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PREFACE

In the Fall of 1945 a course in Neutron Physics was given
by Professor Fermi as part of the program of the Los Alamos
University. The course consisted of thirty lectures most of
which were given by Fermi. In his absence R. F. Christy and
E. Segre gave several lectures.

The present revision is based wupon class notes prepared
by I. Halpern with some assistance by B. T. Feld and issued
first as document LADC 255 and later with wider circulation
as ¥DDC 3zo0. '

Having found the document most useful in teaching an intro-
ductory course in nuclear physics, the author of the present
revision felt that the material should be made more widely
available, particularly to students of "pile engineering.”
To this end the notes issued as MDDC 320 have been revised
and made available in this form for wider distribution.

The principal revisions in the texi consist of expanding
some of the statements for clarity and adding sentences and
footnotes for completeness. Problems have been numbered and
grouped at the end of each chapter. Figures have been redrawn,
and in a few cases new ones added. Occasionally additional
material has been included which may not have been presented
in the lectures. This has been done only where clarity de-
manded more information and where the addition of recent

date made the text more complete.

The reviser was not privileged to attend the course on
which these notes are based. It is his hope, however, that
the revision will make available to a wider group of students
the essential material given in what must have been an extremely
useful and informative course of lectures.

~J. G. B.
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CHAPTER 1

NEUTRON SOURCES

1.1 ALPHA-NEUTRON SOURCES

One useful type of neutron source is based on the (a, n) reaction. Alpha particles incident on
a target nucleus result in the ejection of neutrons. Consider the reaction Li’(a, n)BY:

Li" + He*— BY _, B¥ + ! +Q (1-1)

In this equation B ™ is the intermediate state or compound nucleus. Q is the reaction energy and
can be calculated from the mass-spectrographically measured masses of the atoms as follows:

Li": . 7.01804 m.u. B¥: 10.01605 m.u."
He*: . 4.00388 nl: 1.00893
11.02192 m. u. 11.02498 m.u.

Q = (Massonleft) — (Massonright) = = .00306 m.u.

' The masses given are those of the neutral atoms, i.e., the "‘mass of an atom’’ is equal to the mass
of the nucleus plus the mass of the associated electrons, and the units are defined by the relation

1 mu = 1massunit
_ fMassofancmalatomofthemostl + 16
= ] abundant isotope of oxygen I

Now, in equation (1-1) there is an excess of mass on the right side which means that the reaction
is endothermic. That is, energy equivalent to the increased mass must be supplied to make the
reaction energetically possible. This energy, denoted by Q, can be computed by conversion of the
mass-difference —.00306 m. u., to energy units using the relation E =mc?®. Since 1 m.u. is
- equivalent to 931 Mev (see problem 2 at the end of this chapter) the value of the reaction energy
for (1-1) is Q = —.00306 *931 Mev or ~2.85 Mev. The negative sign indicates that the reaction is
endothermic, i.e., Q is taken positive for exotkermic reactions.

The *‘threshold energy’’ for this reaction is that minimum value of the kinetic energy which
the alpha must have in order to make the reaction energetically possible. The threshold
is not the same as the Q value, since the end-products, as a consequence of momentum conservation,
will retain some kinetic energy. In the Li? (a,n) reaction the incident alphas will need sore than
2.85 Mev of kinetic energy.

* A revision of class notes taken by I. Halpern on a series of lectures by Professor Enrico Fermi of
the University of Chicago as explained in the preface to this document.
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The exact threshold energy may be calculated by considering the initial momentum of the
system. The total momentum of the colliding particles after the reaction will have to be the same
~ as the total momentum before. Assuming the Li® to be initially stationary and the alpha particle
to have a velocity v, then the total initial momentum of the system* is just 4v. The velocity of
the center of gravity v, is this momentum divided by the total mass of the system or 4v/11. The
compound nucleus formed at collision (B 11y thus has a kinetic enetgy of 11v_2/2, that is one
half the total mass, 11 units, times the square of v_. Substituting 4v/11 for v, yields {4/11) ‘4_v’/2
or just four-elevenths of the kinetic energy of the incident alpha particle. The balance or
seven-elevenths of the kinetic energy of the incident alpha particle is thus available for nuclear
" excitation. For the reaction to be just possible this fraction of the alpha’s kinetic energy must
be just equal to the negative reaction energy Q:

=Q = (7/11) (Threshold K.E. of alphas) (1-2)
~ Threshold K. E. of alphas = ~(11/7)Q .
-(11/7) (- 2.85)
4.48 Mev

Equation (1-2) means that in order for the reaction Li? (a,n) B 19,0 take place the incident
alpha particles must have a kinetic energy of 4.48 Mev or greater.

An even more useful alpha-neution reaction is that in which alphas are incident upon
beryllium. The resulting reactions are excthersic:

Be? + Hef*_) C2® + g (1-3)

Be9 + He‘____) 3He4+ o

in which the first reaction is more probable and takes place with Q = +5.5 Mev. Being
exothermic there is no threshold. However, the Coulomb repulsion of the alpha particles by the
beryllium nucleus diminishes the chance of a successful collision by a slow-moving alpha. The
net result is that the yield of neutrons from a thin beryllium target (thin to reduce straggling
effects from alpha-electron collisions) increases with increasing enetgy of the incident alpha |
particles as illustrated in the graph, Figure 1.

s The misses are simplified to the mass-pumbers in this calculation, 1.e., L.i'l, 894, Blo gnd n
are represented by masses 7, 4, 10, 1, resvectively. This introduces a negligible error in the computed

result.

1
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Figure 1. Be® (a,n)C™: Alphas on thin target of beryllium (0.22 mg/cm 3.
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The reaction of alphas with beryllium is used as a neutron source. Alpha particles may be
supplied by naturally radioactive substances such as radium, radon, and polonium. The charac-
teristics of sources using these materials may be understood by examining the radium series,

Figure 2.
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RADIUM SERIES
SHOWING HALF-LIVES & ALPHA ENERGIES

IDENTIFICATION OF
ATOMIC & MASS NUMBERS

Symbol z
Ra 88
. Rn 86
RaA (Po) 84
RaB (Pb) 82
RaC (Bi1) 83
RaC’ (Po) 84
RaC" (TD) 81
RaD (Pb) 82
RaE (Bi) 83
(99.96%) RaF (Po) 84
B ' Rag (Pb) 82
o R0 C
|1 19.7m '
15x10"%
197m a | 7.68Mev
B RaD ___B.__. RaE
1.32m 22y
Figure 2
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226
222
218
214
214
214
210
210
210
210
206

5.0d

140d
5.11 Mev

RaG
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The radium-beryllium neutron source has an advantage in its half-life period being long enough
to make attenuation normally negligible during any experiment or series of experiments. The usual
weight ratios of Be:Ra are from 5:1 to 3:1. A freshly prepared Ra-Be source must be *‘aged’’ to
allow the daughter products (Rn, RaA, etc.) to come to equilibrium. The alpha-emitters among
these daughter products contribute to the neutron production so that aging for about one month
increases the neutron intensity by a factor of about 6 over the initial (“*fresh’’ Ra) value.

As may be seen by inspecting the series, in radium aged for a month there will be alphas
available from Ra, Rn, RaA, and Ra (C +C'); as a consequence the neutron spectrum will be
complex* with neutron energies up to 7.68 + 5.5 = 13 Mev. In addition the effect of passage of
the alphas through the beryllium, even in finely powdered state, and the possibility of the resultant
C*2 nucleus being left in an excited state tends to make the Ra-Be soutce emit neutrons with a
fairly continuous distribution of energies. A distinct limitation of the Ra-Be source is the accompany-
ing gamma radiation. ' ' : '

This lacter limitation is not present in the polonium-beryllium source. Polonium (RaF) emits
alphas almost exclusively; the few gammas present in pure Po arise from the relatively improbable
emission of alphas with energies slightly below normal.+ Polonium-beryllium sources have a half-
life of 140 days which limits their usefulness to some extent.

