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Abstract

The statistical Thomas-Fermi model is applied to a comprehensive survey of

macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-

nucleon interaction, generalized by the addition of one momentum-dependent and

one density-dependent term. The adjustable parameters of the interaction were fitted

to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and

to the measured depths of the optical model potential. With these parameters nuclear

sizes are well reproduced, and only relatively minor deviations between measured

and calculated fission barriers of 36 nuclei are found. The model determines the

principal bulk and surface properties of nuclear rnatter and provides estimates for the

more subtle, Droplet Model, properties. The predicted energy vs. density relation for

neutron matter is in striking correspondence with the 1981 theoretical estimate of

Friedman and Pandharipande [1]. Other extreme situations to which the model is

applied are a study of Sn isotopes from 82Sn to 170Sn, and the rupture into a bubble

configuration of a nucleus (constrained to spherical symmetry) which takes place

when ZZ/A exceeds about 100.

1. Introduction

In trying to understand astrophysical systems such as a collapsing and rebounding

supernova or the resulting neutron star, one needs information concerning the properties of

nuclear matter in the bulk, for example its compressibility for various values of the neutron-to-

proton ratio, N/Z [2]. It would be nice to have available in the laboratory big globs of nuclear

matter and to study directly these and other properties, such as the surface energy (including

the curvature correction), the dependence of the surface energy on the N/Z ratio, and the

binding energy curve of unbound neutron matter, for example. Since globs of nuclear matter

are not available, one has to proceed indirectly, by developing a theoretical model that is fitted

to finite nuclei and then extrapolating to infinite or semi-infinite nuclear matter. By asking
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appropriate questions of the model one can then estimate, more or less reliably, various

properties of the macroscopic nuclear fluid. What model to use? The Hartree-Fock model,

quite successful for finite nuclei, is not what you really need. You cannot carry out a

microscopic Hartree-Fock calculation for 1057 nucleons in a neutron star anyway, and even if

you could, the microscopic shell effects that the calculation would produce would be that much

wasted effort. What one needs is a theory like a self-consistent Hartree-Fock theory, but without

shell effects.

The Thomas-Fermi model is just that. It is a self-consistent theory like Hartree-Fock, but

averaged over shells. It was introduced into atomic physics by L.H. Thomas as early as

November 1926 (published in January, 1927, [3]) and, independently, by E. Fermi a year later

[4]. It is a beautiful statistical theory based on one simple fact the Pauli exclusion principle

forces a degenerate gas of fermions to populate phase space with two particles per volume hs of

this space. Thus, for any given potential well U(F), the atomic or nuclear particle density can be

written down at once as proportional to the 3/2 power of the potential depth measured with

respect to the Fermi level, i.e., with respect to the energy of the fastest particle. (The local phase

space is proportional to the cube of the Fermi momentum P and the Fermi energy is

proportional to the square of P, hence the 3/2 power.) If the resulting density is then used to

generate the potential U(F) byway of an appropriate law of interaction (Coulomb in the atomic

case, an effective short-range force in the nuclear case), and if the potential and density are

subsequently iterated to self-consistency, as in a Hartree-Fock scheme, one obtains the Thomas-

Fermi approximation to the density distribution, binding energy and any other property of the

system. As the title of Fermi’s paper proclaims in broken English: “Un metodo statistic per la

deterrninazione di alcune propriet~ dell’ atomo.”

Figure 1 shows, as an example, a comparison of the Thomas-Fermi and the Hartree

electronic densities for the Hg atom [5], and Fermi’s calculation of the number of atomic

p-electrons as a function of the atomic number Z [4]. As you can see, the Thomas-Fermi
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approximation provides a wonderful pocket theory of atomic (and molecular) properties,

averaged over shell effects [5].

This statistical approximation has also been applied to nuclei. As in the atomic case

various improvements have been explored subsequently, bringing in density-gradient

corrections and other refinements [6] and [7-13]. The most systematic such improvements are

based on a formal expansion in powers of Fi[14].

Our own work takes as its starting point the 1961 and 1963 straightforward Thomas-Fermi

model of Seyler and Blanchard [15]. We too have tried various refinements of the basic

Thomas-Fermi method [16, 17], but have finally decided to exploit fully the simple beauty of the

original theory when aiming at a comprehensive description of a vast amount of data [18, 19].

