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TAYLOR INSTABILITY OF INCOMPRESSIBLE LIQUIDS
PART 1, TAYIOR INSTABILITYOF AN INCOMPRESSIBLE LIQUID
by Enrico Fermi
- This is an attempt to discuss in & very simplified form the problem
of the growth of an initial ripI;I.e on the surface of an incompressible
liguid in presence of an acceleration, g, directed from the outside into
the liquid.

The model is that of a heavy ligquid occupying at t = O the half space
above the plane z ‘= 0. It is well known that this is a state of unstable
equilibrium. Any tiny ripple on the surface at the initial time grows in
amplitude, first exponentially and later, when its amplitude has become
comparable to the wave length, by a more camplicated law.,

The case will be consldered that there is initially a small amplitude
sinusoié.al ripple of wave length A. In a first phase this amplitude will
increase exponentially like

exp(_[278 ¢) (1)
A

This expcnential law, however, will break down when the amplitude has
become compareble to X = A /27, We propose to discuses what happens in the
subsequent phase.

This will be done by grossly schematizing the shape of the wave as indi-
cated in Fig. 1.

Instead of a wave profile like the curve, a profile like ABCDEFGHIJ
will be assumed. .

It ié clear from the symmetry of the problem that the points at the
meximum and the minimum of the wave move in vertical directions. In Fig. 2
& half wave, from a maximum to the successive minimum is represented with
the notations adopted. 00! is the Initial level of the liquid. Omn accbu.nt of

the incompressibility the amount of liquid below the plane 00', namely CO'DE
_l-







-3-
must be equal to the amount of liquid ABCO missing from above. This con-

dition leads immediately to the relationship

e %§; , | , | . (é)‘
>“Our’séhematic wave préfiie‘is then characterized by thé two parameters
a, x. The provlem 1s to determine hov they vary with time, |
In principle the problem so aimplified could be solved by expressing
the kinetic energy T and the potential energy U of the l1qu1d contained

between the two boundaries OA, O'E as functions of a, x, &, x .

T = T(e, x, &, X)
U = U(e,x)

One can then write the Lagrange equations

d T T _ _ 23U, 4 3T 3T Y
Efg'i‘ax“‘ax’ T -5 -g’z (3)

thchwaeSCribe the iaw of'variation ofuéﬁe,two wave paremeters a, X.

The potential energy U cen be written down immediately. It is due to
having moved the liquid origlnally contalned in ABOC (weight per unit length
perpendicular to the plane of the drawing = pog % b (1-x), height of the

center of gravity = b/2) to the lower position CDEO' with the center of

gravity st a height -g8/2.

In what follows the following unite will be used: Unit of length, %;
unit of acceleration, g; unit of density, 0.
One finds, then, the potential cnergy
2
lax .
U= -51% (+)

The calculation of the kinétié‘energy 1s more difficult.' In principle
[}

1t could be carried out for a prescribed motion of the profile of the liquid
by solving a Dirichlet problem. Instead of doiﬁg this, & much cruder method

of the wave.
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When the amplitude of the wave is very large it is evident that the
kinetic energy is due primarily to the vertical component of the liquiad
velocity inside the domain BDEB'. The corresponding kinetic energy can
be computed easily on fhe assumption that the vertical componéht of the
velocity is constant on each horizontal section of BDEB', One finds that

this part of the kinetic energy is given by
8.32

T, = GxZT-xi , (5)

For small end moderate amplitudes of the wave, additional terms in

the kinetlc energy become important. One of them is the kinetic energy
due to the horizontal component of the motion of‘thé liquid BDEB'. This

term of the kinetlc energy is given approximately by
Xk
T2 = m_x (6)
Finally, the kinetic enérgy due tb the hotion of the liquid Above
the line AB' should be estimated. An approximate expression for this term

of the kinetic energy ylelds

v, - P, paxk, po2p2 oy
3 2 2 I kx

The kipetic energy is the sum of the three terms (5) €} (1)

T = T +T, +7T (8)

3
As pointed out, the leading term at high amplitude is the first. PFor
low amplitude all the three terms need to be considered.
Using the expressions(4)and(8)for potential and kinetic energy, one
can write the Lagrange equations(3) That enables one to express the

second time derivatives x and & in terms of x, a, X, &. One finds

- it

ED-FB . AF-EC
DI ° T WK (9)

where
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where
8'2 L4+T T
A = ¥ + 3 + 2 @ D = a4+ R4
\ (10)
a
B =§+g}', o a—2§+ga
2 2.2 ‘e 2 4o 2 o2
a 8 1 (bx-1)a"x aax X
E = &_2 . L___%______ PR T e [Texx | .
32 °F% yy3a2a2y1rxa(ll)
y
a2 22 oo 2 .o
F =a—%—-+ 1-2x)a x -a—s,x-"i--’-g—-ﬂx?
2y
and’k
¥y = x(1l-x) (12)

