thermalized neutrons in water was similarly treated. The diffusion
equations for this group are similar to Egs. 1a and 1b. The source
term, Q,, replacing I exp[-x/1]/l in Eq. 1a is simply the number of
neutrons removed per sec per cm® from group 1, namely according to
Eq. 4a:

Q; = [A(nw)y/377] = (I/l)(i — VTN AT e/ — (VT/1)(L + Sg/N) -
B(r)) e*/V1i]  (10)

! — 4
T—'Tl

The effective absorption rate per cm® from the second-group neu-
trons of age betweefd 7y and T (1y = T = T,) is A (nv),/37”, where 7" = 7 —
7y. Equation 1b is altered only insofar as to replace Ay and og) by A,
and o(a ), the average mean free path and absorption cross section per
cm® of second group neutrons in the active material.

The solutions for the second-group neutron flux are similar to

Eqs. 4a and 4b.
@)y = [B 177)/(A])] [Age™™/? + Bye™/ VT + Ce®/V7"] (11a)

(Nv); = [(8 I 77)/(Al)] Dye™/ 12 (11b)
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where Ay = 1 —7{/13)™ 1 — 77/1%)~1
B, = A(T) B(T)U —7/m)~ =1 — 7/ — 77 /79)7!
Cy = (1 +Spv77/ N [(VT771)(L + Sy1/2) A,

T, (L + ST By 12)

and
D, = (1 + S;VT7/0)™ [ = V7771) Ay + (4 = VT7/7]) By

The expression for the distribution of fissions produced by second-
group neutrons obtained by differentiating Eq. 11b with respect to 77,
multiplying by g considered as a function of 7”7, and integrating from
™" =0t 7" =7§ =Ty — Ty i8

1(x) dx = I F, exp(x/Ly) d(x/Ly), x = 0 (13)
where
F, = [BLy)/@\)1 — /1] {[¥ dr” o A’B'(A’ + BY)
— (VT/D(A + 8i1/N) B(r)) [ a7 0,C'B/(C’ + B)] (14)

The functions A’, B’, and C’ are similar to A and B defined in Eq. 5.
They are:

A= +VT7/)7Y, B =1 +8yT/N)7Y, Cr =1+ V! (15)

Here S, is the ratio between the second-group average mean free path
(Ay) and diffusion length (L) in the active material.

Neutrons which have been thermalized in the water (i.e., reached
an age T,) are considered as the source of a thermal neutron group
designated by the subscript, 3. Their energy is limited to an approxi-
mately Maxwellian distribution. The strength of the source of thermal
neutrons, Qg, is simply the number of neutrons per cm® removed per

sec from the second group given by Eq. 11a.

Qs = [A(nv)y/37"] = (I/1)[Ag(T") e X/l 4 B,(1§) */Vri
+ Cylrg) ¥/ V1] (16)

” — /4
T =Ty
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In the water the diffusion of thermal neutrons is governed by the
simple diffusion equation,

(w)§ — @v)g/L2 + Qy/L? of) =0 (17)

Here oéH) is the hydrogen thermal absorption cross section per cm® in

water and L is the thermal diffusion length in water; ogm = 0.0208 cm™!

and L = 2.88 cm.
In the active material the thermal neutron mean free path and

diffusion length are designated as Ag and Ly, respectively. Thermal
neutrons which enter the active layer obey the diffusion equation,

(Nv)§ — (Nv)g/LE =0 (18)

The boundary conditions at x = 0 that the solutions of Eqs. 17 and 18
satisfy are: )

A N

Multiplying the thermal-neutron flux in the active material (Nv);
by the thermal-neutron fission cross section per cms, 0(3), one obtains
the third-group fission distribution,

I fgs) (x) dx = I Fg exp(x/Lsg) d(x/L#), x=0 (20)
where Fj is the long expression,