(A comprehensive discussion of fission barriers becomes very difficult if one attempts to go

beyond the basic Thomas-Fermi theory.) We have, however, improved the Seyler-Blanchard

four-parameter nucleon-nucleon force [20, 21]. With two additional adjustable parameters in

the force we can now give an excellent account of (shell-corrected) ground-state masses of some

1600 nuclei, as well as provide a fair description of nuclear density distributions and fission

barriers. With a seventh parameter added we can also remove a serious blemish of the Seyler-

Blanchard model by giving an acceptable account of the depth of the nuclear optical model

potential, including its energy and isospin dependence. Having finally, after several years,

frozen the adjustable parameters of the model, we are now going on with the working out of its

consequences in every conceivable situation, especially for nuclei subjected to various extreme

conditions. In the present talk I will describe our model and some of the currently available

results.

2. The model

The total energy of a nucleus is written as an integral over all space of an energy density

&(i), and consists of a standard Thomas-Fermi kinetic energy and an interaction energy,

Coulomb plus nuclear [20]. (In the Coulomb energy we have now included the exchange
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correction). The nuclear energy is a sum of neutron-neutron, proton-proton (i.e., “like”) and

neutron-proton (i.e., “unlike”) interaction energies:

w ~~d3rl~d3rZ ~d3pl ~d3p2(2/h3~ V**(like)nnorpp=2
norp norp

(1)

Wnp = ~dsrl~dsr2~dsplJdsp2(2 /hs)2 VIZ(unlike). (2)
n P

Here 2/h3 is the neutron or proton density in the phase spaces il, ~1 and Fz, ~z for particles 1

and 2, the integrals are over those phase spaces, and v12(like), vlz(unlike) are the effective

interaction potentials between the two like or unlike particles. A clever choice of these effective

interactions is a challenge to nuclear Thomas-Fermi practitioners, where art and science come

together.

3. The effective interaction

We have generalized the Seyler-Blanchard interaction by adding one momentum-

dependent and one density-dependent [22] term:

v 12 = 2TOp~l.Y(r12). [-a + ~(plz /Po)2 - Y(P12 /l?o)-l +6(Z5 /Pop]

.
Seyler-B1anchard ‘

Extra attraction increases when plz
is small (and particles would like to
become correlated), and tends to
zero for large p12, when particles
would zip past each other.

Repulsion increases with increasing
average density ~.

(3)

In the above, the quantities To, Po, p. are the Fermi energy, the Fermi momentum and the

particle density of standard nuclear matter. (They serve as convenient units.) Y(rlz) is a

normalized Yukawa interaction of range a:
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1 ~-rlz /a
Y(r12)= ~m3 ~12 /a “ (4)

The distance between the interacting particles is rlz and the magnitude of their relative

momentum is plz. The average density ~ is defined by

F2/3 = (P;’3 +P;’3)/2 J (5)

where pl and pz are the relevant densities of the interacting particles (neutrons or protons) at

points 1 and 2. The dimensionless interaction strength parameters et, ~, y, G may be different for

interactions between like and unlike particles, and the difference is described in our model by

two parameters < and ~, as follows:

au =~(l+<)a ,

(6)

Altogether there are thus seven adjustable parameters in the effective interaction a, ~, y, a,

& ~ and the range a. It turns out that binding energies and density distributions depend only on

six parameters because, for these properties, P and G always occur together in the combination

B - ~ + (5/6) G.

4. The optimum parameters

The parameter set that we have adopted (on the basis of the fitting procedures to be

described) is as follows:

a.= 1.98483, ~ = 0.15790, y= 1.10121, (S= 1.05, (B= 1.03290),” ~ = 0.25771, ~ = 0.53002,

a = 0.59346 frn.



Anticipating what follows, we list here for the sake of completeness the values of the bulk and

surface properties of nuclear matter, as deduced from the above parameter set:

Radius constant of standard nuclear matter ro = 1.14 fm

Surface width [23] (diffuseness) b.= 1.0 fm

Width after folding-in nucleon form factor b = 1.11 fm

Volume binding energy coefficient al = 16.04 MeV

Symmetry energy coefficient J =32 MeV

Surface energy coeffiaent az = 18.5 MeV

Curvature correction coefficient a3 = 12 MeV

Compressibility coefficient K = 234 MeV

Effective surface stiffness coefficient Q =34 MeV

Density-symmetry coefficient L =50 MeV

Symmetry anharmonicity coefficient M=7MeV .

[For the definitions of the last three (Droplet Model) coefficients consult [19]. The coefficient Q

plays a role similar to the surface symmetry energy coefficient ~.]

