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Abstract t0dF-h DE87 008376 

Observations are  reported from the chlorine solar neutrino detector i n  the 
Homestake Gold Mine, South Dakota, USA. They extend from 1970 t o  1985 and 
yield an average neutrino capture rate of 2,120.3 SNU. The results from 1977- 
1985 show an anti-correlation with the solar act ivi ty  cycle, and an apparent 
increased rate during large solar  f l a r e s  . 

1. Introduction. A 39lar neutfjno detector based on the neutrino capture 
reaction on chlorine, 
1970 the sensi t ivi ty  of the detector was increased by emgjoying pulse rise- 
time measurements t o  improve the discrimination of tlre 

t a l  procedures and var iousl jes ts  of the detector efficiency have been des- 
cribed i n  earlier reports .. We report here resul ts  obtained between Oc- 
tober 1970 and May 1985. Observations were terminated i n  May 7985 by the 

observations were resumed i n  October 1986, We lan t o  continue monitoring 
the solar f l u  i n  the future, The observed 3BAr production r a t e s  f o r  the 
period October 1970-January 1984 are  l i s t ed  i n  reference Z),Additional 
data are  now available through May 1985, 

calculations, neutrino osci l la t ion phenomena, and solar  act ivi ty .  

Cl(s,e-) Ar,  has been i n  operation since 1967. I n  

Ar-like pulses 
1 from those produced by background beta and gamma radiations, The experimen- 

f a i lu re  of the l iquid circulation pumps. One pump has been replaced, and I .. 

We w i l l  discuss t h i s  set of data (Runs 18-88) i n  r e u t i o n  t o  solar J I W ~ ~ . ~ .  

2. Averaged Results,Solar Models, and Neutrino Physics, The average "kr 
37 - production f7te for  the set of 68 individual experimental m9-j is 

0.472+0.036 Ar atoms per day i n  615 m-tons of C2C1&.19x10 atoms C J ~ ,  , 
From t h i s  we subtract an estimated production of 
processes i n  particular those from cosmic ray muons, equal t o  0.08+0,03 Ar 
atoms/day3). A new measurement of the  mu0 background effect  is i n  progress, 
using the radioChemica3 method of F5feman", based on the photonuclear inter- 
actions of muons with 'K t o  yie33 Ar. Subtracting t h i s  background r a t e  
leaves a net rate of 0,392*0.047 Ar atoms/day that  could be ascribed t o  zhe 
solar  neutrino flux, The rate corresponds o 2.07*0.25 SW where SMJ stands 

The resul ts  of the chlorine experiment can be compared t o  resu l t s  pre- 
3 dicted using theoretical  models of the sun, (See ref ences 5) & 7)  €07 

discussion.) The predicted neutrino capture r a t e  i n  "Cl is 6 t o  8 SNU . 
According t o  the standard model, approximately i75% of tp calculated 

rate would be at t r ibuted t o  the low flux of neutrinos from B decay i n  t h e  
Sun, Only these gputrinos (E=Q-15 MeV) have suff ic ient  energy t o  feed the  
analog s t a t e  i n  Ar, a super-allowed t ransi t ion with a neutrino capture 
cross section 3 t o  4 orders oflyagnituf5 grggter than tha t  fo r  o thg r  neii': 
sources i n  the  Sun (Pep, Be, N and 0) . The production cpf B i n  t h e  
Sun is very sensit ive t o  the internal temperatures. A number o fpo la r  mo6elC; 
have been devised t o  accommodate the low r a t e  observed by t h e  
ment. These models invoke conditions thatlwo~Id'lower'inrernal.temperatui-es, 
i..e, ! mixing, diffus 
and internal'roation''. They predict neutrino capture ra tes  i n  
1.5 t o  2.5 SNU, i n  good agreement with experimental result 

type neutrinos could be converted t o  muon or tauon type n e u t r i n o s  i n  their  
passage through t h e  dense in te r ior  of the Sun. The conversion, we-+% , 
is a resonance phenomenon ( Yep%ef % 1 result ing from a difference i n  
the respective scattering cross sections xith electrons. The process 

Ar from background37 

for a solar'  neutrino uni t ,  defined its 10- 36 captures/target atorn/second. 

. 
C 1  experi- 

C1 from 
n ,  reduced heavy element abundances, magng$ic fields,  

I t  was suggested very recently, by Mikheyev and Smirnov3' t ha t  electron- 
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depends on the  difference i n  masses between the neutrino types, and on the 
mixing angle. The electron neutrino.must be the l ightest 'of  the neutrinos and 
a t  least one other neutrino must have a mass close t o  t h a t  of t h e  elegtron 
neutrino, This phenomenon could resu l t  i n  a distortion of the  normal 
Sytrj89 spectrm and account for  the low observed neutrino capture r a t e  i n  . Fortcertain values of the neutrino mass differences 
( /o =earn jd$vq and mixing QSgles (0.0B64 sho<O.ir2) alfiy-night 
e f fec t  may be observable wi th  the C1 solar neutrino detector . The 
University 09 Perrnsylvania is planning t o  search for a day-night effect w i  
this detector. 13 can be accomplished by increasing the helium gas purging 
rate so that an 7Ar sample can be recovered i n  4 tol!j)hours. 