These equations have been integrated numerically by Miriam Caldwell.
Initial conditions corresponding to a wave of very low amplitude were

chosen as follows: a = ,01, a = ,0l77, x = .5, x = 0. The results of the

numerical integration are giver in Table I.

ct
®
o
E

0 .0100 .0100 . 500
.5 L0243 .0228 L8k
1.C .0628 L0463 et
1.5 .192 .083 .303
2.0 .584 115 . .165
2.5 1.218 L1k .106
3.0 2.195 .170 072
Table I

The four columns of the table give, respectively: the time in units 28;
the two amplitudes of the wave, a and b, below end above the original surface
of the 1iquid expressed in units A/2; and the quantity x that measures the
asymmetry of the wvave (x = .5 corresponding to a symmetrical wave). x < .5
corresponds to a wave in which the half wave below the original liquid sur-

face is narrower than the half wave above.ﬁ,v From an 1nspection of the table N

one will recognize that up to about t = 1, the two amplitudes, & and b, have

rether close valués and they grow approximately exponentially with & period
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not far from the one computed from the correct hyd.rodynm;ical theory of

small amplitude waves

T = \(5% = -% = .56 (in our units) (13)

Already, at t = 1, an appreciable asymmetry of the wave has developed. This
becomes more and more noticeable for later times. At t = 3, for example, b
is less than 1/10th of a.

The asymptotic behavior of a, b, and x for large values of the time is
obtained froﬁ a discussion of the equations (9). One finds that a8 increases
proportionally to the square of the time, b increases proportionally to the
square root of the time, and x is inversely proportional to the 3/2 power of

the time. More precisely, one finds the following limiting expressions

‘a2 (t- 1.00)° (14)
b .12(t - 1.04)H2 - (15)
x5 .21(t - 1.04)3/2 (26)

In other words, the lower tip of the wave falle with uniformly accelerated
motion and with acceleration equal to 8/7 g. The upper half wave grows much
more slowly and its velocity decreases with time,

It 1s interesting to compare the results of this(crude approximetion with
the experimental results obtained by D. J. Levisl,ras vell as with the results
of G, I. Taylor2 and of Teylor and DavisB. The present theory seems to repre-
sent correctly one feature of experimental results, namely the fact that the
half wave of the heavy liquid into the vacuum becomes rapidly narrower, where-
as the half wave pushing into the heavy liquid becomes more and more blunt.

On the other hand, the present theory fails to account for the experimental
results according to which the front of the wave pushing into the heavy liquid
mera with constant velocity. According to the present theory the displace-

ment 1s expected instead to be proportional to the square root of the time.

1. PRE 202A 81, 1950
2. PR8 201A l9é. 1950
3. PRS 200A 375, 1950

e
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RN __PART 2, TAYLOR INSTABILITY AT THE BOUNDARY OF TWO INCOMPRESSIBIE LQums

by Enrico Fermi and John YonvNegﬁagg

In a previous membrahdum, "Taylor Instability of sn Incompressible Liquid,”
one of us has discussed the Taylor instability at théksufface between an incom-
pressible liguid and in & vacuum by using a very simplified model whichyéonsisﬁs

in assuming that at all times the interface may be represented by & surface of a

shape
P
! f B8
y
oOf——=——-— + —————— Bty S o’

o X

. A B’ A
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Figure 1

-~




-8~

The vertical lines OA and O'A' are traces of plenes of symmetry and their dis-
tance is half a wave length.
In the case previously discussed this model succeeded in representing cor-

rectly et least some features of Taylor instability. In perticular, it was

- found that the heavy fluid penetrates into the vacuum with a spike which be- .

comes thinner as the phenomenon progresses. Actually the‘front of this spike
méves with uniformly accglerated motion with an acceleration that evidently
should be equal to the gravitatibnal acceleration g and which, due to the
crudeness of the model, turns out to be 8/7 g. The upward motion of the
vacuum bubble into the fluid is represented less correctly. According to the
results of Taylor, this bubble should move upward with a constant limiting
velocity. The model fails to reprodggg correctly this feature and the displace-
ment of the top of the bubble is asymptotically proportionsl to /_El

As a contribution to the discgsaion of thé Tay;oryinstability between two
fluids of different densities, P sndo (p>o0), we have tried to explore a
similsr model for this more complicated case. The notetions are slightly dif-
ferent from those used in the prefious memorandum and afe clearly shown in
Figure 1.