5. The Euler-Lagrange equations

With the interaction specified, the total energy of the Thomas-Fermi nucleus can be written

down as a functional of the densities pn(i), pP(i) and a function of the six interaction

parameters:

E[pn(7),pp(i);a,a,B,y,&,C]=~d3r~[pn(i3,pp(i)] (7)

The requirement that the energy be stationary with respect to small particle-preserving

variations 5Pn(7), 6PP(F) demands that the functional derivatives of %be constanb

58L 58
~= n —=LP ‘‘ @p

(8)
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where ~, ~ are Lagrange multipliers. We found it possible to arrange these two Euler-

Lagrange equations in the form of a pair of coupled cubic expressions in’ p~13and p~13,which

we solve by starting with guesses for the densities and iterating to convergence. The details are

in [20]. The fact that the scheme converges (usually in fewer than a dozen iterations) and is very

robust (the original guesses can be very poor ones) is a piece of good luck due, we would like to

believe, to the intercession in heaven of Thomas and Fermi.

Before I describe the results obtained by solving the above equations, let me show you a

number of consequences of our model that can be deduced algebraically, without invoking

computers.

6. Standard Nuclear Matter

You may readily verify that with our (clever) choice of effective interaction the energy per

particle of standard (Pn = pp) nuclear matter at density p is given by the following simple

quintic equation [20]:

E/A 3
#7)~2-;@3+;BQ5 ,ll(P)’~=– (9)

where S2= (p /po)l’3.

For the equilibrium density, i.e., for G?= 1, the binding per particle (in units of To) is

~O=;(l– Y)–;~+;B (=-al/TO) . (lo)

The equilibrium condition, dq /di2 = Oat S2= 1, gives

0=~(1-y)–;cz+3B .

The compressibility coefficient K, in units of To, is given by

d2q
K= K/To== =:(1 -y)-3cx+12B .

Q=l

(11)

(12)
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From these equations it follows that

K=; –15+ , (13)

or

K=307.31–66.63 y MeV , (14)

with our choice of parameters. Thus the compressibility is a simple linear function of the

parameter y, assuming that the values of al and To are kept fixed. (In fact al and TOare not

subject to significant uncertainty). Figure 2 displays rI(Q) for a range of assumed values of K.

7. Neutron matter

A similar equation holds for the energy per neutron of neutron matter at density pn

(15)

1/3
where @ = (pn /*PO) gives the density Pnrelative to its value for standard nuclear matter.

Figure 3 displays q(~) for various choices of the ratio of like to unlike interaction strengths.

8. General nuclear matter (pn > pp )

Consider nuclear matter with a fixed ratio of N/Z, i.e., a fixed relative neutron excess

I = (N–Z)/A = (~n-Pz)/P. It turns out that the energy per particle as a function of the density

can still be written in the form

n(P) = :(1-W -;ims +yw , (16)

where, as before, S2= (p/po)113,but where the coefficients ~ , E , ~ are now given in terms of I

by the following expressions:

.
l-y= ;(l-yf)(ps +qs)-:y.pzqs (5p2q3 -qs) (17)



1

iii = & (pb + q6) +aupsqs (18)

(19)

where p3 = 1 + I and q3 = 1 – I. (See Fig. 4.) Thus the dependence of the energy on density is in

all cases the same type of quintic and the equilibrium condition always reduced to a readily

solvable cubic. It follows that the equilibrium density, binding, as well as the compressibility

coefficient K(I) can be written down algebraically for any value of the relative neutron excess I.

9. Finite nuclei

Figure 5 shows the charge densities for sGFe,lz%n and 209Bi, as obtained by numerically

solving the Euler-Lagrange equations (8). The densities shown were obtained by folding into

the calculated point densities a Yukawa proton form factor with an RMS size of 0.85 fm. The

resulting values of (rz)l 12 for the three charge distributions are 3.69,4.64,5.51 fm, to be

compared with 3.80, 4.69,5.51 fm, or 3.73,4.67,5.52 fm, as deduced from [24] using a Woods-

Saxon or a three-parameter Gaussian fit to electron scattering data, respectively.

10. Semi-infinite nuclear matter

By solving the Euler-Lagrange equations in the limit of semi-infinite geometry ([19], [20])

one can study the surface properties of nuclear matter. Figure 6 (based on the 1990 version of

our model [20]) shows a remarkable feature of such calculations: if the surface width

(diffuseness) is held fixed, the surface energy is virtually a perfectly linear function of the

compressibility K. Our current model with b. = 1.0 fm gives for the width b (after folding in the

nucleon size) the value b = ~b~ + (O.85)2 /3 =1.11 fm. Thus the current surface energy

a2 = 18.5 MeV and compressibility K = 234 MeV are in line with the 1990 systematic of Fig. 6.