F = (Ly/D (0o @)t — 73/8)7 (1 + 8/3 o) 1)~
x {1 - 73/P) + /D)™ = (VTI/DA + S/MU + L/VT) !
X (4 =74/ B(r})
+ (VT{/0)A + Syl/2) 4 = V7577 + B T)A — 7y /7))
+ (1 + L/VTP™ B(7)
T/ + SN+ LAVTH T~ 13/07 B (rh)} (21)
In the next section we will consider the fast neutron multiplication

that proceeds from the fission neutron source, ¢(x), given by v times
the sum of the three fission rate distributions, Egs. 8, 13, and 20.
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60 dx =Tv %3 1 (x) = 1 Y Foq exp(- ajx) dx (22)
=1 i=1

Here we have used as unit of length the inverse transport cross section
per cm3, o“, of the fast neutrons in the active material. The three
constants aj are thus aj = 1/0Ly; i = 1, 2, and 3. For convenience the
sign of x has been reversed to conform with Fig. 2. The constants ¥;
are given by Egs. 9, 14, and 21.

II. DETERMINATION OF THE FAST-NEUTRON CURRENT
INTO THE WATER ~

The treatment of the fast-neutron multiplication in the slat of active
material outlined here makes extensive use of the work done by Frankel,
Goldberg, and Nelson in solving the inhomogeneous transport integral
equation as reported in (LA-258). Throughout the treatment we make
use of the fact that ¢(x) [Equation (22)] becomes negligibly small at a
distance x a few mean free paths into the active material as shown in
the figure below. o o -

WATER ACTIVE MATERIAL

ANNNNN

mv=fx)-¢x)M1+f), |x20

\ w2

\ ANl

\ oQ

\ =

\
NN

\0

Fig. 2
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The two quantities necessary to describe the flux of fast neutrons
in the active material of thickness “a” = od are the transport cross
section per cms, 0, and the net number of neutrons emerging per
collision 1 +{ = (vo; + 0 )/0. Here 0, 0; and 0, are the one-group
fast neutron total transport, fission, and scattering cross sections
cm?®, respectively.

The actual flux at x, generated by last collisions at x’ is given by

mx) v= (1 +1) [ ax [Bylx -x'|/2][m@&) v + o)/ +9)]  (23)

where E,(x) is the exponential integral, I dy e"XY/y Lef us deﬁné-a

function n(x) for both positive and negative values of x as follows:

1+f =0
a(x) {m(x>v+¢(x)/( +f)  x -

m(x) v Cx<0

From Eq. 23 one then obtains an inhomogeneous integral equation for n,
nx) =1 +1) f; dx' [Eqjx —x’'|/2] n(®) + ¢(x)/{ + 1) (25)

where ¢(x) is zero for x <0 and is given by Eq. 22 for x = 0.

The water acts as an absorber of fast neutrons, none being re-
turned to the active material without having been moderated. One may
interpret the quantity n(x) dx in the region x < 0 given by Eq. 25 as the
absorption rate per unit area between x and x + dx of a medium having
zero elastic scattering cross section for fast neutrons and an absorption
mean free path just equal to the transport mean free path of fast neu-
trons in the active material to the right of x = 0. Thus the current
density crossing the surface at x = 0 to the left is simply

I= f-i dx nx) (26)

Now one may distort Eq. 25 by letting the upper limit of the inte-
gral approach « and at the same time impose the restriction that m(x) v
and thus n(x) (since ¢ becomes negligibly small) vanishes at x = a + x,.
Here x; is the usual extrapolated end point and a is the critical slab
thickness.

X=0.74/(1 +f) and a=od (27)

j)ﬁé‘ f"fﬁ"'/d
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If one defines two functions f(x) and g(x) as follows:

i) + ff(x) =0 for x <0 (28)
nx) = £{x) + glx) gx)=0 for x=0

Eq. 25 may be rewritten as

f(x) +gx) = (L +9) [ dx’ [Eylx - x'|/2] £(x") +'¢(X)/(1 + f) (29)

with the condition that f(a + x,) = 0.
We shall outline the procedure used in solving the above inhomo-

geneous Weiner-Hopf-type integral equation for the current density
given by Eq. 26. Let us define the following Laplace transforms:

Fk) = [, dx fx) e = [ dx n(x) eXX

Gl = [1 dxglx) e = [ dx n(x) e (30)
Fi(k) = [ dx ¢(x) e = [ dx ¢(x) e

P(k) = [ dx [Eq[x|/2] e

The last two transforms are simply

3 . 3

i) = 2 Fy [,7 dx oqe~(ei*dx = 1y 3 Foy/(0y + k) (31)
= i=1

and |

Pk) = 2k)" In [1 +k)/(1 - K)] (32)

By taking the Laplace transform of Eq. 29, using the definitions (30),
and inserting the expressions (31) and (32), one obtains

K(k) + G(k) = (1 +{) F(k) P(k) + Fy(k)/(1 +£)

=(1+f) Fk)@2k)™! In [(1 +k)/(1 - k)] fif 2
1=

= Fyoy/(ay + K) (33)

75

3/ //
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Clearly the current to the left across the interface at x = 0 as defined
by Eq. 26 is just G(0), which, according to the above equation, is

I=G(0) = f F(0) + WFg/(1 + 1) 34)

where

We are left with the problem of finding F(0) if the current is to be
calculated by Eq. 34.

Consider now the homogeneous integral equation (i.e., set ¢ = 0 in
Eq. 29). The homogeneous solutions in the regions x = 0 and x <0 are
designated with a zero subscript. They are respectively, fy(x) and
go(x) and their Laplace transforms were shown to be given by the fol-
lowing expressions derived exactly by Frankel and Nelson in (LA-258).

Fol) = [B/(c? + k)] exp[(k/n) fi dsTe/(1 + ks)] (35)
Go(k) = [Bi/K2] exp[(k/n) [} dsT,/(1 — ks)] (36)
where

Te = tan™ (tanh’ins/ - 1/Cs) c=1+1

The constant k, is given by the relation,
ko/tan"l kg =1 + £ (317)

In Appendix II of (L. A-258) it is shown that the particular solution
of Eq. 29, where ¢(x)/(1 + f) is a single exponential term, e~ %X, has
the Laplace transform,

F(k) = - Fy(k)/[(k + a) VGo(-a)]v (38)

For our problem the inhomogeneous term is a sum of exponentials,
¢ (x) being given by Eq. 22. The general solution thus has the Laplace

transform

( T ST e
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1v & F a; Fo(k)
1+1 f (k + 0‘1) Go(“ ;)

F(k) = A Fy(k) - (39)

Here A is a constant determining the relative amount of homogeneous
and particular solution. A is to be chosen in such a manner as to
satisfy the condition, f(a + x;) =

By taking the inverse Laplace transform of Eq. 39 one obtains the
general solution

Iv & Foy i
1+F G(oz)l

Here we shall make use of the asympototic expressions for fy(x), f;(x)
and their corresponding Laplace transforms.

f(x) = A f5(x) - (x)

Fok) = [, dx ek fo(x) ~ [, dx e kX sin K, (x + x,) (41)
Fok)/(k + ai) = [y dx ekx fi(x) (42)

Multiplying Eq. 42 by k + @i and integrating the first term of the right
member by parts, one obtains:

Folk)= f~ dx ke f(x)+ﬁ,dxa e ka(x)

-f i(0) + [y dxe‘kx (d/dx+a)f(x) (43)

By equating Eqgs. 43 and 41 one obtains the following differential equa-
tion for f;(x):

(d/dx + a;) £;(x) = sin ko(x + xp), £;(0) =0 (44)
The solution of Eq. 44 is simply

fi(x) = (k& + o)™ {oy sin ky(x + xp) — ky cos ky(x + %)

+ (ko cos koxo — o sin ksx,) e~@iX} | (45)

Inserting Eq. 45 and fy(x) = sin ky(x + xp) into Eq. 40 one evaluates the
constant A by setting f (a + xg) =