is a massive Dirac par t ic le  with a magnetic or e l ec t r i c  dipole moment, i ts 
spin could be flipped i n  passing through the magnetic f i e l d s  i n  the Sun. I n  
t h i s  case, the neutrino woul&not be detectable. "l'his mechanism could ac- 
count for variations i n  the Ar production r a t e  with solar  act ivi ty .  This 
proces70would be important i f  the neutrino had a magnetic moment of the order 
of 10- Bohr magnetons f o r  magnetic fields of a few thgysand gauss. 

observed i n  the chlorine detector. There are strong indications that  the ra te  
var ies  with the solar ac t iv i ty  cycle, and that  large so la r  flares produce 
sudden increases i n  the rat.e, These matters must be understood before one can 
in te rpre t  the results fom the chlorine detector i n  terms of the solar model, 

13) solar  structure,  snd neutrino interactions. ! 
3. Solar Flare Enhancements, I t  w a s  pointed out by Eazilevskaya e t  a l .  

t ha t  three large solar flares CAugust iJT 1972; September 19, 1977, October 
10, 1981) correlate in time with high Ar prghct ion rates i n  SVe chlorine 
detector&ring runs#27, #51, and#7 1 ( 1.232.4 1 Ar/day ;' 0.85+ 33 Ar/day ; 
1.2 1 k .37 &/day, respectively). They compared the observed "A, production 
rate with solar flare proton in tens i t ies  (t 1SOMev) measured at the top of 
the atmosphere. I n  addition, the la rges t  flare observed by the solar  m a x i -  
mum mission occusyed on A u ~ ~ t . 5 ,  1984, during the exposure interval  of 
run#86 (1.26t.57 Ar/day). Monte Carlo simulations of the experimental , 
data,3psuning a steady neutrino source with an average production rate of 
0.47 
with an Ar production rate of 1.2 atoms/day i n  a set of 68 measurements. 
The three events that were observed are not inconsistent with expectation, 
However, when one considers tha t  during the three highest runs observed in 
68 measurements (#27, 71, 86)there occurred very large solar flares, and that 
these flares were the largest  ones observed in-that period, the chaf3fe of 
correlation is very unlikely. The flares which correlate with high 
production rates are flares i n  which amma rays and neutrons were observed 
(October 10, 1981, and August S, 1984 f . 

Observing the neutrino flux and energy spectra from flares can give im-  
portant information on acceleration mechanisms. Large s c i n t i l l a t i o n  and 
Cerenkov neutri 
neutrino kyrsts"'. One may look forward t o  tes t ing the indicated correla- 
t ions  of 

the observed A r  pfy$jion r a t e  for  periodicitiesl", and for correlations 
w i t h  so la r  activ35y . Figure 1 shows a plot  of the 5-point running 
averages of the 
numbers. Note tha t  the A r  production r a t e  drops from 0,8+0.15 atoms/day t o  
0.140.1 atoms/day with the onsgf of so la r  cycle #21. From 1977 t o  the end of 
our observations i n  1985, the Ar production r a t e  anti-correlates with sun- 
spot numbers i n  a systematic and organized way. Figurz72 shows t h e  systematic 
anti-correlation for this period. Pr ior  t o  1977, the Ar production rate is 
constant and consistent w i t h  the errors. The l inear  correlation coeff ic ient  
f o r  the period 1977-1984 is 0.80, using a l l  experimental points. 

B 

CL4 

It was suggested by Okun, Voloshin, and Vysotsky tha t  i f  the neutrino 

We now address the question of the constancy of the Ar production rates 

A ~ f d a y ,  show that one may expect t o  observe an average of one run 

~r 

detectors are now capable of observing time-correlated 

A number of 
Ar enhancements from the chlorine detector. 

4, Correla4jon with Solar Activity. thors have analyzed 

Ar prghct ion r a t e ,  compared t o  the smoothed sunspot 
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Figure 1. Comparison of 5-point running averages of 37Ar production rates 
with sunspot numbers and solar  diameter measurements. Solid points do not 
include runs associated with solar flares. Open points include flare asso- 
ciated runs. 

I t  is d i f f i c u l t  t o  explain this variation by the usual views on so lar  
s t ructure  or conceivable cosmic ray neutrino or muon processes. There are 
changes i n  the solar  d i m  ter during 1975-1984 t ha t  cor re la te  well with 
sunspo121Jumbers and the  "iAT production ratg7.b mentioned earlier, .'Okun 
et  al. suggested that the variations i n  kr production rates could be , 

explained by a neutrino magnetic moment. . 
This work was supported by the  U.S. Dept of Energy, Contract #DE-ACOZ- 
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