11. Fitting ground state masses

We write the mass excess of a nucleus as [25]
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Mass excess = T.F. +MnN + MHZ + Shell Correction
(20)

+ Even-odd Term+ Wigner Term – O.0000143322”s9 MeV .

Here T.F. is the calculated binding energy in the Thomas-Fermi model and M., MI-Iare the

masses of the neutron and of the Hydrogen atom. The “Shell Correction” is taken from [26]

(column headed E~C).

For the even-odd term we took *11/ fi MeV for odd or even nuclei and zero for odd-

mass nuclei, as in [25]. We also reverted to the 1965 form of the Wigner term:

–7 MeV exp(-6 IN–Z I/A). The last term in Eq. 20 allows for the binding energy of the atomic

electrons. Using the measured mass excesses of 1654 nuclei, we used Eq. 20 to convert them

into experimental macroscopic binding energies (i.e., energies corrected for sheIl effects, the

even-odd term, the Wigner term and electronic bindings) which then served as a “target” for the

macroscopic Thomas-Fermi theory. The RMS deviation of the calculated and target binding

energies was then minimized with respect to five variables. (Five and not six because one

combination of the six adjustable parameters was always constrained in such a way that the

surface width bo of standard semi-infinite nuclear matter would have the value 1.0 fro.)

I skip the technical details of these fits, which you can imagine are pretty formidable,

considering that one is trying to fit 1654 nuclear masses (each one requiring for its

determination up to a dozen iterations of coupled neutron and proton densities) by searching in

a space of 6 parameters, with a constraint whose formulation requires another iterative Thomas-

Fermi solution of a semi-infinite distribution. However, by using some tricks and shortcuts, we

succeeded. The resulting optimum parameters and associated nuclear properties are listed in

Section 4. The final RMS deviation for the 1654 masses was 0.711 MeV. Figure 7 compares the

residual deviations between measured and calculated masses for the shape-dependent Droplet

Model [26], (RMS = 0.681 MeV), and for the present Thomas-Fermi model.

Having optimally fitted the ground state masses by varying parameters that include the

radius constant ro, two crucial questions present themselves Will the nuclear sizes disagree
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with measurements? Will the calculated fission barriers be in disastrous disagreement with

measurements, as seemed to be the case in [21]? As described in Section 8, the sizes of the

proton charge distributions are just fine when the optimum radius constant ro = 1.14 is used. To

calculate fission barriers is much more difficult, because one needs to solve the Thomas-Fermi

equations for shapes devoid of spherical symmetry.

12. Fission barriers

We solved the Euler-Lagrange equations on a three-dimensional lattice, without

parameterizing the density distributions, as illustrated in Fig. 8 taken from [21]. This is a really

tough proposition because even a fast computer runs out of steam when the lattice spacing is

less than about 0.5 fm. This is of the order of the range of the effective interaction, and therefore

not good eno-ugh for the required precision if straightfonvard numerical integrations are used.

It is only after we applied special tricks to get solutions accurate to a fraction of an MeV

(typically out of a thousand or so) that we could calculate saddle-point shapes and fission

barriers despite the coarse grid. Three such saddle shapes are shown in Fig. 9. Figure 10

illustrates the calculation of a number of fission barriers, using the parameter set of [21]. Each

point represents the energy of self-consistently iterated shapes, constrained to have a pre-

assigned separation between the centers of mass of their two halves. Figure 11 shows a recent

comparison of calculated and measured barriers (corrected for ground state shell effects) for 36

nuclei. In the region of the very heavy elements the agreement with measurements is perfect,

with a slight overestimate in the lighter region. Figure 12 shows the calculations extended

down to very light systems. For these nuclei unambiguous fission barrier measurements are

difficult and, before making comparisons with measurements, one ought to allow for the virtual

doubling of the Wigner term [27], as well as for the emergence of fragment shell and pairing

effects in the severely necked-in saddle shapes in question.

12



13. Optical model potential depths

Figure 13 shows a comparison of measured optical model potential depths from [28] with

the Thomas-Fermi calculations. At this stage all the parameters except Gwere frozen at the

values deduced from fitting ground state masses and the surface diffuseness, so what you see is

a one-parameter fit to the depths. This is another example where our model provides a closed

formula for the property in question. According to our model the potential depth U(z) felt by a

nucleon with kinetic energy ZTCItraveling through standard nuclear matter is given by

The total energy of the nucleon is E = U + zTo, so Eq. 21 provides an explicit relation between U

and E, which is plotted in Fig. 13. Again, the agreement with measurements is close, though not

perfect.