(40)
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A= [W/U+0] 35 [F/Go-a,)] [(ef ~ koo cot kola + 2x0)](f + o)~
+ cos (kgxy + 8;) sin 6; cosec ky(a + 2x,) e-ai(a+x) (46)
where 6; = tan~! (¢ /ky).
One may neglect the terms containing e~@ (a+x() as factors because,

for all cases treated, o; has values sufficiently large to make these
terms negligibly small compared to

(a2 — kya, cot ky(a + 2x¢) (k3 + o)™

Inserting A into Eq.' 39, neglecting the last terms of Eq. 46, and setting
k = 0, one obtains:

F(o) = —[(v)/1 +1)] IZZ Fi[Fo(O)/ Go(—ai)][k% + koo cot ko(a + 2x)]
=g+ o™ @

Froxh Eqgs. 35 and 36 one obtains the ratio:
Fy(0)/Gylay) = e1Ai/f (48)

Here A; = (1/n) fol ds Tc‘,/ (1 + o;8) is the expression tabulated in
Table II of (LLA-258).* Upon inserting F(o), given by Eqs. 47 and 48
into Eq. 34, one obtains the current density of fast neutrons into the
water tamper, :

3
I=[()/1 +D){F, - Q [FieaiAi/(kﬁ + a?)][K(z, + kya cot ky(a + 2x0)H49)
The relation (49) enables one to compute the critical slab thickness
“d” in cm. as a function of v, 0, {, a;, @, a3, Fy, Fy, and F;.

. 3
- — 12 QaiAig 2 2
cot ko(ad + 2xy) = Fo— (1 +1)/v -k 1Z=; Fie _ / (kg + af)

. . (50)
ko ?: Fya;e®1AY/(kE + of)

where ko/tan™! kg =1 +£ > 1, and x, = 0.74/(1 + f).
If the active material is just critical in an infinite amount, no
water being present, (f = 0) a finite critical thickness is possible for

!

* The notation used in (LA-258) identifies 1 + £ as ¢, and ¢; as k.
S. Frankel has had Table II extended to the much larger values of k = a4
required for this problem. We are greatly indebted to Frankel for
suggesting the method outlined in this section.
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a half water-tamped slab. The number of fission neutrons, vFg, pro-
duced per cm? per sec be reflected slow neutrons must be greater than
the unit flux of neutrons entering the water. In this case the critical
thickness as given by Eq. 50 reduces to

3
d= o"’{if:_‘{ [Fie‘J‘i“‘*i/(FS -1/v)] - 2xo} (51)
forf=ky=0

In case the water is a sufficiently good tamper to make vFy > 1 it
is possible, even though f is less than zero in the active material, for
the tamped slab to become critical with a finite thickness. As usual we
designate a negative f as —g. Equation 50 is then altered to read:

3
F,—-(1-g)/v+K Q Fie"iAi/(ozzi )

coth ky(od + 2xg) = ) A (52)
K, iZ_}l Fyoe 1% /(a? - K})

where ko/tanh"‘, kg=1—-g<14,and x5 = 0.71/(1 — g)
Finally, for this case (uFs > 1) a semi-infinite slab is just critical
when g reaches the value,

3 . .
g=1-vFs + vk 2 Fie®4i/(a; +ky)  limitd — w (53)

IV. APPROXIMATE TREATMENT OF A WATER-TAMPED
SPHERE

One may estimate the critical radius of a water-tamped sphere of
active material by altering the theory developed in sections II and III
slightly. We shall assume that the source of fission neutrons produced
by the three groups of slow neutrons reflected from the water is dis-

tributed as
3

ox) =1y Z% B,0je %X _ (54)
1=

where x is the distance in units of ™! along a radius of the sphere
from the sphere surface. Here again when x has reached the value
“a” (sphere radius) we obtain a negligible value for ¢. In order to



| LA-609 | 15
- put the inhomogeneous integral equation in the form of the equivalent
slab problem ¢(x) must be interpreted as radial coordinate, (a — x),
times source per unit volume per unit time. Thus if the total number

of fissions per unit current into the water is defined as F’ for each
group, one may determine the constants B; from

