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. TAYLOR INSTABILITY Ol?NC~WRESt$IBJ$ MQUES ^ 
.* PART 1. WLOR INS~ILITP'OF AN INCOMPRESSIBI;E LIQUID 
_ +* ' 

b'r by Enrico Fermi 

I F This is an attempt to discuss in a very simplified form the problem 
.A ‘ 

of the growth of an initial ripple on the surface of an Fncampressible 

liquid in presence of an acceleration, g, directed from the outside into 

the liquid. 

" 

The model is that of a heavy liquid occupyzIng at t = 0 the half space 

above the plane z = 0. It is well known that this is a state of unstable 

equilibrium. Any tm ripple on the surface at the initial the grows in 

amplitude, first exponentially and later, when its amplitude has become 

comparable to the wave length, by a more complicated law. 

The case will be considered that there is Initially a small. amplitude 

sinusoidal ripple of wave length A. In a first phase this amplitude will 

increase exponentially like 

=xP( 2"@;t) 
J- A 

(1) 

This exponential law, however, will break down when the amplitude has 

become ccanparable to & = h/2r. We propose to discuss what happens in the 

subsequent phase. 

This will be done by grossly schematizing the shape of the wave as indi- 

cated in Fig. 1. 
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Instead of a wave profile like the curve, a profile like ARCDEFGHIJ 
. 

will be assumed. 

It is clear from the symmetry of the problem that the points at the 

me&mum end the minimum of the wave move in vertical directions. In Fig. 2 

a half wave, from a maximum to the successive minimum is represented with 

the notations adopted. 00' is the initial level of the liquid. On account of 

the incompressibility the amount of liquid bel_aw the plane OO', namely CO'DE 
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.> dition leads imed,iately to the relationship 

Our echematlc wave profile IS then characterized by the two parameters 

a, x. The problem is to determine how they vary with time. 

In principle the problem so simplified could be solved by expressing 

the kinetic energy T and the potential energy U of the liquid contained 

between the two boundaries OA, 0% as functions of a, x, &, 5 . 

T = T(a, x, &, 2) 

u = u(a,x> 

One can then.vrite the Lagrange equations c, . ..^. . . _, *,- 

(3) 

which*describe the law of Variation of the two wave parameters 5, X. 

The potential enere U can be written down immediately. It ie due to 

having moved the liquid originally contained in ABOC (weight per unit lea&h 

perpendicular to the plane of the drawing = ,og 2 t (l-x), height of the 

center of gravity = b/2) to the lower position CDEO' with the center of 

gravity at a hei&ht -a/2. 

In what follows the following unit6 will be used: Unit of length, $; 

unit of acceleration, g; unit of density, p. 

one finds, then, the potential energy 

1 a2x u x3 --- 
2 l-x (4) 

1 * 

. . 
h , 

I 

The calculation of the kinetic energy Is BOB difficult. In principle 

it could be carried Out for a pksctiibed motion 0: the profile of the liquid 

by solving a Dirichlet problem. Instead of doing this, a much cruder m&hod 

was followed in keeping with the'crude approxi'&tion chosen for the profile 

of the wave. 
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men the amplitude of the wave is very large it is evident that the 

kinetic energy is due primarily to the vertical component of the liquid 

velocity inside the domain BREB'. The corresponding kinetic energy can 

be computed easily on the assumption that the vertical component of the 

velocity is constant on each horizontal section of BDEB'. one finds that 

this part of the kinetic energy is given by 

" ' 

E. 
, 

For small and moderate amplitudes of the wave, additional terms in 

the kinetic energy become important. One of them la the kinetic energy 

due to the horizontal COIIQOnent of the motion of the liquid BDEB'. This 

term of the kinetic energy is given approximately by 

*2 = 
axic2 

m7 (6) 

Finally, the kinetic energy due to the motion of the liquid above 

the line AB' should be estimated. An approximate expression for this teti 

of the kinetic energy yields 

a2x2 
. I 

T3 = P =+ g + F l-x % X2L2 

The kinetic energy is the awn of the three terms(5) (6)(7) 

T = T1+T2+T 3 

(7) 

& pointed out, the leading term at high amplitude is the fir&i For 

low amplitude all the three terms need to be considered. 

Using the expressiona(4)and(8)for potential and kinetic energy, one 

can write the Lagrange equations(j) That enables one to express the 

second time derivatives x and a in term of x, a, it, &. One finds 

where 



* -5 

l 
where 

.* 
a* 

A = - 

1 

+r+Jja, 
3Y 3 

/ I) 

D = a+qy 

F = a- 

These equations have been integrated numerically by Miriam Caldwell. 