At this stage we decided to freeze our parameter set at the values listed in Section 4 and to

explore the predictions of our model under various extreme conditions. Here are three

examples.

14. Nuclei at the drip lines

Figure 14 shows the neutron and proton chemical potentials for isotopes of Sn from

neutron number N = 120 down to N = 32. The former is the last isotope which, in the Thomas-

Fermi model without shell and pairing corrections, would be stable against neutron emission.

The latter, for which the proton chemical potential is plus 8.24 MeV, would be unstable against

proton radioactivity by quantal barrier penetration, but would be classically metastable. Figure

15 shows the neutron and proton density distributions for 8%n, lz%n and lT%n.

15. How unbound is neutron matter?

The energy per particle of neutron matter is given by Eq. 15, which leads to
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1

En(pn)= 16.464@2 -13.635@ +5.391@s MeV . (22)

Figure 16 compares this prediction with the theoretical estimate of [1]. The similarity of the two

curves is quite remarkable. The physical ingredients in the two methods are quite different, and

they both represent bold extrapolations from measured properties of nuclear interactions and

bindings to the extreme conditions prevailing in neutron matter. (It is essential to stress that, in

contrast to our paper of 1990 [20], the parameters of our present Thomas-Fermi model were not

constrained to agree with the results of [1]. They were fitted to ground-state masses and to the

surface diffuseness, and the extrapolation to neutron matter agrees then with [1] without any

readjustments.)

16. A nuclear bubble .

It has been known for a long time [29, 30] that a sufficiently highly charged idealized

nucleus, if constrained to spherical symmetry, would eventually rupture into a bubble

configuration. In the simplest liquid drop model, a bubble configuration first appears when the

fissility parameter x exceeds the value 2.0216 [29]. [Implying that, very roughly, (Z2/A)/50

exceeds 2.0216. Stability against fission is lost at x = 1, i.e., when Z2 /A = 50]. The energy of

the bubble configuration falls below that of the unruptured sphere when x >2.212 [29]. As an

illustration of this phenomenon we carried out a series of Thomas-Fermi calculations, starting

with N = 600, Z =400, and reducing the mass number A dtiwn from 1000, while keeping

(N-Z)/A at the fixed value of 0.2. In this way we located approximately the point where the

Thomas-Fermi solution would switch from an unruptured nucleus to a bubble configuration

with increasing Z2/A. Figure 17 shows the last solid nucleus for N = 372, Z = 248 (Z2/A = 99.2)

and the first bubble configuration for N = 378, Z = 252 (Z2/A = 100.8).

Summa~ and conclusions

We applied the statistical method, introduced for atomic electrons by Thomas and by

Fermi, to a comprehensive description of nuclear properties. We did this by generalizing the
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Seyler-Blanchard effective nucleon-nucleon force. We fitted fiveofthe sixadjustable

parameters of the force to nuclear binding energies corrected for shell and pairing effects and

for the Wigner term, using the sixth parameter to keep the width of the surface diffuseness at

bo = 1.0 fm. The resulting RMS error in the mass fit was 0.711 MeV, comparable to the fit

obtained with the shape-dependent Droplet Model of [26]. Using the resulting parameter set,

we found that the sizes of nuclear charge distributions were in agreement with measurements

and that fission saddle point energies of elements down to Z = 71 could be reproduced with

only relatively minor (though systematic) discrepancies. The extrapolated binding properties of

neutron matter turned out to be in striking correspondence with the theoretical estimate of [1].

Introducing a seventh (density-dependence) parameter in the effective interaction, we were able

to give a fair account of the nuclear optical model potential.

On a finer scale there are, to be sure, systematic discrepancies in the trends of fission

barriers, density distribution profiles and the optical model potential. Some might be due to

imperfections in the effective interaction, some are surely due to the approximate nature of the

Thomas-Fermi treatment. But overall we now have available a robust statistical model that

shows a good correspondence with a large and varied amount of data on finite nuclei. We

believe that the resulting predictions for the bulk and surface properties of nuclear matter, listed

in Section 4, should be quite reliable as regards the principal (liquid drop) parameters

ro, al, az J, and to provide fair estimates of the remaining more subtle (Droplet Model)

quantities.