F{ = 4rB, o, fodx (a—x) emX (55)
Here we allow the upper limit to approach « and obtain approximately:
B; = F{/[(4ra)(1 — 1/a;a)] (56)
The values of Fj are obtained approximately from the F; values for the
slab (Egs. 9, 14, and 21) by taking into account the sphericity of the
water-active material boundary according to a suggestion by E. Teller.
F; = F,/( +10/a) | (57)
Thus Eq. 56 becomes

B = F,/[(4ra)(1 — 1/04a)d + 1 0/a)] (58)

One may solve for the current of fast neutrons leaving the sphere

in a manner exactly analogous to the treatment given in section IIL
The integral equation to be solved is identical to Eq. 29 except that not

f(x) and g(x) are respectively n(x)- (a —x), x = 0 and n(x) - (a — x), x < 0.
Thus G(0) is no longer the current but instead of Eq. 26 one has

I=4r f,& dx(a — x)? n(x) =47 [° dx(a —x) g(x) ~ 4ra(l + 1/a) G(o) (59)

The equations analogous to (34) and (47) are obviously

Glo) * fa@ + 1/a) fF()+1+f§Bi (60)
and

3 |
f Flo) = et [k +ky A cot(a +xg)] (ki + )™ (61)
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Here we have made use of the fact that f (a) = 0 instead of f (a +x5) = 0

as was the case for the slab. Inserting the quantities B; given by Eq. 58,

one obtains from Eqgs. 60 and 61 the following relation from which the
critical radius may be obtained:

] l
i R/~ 1/l - i e/ + o] - LD L)

ot kafa 20 = ko 23 [Fi/(1 = 1/0qa)][oyetAs/ (G + o) (62)
024 [Fi o;a ] 1€ 0 i

where a = R 0, R = critical radius in cm, and ky/tan"* kg =1 + £ > 0.

' The above critical equation cannot be expected to yield a satisfac-
tory critical radius for active material of high enrichment (i.e., small
a) because then e~®i2is not negligible and inclusion of the factors (1 —
1/@4a) is inconsistent with the neglection of the exponential terms.

V. APPLICATION TO WATER-TAMPED SLAB AND SPHERE OF
ENRICHED SOLID UFg

The three values of Fj were calculated according to Egs. 9, 14, and
21 for six enrichments of a UF (density = 4.68 gm/ cm®) half water
tamped slab; (25)/(25 + 28) = 6, 8, 15, 25, 50, and 100%. In each case
the penetration length, I, corresponds to a degradation of neutron en-
ergy from Ej to EI/ 39 = Eg, where E; is a guess at the average energy
of the neutrons that are incident on the water tamper and E, is their
energy in the water at age 7y = I when they are considered as an
isotropic source for further age diffusion. Below is tabulated the

percentage enrichment, (25)/(25 + 28), incident energy E, penetration
length I, the three fission rates per unit incident current, and their sum.

TABLE 1
Eq 1

(25)/(25 + 28) Mev cm Fl Fz F3 FS
6% 0.92 3.0 0.024 0.074 0.304 0.399
8% 1.05 3.25 0.027 0.084 0.286  0.394
15% 1.27 3.60 0.038 0.107 0.265  0.410
25%  1.38 3.76 0.048 0.126 0.253  0.427
50% 1.47 3.88 0.064 0.148 0.242 0.454
100% 1.5¢ 3.94 0.080 0.167 0.233  0.480

\\\,Q
y

e L ",?
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The decrease of the thermal-neutron fission rate, Fg, with in-
creasing enrichment is produced by the increase of the penetration
length. Spreading thermal neutrons further into the tamper because
of their higher incident energy allows the absorption by water to com-
pete successfully against an increasing fission cross section in the
active material.