In order to write the Lagrangean equations for the system, it is neceésary,
to obtain an expression for the kinetic energy of the system as a function of
the two parameters, x and y, that characterize its position and uf their time
derivatives, x and y. This has been done using essentially the same proce-
dure followed in the previous memorandum. In the present casse we were interested
particularly in a description qf the late phases of the phenomenon and for.this '

reason only one of the three terms of the kinetic energy previously used was

.
iy
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.maintained. This term represents the kinetic energy of the vertical motions

in the two channels of length x + y through which the heavy fluid of demsity
P moves downwerds and the light fluid of demsity o moves upwards. The ex-
pression of this kinetic energy is given by fwo'terms‘similarrtb expression (5)
of the pfevioua memorandum, rewritten with nevw notations. The expression of

the kinetic energy is

.2 .2 . . T
T=3(pre Dy +Flerr P xi”+fpxaoy) 27 (1)
The potential energy U 1is given by

Ug-ngy. ’ (2)

2
The Lagrangean equations corresponding to (1) end (2) can be written immediately.
One of them is
L i ' 2 .o e 2 -2 o . o x.2
' "(2Py+20-yx—)x+(Px+o'y)y-o—¥—2- X +(2p+k-—iz-)yx-2p-—i ¥y -
X

-3g(p-c)y=o. o (3)

The other Lagrangean equation is obtained by interchanging in (3) x>§ﬁd y and
also £ and o in all terms except the last. Instead of using the two Lagrangean
equations, we msy, however, use equation (3) énd the energy equation

T+ U= O. (%)
The totsl energy is taken to be zero because we assume that the system sterts
with zero,velgc;ty'and with’g tlatvhorizontal interface. By a suitab;g chgnge
of the sceles of x, y, and t, it is possible to write thg_gquationa (3) and’(¥)
in a form in which P, o and g do not appear. This is doné by the folloviﬁg

transformations




o _ -10-
e AV
(5)

1 =0y T=/3g(p -0o) t.
T o

{ .
. L E = px
With these new coordinates, the equations (4) and (3) beccme

(6)

.2
(1+-;1- —%— +(1+—,§-)—,‘- + -3-‘}— + 3
-2 .
_EN = 1. (7

(2+2-§1).§.+(1+-§1-);7‘ '_;é— +(—,2'- + =)id- 2 ¥:

The dots represent in these equations derivatives with respect to T. By making

use of the similarity properties of these equations, they can be reduced to the

first order. The appropriate transformations are the following

= e23+2q "= e28~2q )
E 7 d

l}ps—-’--—- rg-—g
vVE 1 ae

By substitution one obtains the following equation of the first order
. . o I ‘. S L
= = (3+r)(tgh2q-%r), (9)
)

"

| T dq
and also the additional equations
_ , .
P e s ; £ e (1 +7r)
/6(3 + re) cosh 2q VE /2(3 + r2) cosh 2q (
‘ : : 10)
_j_ o el (1-1)
4 J2(3 + r2) cosh 29 '
)
solution

which cen be used in passing from the solution of equation (9) to the

of Our'physical problem.
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In selecting the solution of (9) corresponding to the actual case, one
needs the folloving initial values of q end r. Thgse are’obtainéd as fol-
lows. As long as the disturbance hss very low asmplitude, it is known that
the wave is of sinusoidal shape and exponentially increasing amplitude. This
phase of the phenomenon is not represented by our treatment which describes
only the late phase of the motion. In fact, we may assume that the proper
initial conditions for our problem correspond to the time when the exponential
solution of thg early phase breaks down. At tﬁis noment,vé have approximately
x =y and dx/dt = dy/dt. Msking use of gquation_(s) and gquationv(S), this
situation corresponds to

q=tig; ra=o. (1)

In Figure 2 the shape of the solution of equation (9) cor;esponding to

these initial conditions is outlined.

3/5 ——————————————————

Figure 2

-
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The initial point is P and the arrow indicates the direction of increasing time.

=
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As time increases q bvecomes positive infinite and r ~converges to the value

3/5. One can now find without trouble the following asymptotic expressions
(12) g

The first of these equations indicates that the heavy fluid moves into the light
fluid vith uniformly accelerated motion, as was found to be the case when o = O.
The acceleration is 8/7 g (f-o)/p. Presumably the factor 8/7 in front of the
expression should not ﬁe there in a more correct theory because the same factor
was obtained also when o = 0, in which case one would expect a free fall with
acceleration g. We may, therefore, conclude tentatively that the heavy liquid
should penetrate the light liquid with an acéeleration |

g . - - (13)

P
Again we find thet 2 bubble of the light liquid rises much more slowly into the
heavy liquid. The fact that the height of this bubble ie proportional to Yy t

end not to t is presumably due to the inaccuracy of the model.

Conclusions

The present discussion makes it appear likely that the features of the
Taylor instability at the interface between two liquids of different density
are similar to those corresponding to the case of the boundary between & liquid
and & vacuum. The main difference is that according to formula (13) the accele-
ration describing the fall of the heavy into tbe light liquid is reduced by the

factor (P-o)/p. There is, of course, another phenomenon that hes been here




23
entirely neglected and which may in some cases play a very important role.
All along the line BB' ih Figure 1 one might expect Helmwholtz instability to
deveiop because the heavy ;iquid moves downwards on one side of the boundary
and the light liqﬁid moves upwards on the opposite side. This instability
will presumsbly further contribute to the mixing and may, in particular,

break up the spike of heavy liquid as soon as it becomes sufficiently thin.
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