We will continue studying nuclei under extreme conditions of charge, isospin and,

espeaally, angular momentum, using, as Fermi would have said, “Un metodo statistic per la

determinazione di alcune propriet~ del nucleo.”
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Figure captions

Fig. 1. The upper part shows a comparison between the Thomas-Fermi and the Hartree

densities (multiplied by rz) of the electrons in a Hg atom [5]. The lower part shows Fermi’s

prediction of the number of p-electrons as a function the atomic number Z (solid line) and the

actual numbers (dashed line) [4].

Fig. 2. The binding energy of standard nuclear matter versus the cube root of the relative

density, as given by Eq. (9), for different values of the compressibility K. (From [20].)

Fig. 3. The relative energy per particle of neutron matter vs. the density parameter 0, as given

by Eq. (15), for different values of the parameter& For each value of ~ the other interaction

parameters were re-adjusted to keep the binding, density and symmetry energy of standard

nuclear matter fixed. (From [20].)

Fig. 4. The energy per particle of nuclear matter according to Eq. (16), vs. the relative density

parameter f2, for different values of the relative neutron excess 5- (Pn- PP)/@n + pP). The

squares are the theoretical estimates from [1]. This figure is from the 1990 version of our model

[20] in which the parameters were adjusted for approximate agreement of the 6 = Ocurve with

[1]. The current model, in which no such constraint was imposed, is illustrated in Fig. 16.

Fig. 5. The Thornas-Ferrni charge distributions for 56Fe, 124Sn and lWBi (solid lines) are

compared with electron scattering measurements as represented by a Woods-Saxon fit (dot-

dashed) or a three-parameter Gaussian fit (dashed) to the data. The current parameter set,

listed in Sec. 4, was used.

Fig. 6. Each set of symbols represents the result of calculating the surface energy of semi-

infinite nuclear matter using interaction parameters adjusted to give the same bulk binding and

density, as well as the same surface width b, but different compressibility K. There results an

astonishingly linear relation between K and the surface coefficient a2. (From [20].)
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Fig. 7. The residual deviations between measured and calculated masses when the shape-

dependent Droplet Model is used for the macroscopic part (upper part) and when the present

Thomas-Fermi model is used (lower part). Lines connect isotopes of a given element.

Fig. 8. One octant of the three-dimensional lattice used to solve numerically the Euler-Lagrange

equations for saddle shapes. Here the neutron density for the saddle shape of ‘9Np is depicted

by displaying at each lattice point a small sphere whose radius is proportional to the local

density there. (From [21].)

Fig. 9. Illustration of the saddle-point shapes for 166Yb, 194Hg, and ‘9Np calculated in [21].

The upper part is a three-dimensional rendering and the lower parts are contour plots of the

neutron density pn corresponding to ~n/(~PO)= 0.2,0.4,0.6, 0.8, 1.0.

Fig. 10. Deformation energies for five nuclei calculated in [21]. The constraint parameter A is

half the distance between the centers of mass of the two halves of the nuclear shape, less its

value for the spherical configuration. The current calculations are qualitatively similar, but the

calculated fission barrier heights are now in much better agreement with measurements.

Fig. 11. Thirty-six calculated fission barrier heights from 173Lu to 2S2Cf(open diamonds) are

compared with measurements corrected for ground-state shell effects (squares). The triangles

show the difference. The “fissility” was chosen as (Z2/A)/(1–2.2 12),where the coeffiaent 2.2

multiplying the square of the relative neutron excess I was adjusted to make the calculated

points conform closely to a single curve.

Fig. 12. This is like Fig. 11, but the calculations were continued all the way down to gBe at—

“fissility” =2. The other calculated points below fissility =30 are for 20Ne, ~Ca, 7SBr, $’4M0,

ls2Ba, and 160Dy. Here, and in Fig. 11, a parameter set with ro = 1.145 rather than ro = 1.14 waS

used. With the canonical set based on r. = 1.14, the barrier for 252Cf would be 0.19 MeV higher

and for 173Lu 0.41 MeV higher.
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Fig. 13. The compilation of measured optical model potential depths (corrected for Coulomb

effects and neutron excess, [28]) is compared with the Thomas-Fermi calculation.

Fig. 14. The proton (solid squares) and neutron (open squares) chemical potentials for the full

range of Sn isotopes, from N = 32 to N = 120, for which Thomas-Fermi solutions exist.

Fig. 15. The neutron (solid line) and proton (dashed line) density distributions for 82Sn,

and 17%n.