Initial conditions corresponding to a wave of very low amplitude were 

chosen as follows: a f .Ol, ;1 = .0177, r = .5, ; = 0. The result8 Of the 

numerical integration are given in Table I. 

t a b X 

0 .0100 .OloO 
.S 

:i%? 
.0228 :E 

1.0 .0468 .427 
1.5 .192 .@33 * 303 
2.0 .sa4 .115 .165 
2.5 1.218 .I44 .106 
3.0 2.195 .170 .0-R 

Table I 

The four columns of ,$he table give, reepectively: the time in unite 

the two amplitudes of the wave, a and b, below and above the original eurf'ace 

J of the liquid expressed in units h/2; and the quantity x that measure8 the 

4' asymetry of the wave (x P .5 correspondlngtoa symmetrlcalume). x <.5 
.,Q 

* Q , 
corresponds to a wave in which t@e,half~Fve *;,m.t'ne original liquid (lur- 

face is naroyer tm t&e @.&$ -J,T above. From an inspection of the table .,a".**,. :. ._*r&%. <...<._ .‘> ,... / ,, , I 
d one will recognize that up to about t = 1, the two amplitudes, 5 and b, have , 

rather close values and they grow apptiximately exponentially with,& wriod 



not far f-the one ccquted from the correcthydrodym&caltheory of 

T = .56 (in our units) (13) 

Already, at t - 1, an nppreciable asymmetry of the wave has developed. This , 

I 
become more and more noticeable for later times. At t = 3, for example, b 

le less than l/lOth of a. 

The asymptotic behavior of 5, 2, and 5 for large value8 of the time Is 

obtained f& a dlecuesion of the equation8 (9). One flndsthat~increases 

proportionally to the square of the time, b Increases proportionally to the 

e~uare root of the time, and x is inversely proportional to the j/2 power of 

the time. More precisely, one finds the following liaiting expressions 

’ a+ 4 (t- 1.04)2 (14) 

b j .l2(t - 1.04) l/2 

x$.21(t - 1.04) -3/Z 

(15) 

06) 

In other wombs, the lower tip of the wave falls with uniformly accelerated 

motion and with acceleration equal to 8/7 g. The upper half wave grows much 

mora slowly and its velocity decrease6 with time. 

It Is interesting to CW the rt?sulta of this crude approximation with 

the experimental results obtained by D. J. Levis', as well as with the results 

of G. I. Taylor2 and of Taylor and Davls3. The present theory 8eems to repre- 

eent cozmctly one feature of experimental results, namely the fact that the 

half wave of the heavy liquid into the vacuum becomes rapidly narrower, where- 

88 the half wave push% into the heavy liquid ~CCOES more and more blunt. 

On the other hand, the PreSent theory falls to account for the experimental 

results according to which the front of the wave pushing into the heavy liquid 

mvee with constant velocity. According to the present theory the dlsplace- 

Plent la expectedineteadto be proportional tithe square rootofthetlme. 

1 
2: 

Pm 202A 81 
2GlAlg6, 

1950 
Pm 1950 

3. ms 2oQA 375, 1950 
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In a previous memorandum, "Taylor Instability of an Incompressible Liquid," 

one of us has discussed the Taylor instability at the surface between an incom- 

pressible liquid and in a vacuum by using a very simplified model which consists 

in assuming that at all times the interface may be represented by a surface of a 

shape 
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The vertical lines OA and O'A' are traces of planes of symmetry and their dis- 

tance is half a wave length. -<, '* ' / 1 

In the case previously discussed this model succeed&in reljresenting cor- 
-4 

rectly at least some features of Taylor instability. In particular, it was , 

found that the heavy fluid penetrates into the vacuum with a spike which be- 

comes thinner as the phenomenon progresses. Actually the front of this spike 

moves with uniformly accelerated motion with an acceleration that evidently 

should be equal to the gravitational acceleration g and which, due to the 

crudeness of the model, turns out to be 8/7 g. The upward motion of the 

vacuum bubble into the fluid is represented less correctly. According to the 

results of Taylor, this bubble should move upward with a constant limiting 

velocity. The model fails to reproduce correctly this feature and the displace- 
P ‘I 

., ment of the top of the bubble is asymptotically proportional to Jt. 

0 \ As a contribution to the discussion of the Taylor instability between two 
4 

fluids of different densities, P andu (PPQ), we have tried to explore a ':. -!i 
i 

similar model for this more complicated case. The notations are slightly dif- 

ferent from those used in the previous memorandum and are clearly shown in 

Figure 1. 

In order to write the Lagrangean equations for the system, it is necessary, 

to obtain an expression for the kinetic energy of the system as a function of 

the two parameters, x and y, that characterize its position and uf their time 

derivatives, j, and y. This has been done using essentially the same proce- 

dure followed in the previous memorandum. In the present case we were interested 

particularly in a description of the late phases of the phenomenon and for this 

reason only one of the three terms of the kinetic energy previously used was 
. L 

: 
? I* 4 
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* 

J I 
L' II 



, a,* 
l 

i 

'i 5 
l . 