In all cases the first and second groups correspond respectively
to the range of ages 7{ = 2 cm? and 7§ = 3.3 cm?. It was convenient to
split the two groups in this manner because, at an energy corresponding
to the age 7y = I + 7{ from incidence, a sharp increase in the UF; ab-
sorption cross section with age set in. The correlation between neutron
energy and age in water was made by referring to the report by Nord-
heim, Nordheim, and Soodak. (CP-1251).

The three diffusion lengths L, L,, and L; as a function of per- -
centage enrichment, (25)/(25 + 28), in solid UFg are shown in Fig. 3.

The calculations of the critical slab thickness by Eq. 50 requires
knowledge of v, 0, and f. Throughout we used v = 2.47 and ¢ and f are
shown in Fig. 4 as functions of enrichment percentage. They depend on
E;, the average fast neutron energy in the UFg, which is shown in the
same figure.

The rapid decline of o between 6 and 15% enrichment shows the
effect of the low energy resonance in the Fluorine cross section.

In estimating E; one must bear in mind the fact that it is certainly
less than the average energy of neutrons incident on the water tamper,
Ej, bécause a sizable fraction of the total current I going into the water
consists of fission neutrons that come directly from the slow neutron
fission source, ¢(x), without suffering any collisions in the UF;. This
part of the current of neutrons which suffers no moderation in the UFg
is

L= Jy dx ¢(x) Ey(x)/2 (63)
where
E;(x) = [ dy e /y?

By extending the upper limit of integration to = (¢ (x) E,(x) is negligible
for x > a), one obtains, upon inserting Eq. 22 for ¢(x) into Eq. 63

3
I, = I(v/2) iz; Fi[1-of'in (1 + )] (64)

Minnnl
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According to Eq. 64 the fraction of the current into the water, I)/I,
which is made up of unmoderated fission neutrons, increases from
30% to 41% in going from an uranium enrichment of 15% to 100%. We
estimated the average fast neutron energy in the UFs, E;, by assuming
EI =1.3 Ef.

The critical thickness in centimeters of a slab of UFg tamped by
water on one side as given by Eq. 50 is the curve (b) plotted versus
enrichment percentage in Fig. 5.

Removal of the water is equivalent to allowing the source strengths
~ Fj to approach zero in Eq. 50. Thus one obtains for the untamped slab
a critical thickness in centimeters, d, given by:

cot ky(o d + 2xg) —— or d= (1/ky— 2%x0)/0 (65)

Curve (a) in Fig. 5 shows the above untamped UFg critical slab thick-

ness for comparison.
The lowest curve, (c) in Fig. 5 is the critical radius in centimeters,

R, calculated according to Eq. 62 for a water-tamped sphere of UFg.



150 — — 15

40 |—

100 — 10 }—

Lh CM —»
La, CM —

L3, CM—>

20 —

10 —

B e
| Fig. 3 —Diffusion lengths in UFy

B TS e T

——— e e

10 — 00 b— oA L] .
4 5 & 7 8910 5 " 20
% (25)/(25 + 28) =

1

oz0-954



1.2

14

4.0

Eq MEV —

04

o8

Jz0-955h

Ml

0.25

" 024

0, CM™! —»

0.23

0.214

0.20

049

1.8

f

044

040

0.09

0.08

007

0.06

0.05

004

0.03

0.02

0.04

=0.01

-0.02

-0.03

~ Fig. 4— Fast neu

tron co

i

nstants in UFs. S

I I

| 1 | |

15 20 25
% (25)/(25 + 28) —m=

30

40

50

60 70 80 90 100"

nz

i
-

609~V



-—(82+52)/152) %

220-954

L

Ok 6 8

S

ov oeg 6¢ - 02

0s

OOl 06 08 0L 09

SLAB THICKNESS AND SPHERE RADIUS IN CM —=

5 s B8 % & & g g 3z83d g 8 § 8 & 8§ 8
| I T T T T I |
(D
— - ; ) ; ’ ! ]
| Fig. 5—Critical thickness of UFg; (a) untamped slab, (b) half water- .
tamped slab. Critical radius of UFg; (c) water-tamped sphere.
Ll L Lol I T O T

o ke

609-V'1