120Sn,

Fig. 16. Two independent predictions of the energy per particle of neutron matter. The density

parameter is the cube root of the neutron density relative to its value, pO/2,in standard nuclear

matter. The squares are from [1]. The curve is the Thomas-Fermi calculation with the canonical

parameter set.

Fig. 17. The upper part is the last unruptured nucleus (N= 372, Z = 248) and the lower part the

first bubble nucleus (N= 378, Z = 252) in a sequence where A is increased while (N-Z)/A is held

fixed at the value 0.2. The parameter set from [20] was used.

19



1

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

B. Friedman and V. R. Pandharipande, Nucl. Plzys. A 361,502 (1981).

M. Pi, X. Viiias, M. Barranco, A. Perez-Canyellas and A. Polls, Astron. Asb-ophys. Suppl. Ser.

64,439 (1986).

L. H. Thomas, Proc. Cambridge Phil. Sot. 33,542 (1927).

E. Fermi, Rend. Lincei 6,602 (1927); Zeit.fi Physik 48,73 (1928).

P. Gombas, “Die statistische Theorie des Atoms und ihre Anwendung” (Springer, Wien,

1949).

M. Brack, C. Guet and H.-B. Hakansson, P/zys. Rep. 123,275 (1985).

K. A. B~ueckner, J. H. Chirico and H. W. Meldner, Phys. Rev. C 4,732 (1971).

A. K. ~“tta, J.-P. Arcoragi, J. M. Pearson, R. Behrman and F. Tondeur, Nucl. Phys. A 458,77

(1986).

F. Tondeur, A. K. Dutta, J. M. Pearson and R. Behrman, Nucl. Phys. A 470,93 (1987).

[10] J. M. Pearson, Y. Aboussir, A. K. Dutta, R. C. Nayak, M. Farine and F. Tondeur, Nucl. Phys.

A 528,1 (1991).

[11] Y. Aboussir, J. M. Pearson, A. K. Dutta and F. Tondeur, Nucl, Phys. A 549,155 (1992).

[12] F. Garcias, M. Barranco, J. Nemeth and C. Ng6, Phys. Mt. B 206,177 (1988).

[13] F. Garcias, M. Barranco, J. Nemeth, C. Ng6 and X. Viiias, Nucl. Phys. A 495,169 (1989).

[14] P. Ring and l?. Schuck, “Nuclear Many Body Problem,” Springer-Verlag, New York/Berlin,

1980.

[15] R. G. Seyler and C. H. Blanchard, Phys. Rev. 124,227 (1961); 131,355 (1963).

[16] W. J. Swiatecki, Proc. Phys. Sot. (London) A 68,285 (1955).

[17] W. J. Swiatecki, NUCL Phys. A 542,195 (1992).

[18] W. D. Myers, in “Proceedings, Third Int. Conf. on Atomic Masses, Winnipeg, Canada, Aug.

28–Sept. 1,1967” (R. C. Barber, Ed.), pp. 61-84.

[19] W. D. Myers and W. J. Swiatecki, Ann. Phys. (N.YJ 55,395 (1969).

20

—.—. — .—-—... . . . .___________ .



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

‘-’- W. D. Myers and W. J. Swiatecki, Ann. Phys. (N. Y.) 204,401 (1990).

W. D. Myers and W. J. Swiatecki, Ann. Phys. (lV.Y.) 211,292 (1991).

D. Bandyopadhyay and S. K. Samaddar, Nuc1.Phys. A 484,315 (1988).

R. W. Hasse and W. D. Myers, “Geometrical Relationships of Macroscopic Nuclear

Physics,” Springer-Verlag, New York/Berlin, 1988.

H. de Vries, C. W. Jager and C. de Vries, Af. Data M.tcL Data Tables 36,495 (1987).

W.D. Myers and W. J. Swiatecki, Nucl. Phys. 81,1 (1966).

P. Moller, J. R. Nix, W. D. Myers and W. J. Swiatecki, “Nuclear Ground State Masses and

Deformations,” Los Alamos preprint LA-UR-93-3083, Aug. 16,1993, to be published in the

Atomic Data and Nuclear Data Tables.

W. D. Myers, “Droplet Model of Atomic Nuclei,” IFI/Plenum, New York, 1977.

M. Bauer, E. Hemtidez-Saldaiia, P. E. Hodgson and J. Quintanilla, J. Phys. G: NUCL Phys. 8,

525 (1982).

W. J. Swiatecki, Ph.D. Thesis, University of Birmingham, October 1949.

W. J. Swiatecki, Physics Scripts 28,349 (1983).

21



!

(Relative density) x r2 ———

z’/
7.