/ 

2 

This term represents the kinetic energy of the vertical potions -maintained. 

in the two channels of length 'x + y through which the heavy fluid of density 

n 

# 

‘ 

P moves downwards and the light fluid of density Q moves upwsrds. The ex- 

pression of this kinetic energy is given by two terms similar to expression (5) 

of the previous memorandum, rewritten with new notations. The expression of 

the kinetic energy is 

T= (P+Q % 
f, y i2 + Q (m + p ;’ x ti2 + g (px +ry) f 3. (1) 

The potential energy U is given by 

u P - --“)gx y. 2 

The Lagrangean equations corresponding to (1) and (2) can be written immediately. 
* 

One of them is 
* 

y 2 
‘(2py+ 2r <).i+(px+sy)p-us 

x 
k2+(2p+4y)j;-2f-f f2- ii 

*- ‘4. 1 
i 

- 3 dP -u) y = 0. (3) 

The other Lagrangean equation is obtained by interchanging in (3) x and y and 

also P and o- In all terms except the last. Instead of using the two Lagrangean 

equations, ws may, however, use equation (3) and the energy equation 

T+U=O. (4) 

The total energy is taken to be zero because we sssume that the system stsrts ,-.A-,./ .., ,‘ l,. ,._ ..,.,_ ~. " .^I. . ,,._, .( 

with zero velocity and with s flat horizontal interface. By a suitable change 

of the scales of x, y, and t, it is possible to write the equations (3) and (4) 

in a form in which P, cr and g do not appear. This is done by the following 

transformstions 
t , , 

, 
. 

* I 

/ 
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With these new coordinates, the equations (4) and (3) become 

(5) 

(6) (l+ 3) -$ + (1+-+) q2+(+- + +ii=1 

(2+2+)i+(l++);; -#. +($ + +,&2-9 Pl. (7) 

The dots represent in those equations derivatives with respect to 7;. By making 

use of the similarity properties of these equations, they can be reduced to the 

first order. / The appropriate transformations are the following 

5;. .2s+2q 7 = e2s-2q 

(8) . . 
dq 

r=ds 

By substitution one obtains the following equation of the first order L 
r ,_,, a, 

d; riq - (3 + r2) (tgh 2q - 3 r>, 5” ” (9) : 1; 
i 

and also the additional equations 

i = 
-8 

e _j 
i eq (1 + r) 

. . .- 
8(3 + r2) coah 2q 2(3 + r2) cash 2q 

. 

+ 
eq (1 - r) 

2(3 + r2) c08h 2q 
i 

which can be used in passing from the solution of equation (9) to the solution 

of our physical problem. 



In selecting the solution of (9) corresponding to the actual case, one 

‘P c needs the following initial values of q and r. These are obtained as fol- 

& -., lowa. Aa long as the disturbance hea very low amplitude, it is known that 
I 

. 
the wave ia of ainuaoidal shape and exponentially increasing amplitude. This 

phase of the phenomenon ia not represented by our treatment which describes 

only the late phase of the motion. 

initial conditions for our problem 

solution of the early phase break8 

x = y and dx/dt = dy/dt. Making 

aituation correspond8 to 

Q" 

In fact, we may assume that the proper 

correspond to the time when the exponential 

down. At this moment we hsve approximstely 

use of equation (5) and equation(8), this 

&h%$; r = 0. (11) 

f 
In Figure 2 the shape of the solution of equation (9) corresponding to 

these initial conditions is outlined. 

Figure 2 

I 
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The initial point is P end the arrow indicates the direction of increasing time. 

As time increases q becomes positive infinite and r converges to the value 

3/5. One can now find without trouble the following asymptotic expressions 

X--+ 
(12) 

. 

The first of these equations indicates that the heavy fluid moves into the light 

fluid with uniformly accelerated motion, as was found to be the case when Q = 0. 

The acceleration is 8/7 g (p-b)/p. Presumably the factor 8/7 in front of the 

expression should not be there in a more correct theory beceuae'the same factor 

was obtained also when Q= 0, in which case one would expect a free fall with 

acceleration g. We may, therefore, conclude tentatively that the heavy liquid 

should penetrate the light liquid with an acceleration 

(13) 

Again we find that a bubble of the light liquid rises much more slowly into the i ; 

heavy liquid. The fact that the height of this bubble is proportional to fi 

and not to t is presumably due to the inaccuracy of the model. 

Conclusions 

The present discussion makes it appear likely that the features of the 

Taylor instebility at the interface between two liquids of different density 

are similar to those corresponding to the case of the boundary between Pliquid 

and a vacuum. The main difference is that according to formula (13) the accele- 

ration describing the fall of the heavy into the light liquid is reduced by the 

factor (P-v)/p. There is, of course, another phenomenon that has been here 

'a 
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entirely neglected and which may in some cases play a very important role. 

All along the line BB+ in Figure 1 one might expect Helmholtz instability to 

develop because the heavy liquid moves downwards on one side pf the >our&ary 

and the light liquid moves upwards on the opposite siae. This instability 

will presumably further contribute to 

break up the spike of heavy liquid as 

$*.mixing and may, in particular, . ..," 

soon as it becomes sufficiently thin. 
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