—

—

—

.



0.5

0.0

I
I

I

I
I ‘1

1

:EI’j
I

I —K=1OO 1’I
I ——K=300 I //
I 1

K=500 I———1
K = 10,000

1 /I -––– 1
I I

/’1I
I I

1 1 //
I I

.1 I /
I

I /-- —----- I / /
/ / \ 1 I

‘0”5~
0.0 0.5 1.0 1.5

Density parameter, Q

Figure 2

23



F

z
a

a)
c
al

0.5

0.0
---- ---———.— _

\
\

\
\

[l. ,,, .,,, l,,”
\/

0.0 0.5 1.0 1.5
Density parameter, @

Figure 3

24

.- .—...-..____,_..”“..



i=

a)
c
a

0.5

0.0

p

—3=0.0
—— 6=0.2
––– 6=0.4
---- 8 = 0.6
-------- 6=0.8
—6= 1.0

❑ F&P

= .-”” ,’ /1 I

><’+. .’” !1 1

...- / I
------------------------- - d-- /.- /. 1

-0.5 I i

0.0 0.5 1.0 1.5

Density parameter, Q

Figure 4

25



1

-

0

U-)
o
0

0

Z= 26 N= 30 .

t —-

, t t I I I , 1 I I I

o

u)
0
0

0

0 5 10

1 I 1 1 I I 1 1 1 I ,

Z= 50 N= 7’4

! n I 1 I I 1 1 I

-

0

o 5 10

WI
o
0

0

1 1 1 1 I 1 1 1 1 1
— I

Z= 83 N=126

.—. —.—. ———

I 1
0 5 10

Distance, fm
Figure 5

26



■ b=l.O
+ b=l.1

I I I 1 1 I I I

o 100 200 300 400 500 600

Compressibility coefficient, K (MeV)

Figure 6

27



f I I I

I I I

:

0
0

..——~——. —-—------ . .-..— --- .... ..... .



Figure 8

29



1

z =70

N=96

z =70
N=W

Z=M)

N=l14

z“==

N= 136

Figure 9

30



30

25

0

-5

Im .++++I
[

+
+

+
+

+

+ 1
[

+

+

+
❑ananna❑QD

❑

+ ❑cl ❑

❑

+ ❑u
❑+

❑

+13

❑

+0
L-

+Cl A

u *OO 0000
+ 0❑*O 0

0
0
0

A

0
0 A

A
0

0 0
0

A 0
A

0
0

A 0

0 A 0

A 0
0 0

A
0 0

I I I A I I 1

1 2 3456

A (fro)

Figure 10.

31



1

(i)

30

20

,10

0

-lo

6

■ o

s
\ /

2’8❑ J
■ J

o

0

Em

0

+ ~

c1

-r~Qfb
A ~

A- A ~ *\\\—~\\\—kib—A
~t A\

A Ak
A ‘A A A

30 35 40 45

Fissility

Figure 11



a)

60

50

40

30

20

10

0

-lo

o 10 20 30 40

Fissility

Figure 12



.

lU

8(

6(

40

()

%

.

h
A

~4

d

A

I I I 1 I i I I
-60 -40

I I I
-20

I I I 1 Io 20 40 6@ /30
1

100 120 140 160 180

I I I I

Energy (MeV)

Figure 13



CHEMICAL POTENTIAM FOR TIN ISOTOPES

10

5

0

-5

twleV

-lo

-15

-20

-25

A

J---8
■

■

■

0

30 50 70 90 110 130

NEUTRON NUMBER

Figure 14

35



1 I I I I 8 I 1 1 I 1
I

c

o

u)
o
0

0

?
o

m
o
0

0

.
0

—
u-)
o
0

0

1
I 1 I I I \

I- 8 I I 1

z= 50 N= 32

) 5 10

— — —— -

1 I 1 I I I I I I I I

z= 50 N= 70

?

L
2 5 10

\

\

\

\

\

—._

\

3 t 1 1 I I 1 I 1 I ,

z= 50 N=120

\ \
\

* I 1 1\

o 5

Distance,

36

10

fm Figure 15



0.0 0.5 -1.0 1.5

Density parameter, @

Figure 16

30

t)
Q

a

❑
•1

•1
❑

o
0

❑
o

I

37



I I I I I I 7

■

———— —

1

0 -2 4 6 8 10 12 14

I I I [ I I 1

0 2 4 6 8 10 12 14

Distance, fm

Figure 17

38

—. ——. _________ — . ..—..__ .,__.. —..
I