Radon can be used with beryllium. The gas is placed in a beryllium capsule. The yield is
substantially the same as for a Ra-Be source; however, the half-life is only 3.8 days.

The strengths of these natural (a, n) sources will vary with the details of their construction.
In round numbers Ra-Be and Rn-Be sources will emit about 1 to 2 X 107 neutrons/second/curie;
Po-Be sources will emit about 2.8 x 10® neutrons/second/curie. Using the technique described
by H. L. Anderson and B. T. Feld in the Reviews of Scientific Instruments, 18:186.(1947) a
neutron yield is obtained for pressed Ra-Be sources as follows:

M

Be

MBe + MR& Brz

Fast neutrons/second/gram Ra = 1.7 X 107

Absolute measurements with this type source have been reported by F. G. P. Seidl and

S. P. Harris in the Reviews of Scientific Instruments, 18:897 (1947). Their ‘‘Source No.
38" consisting of 504 mc Ra and 3000 mg Be yielded (5.5 £0.4) x 10° neutrons/second.

G. R. Gamertsfelder and M. Goldhaber in the Physical Review, 69:368 (1946) report a Ra-Be
source yieldof 6.8 X 10® neutrons/second/mc Ra.

Boron bombarded with ﬂphas yields neutrons. The reactions are B (5, 0)N¥ and
. B¥(a, n)N* with the former reaction predominant. Yields are ~2 X 10® neutrons/sec/cutie

for boron-radium mixtures; BF ; can be used with yields of ~10°® neutrons/ sec/curie.

Shﬂilarly, fluorine yields neutrons in the reaction F¥ (a, n)Na®,

*A. I. Alichanow, Comptes Rendus Academie Sciences, U.5.5.R., 20:429 (1938). W. Y. Chang, Physical
Review, 70:632 (1946) .

+w%. Y. Chang in Physical Review 69:60 (1946) gives Po alpha spectra. H. T. Richards, L. Speck,
I. . Perlmann in Physical Review 70:118 (1946) discuss meutrom spectra of Po-B and Po:Be sources.

2-73-9
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1.2 PHDTONEUTRON SOURCES

Reactions of the (7,n) type can be used for neutron production. The gamma radiation is pro-
duced naturally by radioactive or artificially radioactive sources. Targets are restricted to a few
light elements, those elements in which a neutron is rather loosely bound. Beryllium (Be®) and
heavy hydrogen (H?) are alone among the isotopes having low enough (;n) thresholds (1.63 Mev
and 2.185 Mev respectively)* to be useful with natural gamma emitters.

The Ra~y-Be source t yields neutrons in two energy groups (0.12 Mev and 0.51 Mev) since two
radium gammas are above the threshold. A practical rule for calculating the total number of
pemtrons per second in a Ra~yBe source is: 1 gm of Ra at 1 cm from 1 gm of Be gives 3 X
10* neutrons/second. ,

A fairly complete survey of photoneutron sources hasbeen made at Argonne National Laboratory.
Various artificial radioactive gamma emitters have been used with beryllium and heavy water. For
some of these the emitted neutron energies have been measured. Table 1 lists these data.

TABLE 1. PHOTONEUTRON SOURCES.

NEUTRONS/SECOND/CURIE " NEUTRON ENERGY
: IN Kev REFER
SOURCE HaLF-LIFE *STANDARD SOURCE *OTHER SOURCE ME AN MA X 1 MUM encet
. - ' : .
Na24+D 0 14.8u 29.0x10% 2.7x108 220 320 A.B
Na3%%+Be 14.84 14,0 2.4 800 1020 A.B
MN56+020 2.6H 0.31 0.029 220 A.C
56 300 375
M58+ e 2.6H 2.9 0.50 {<150 {<‘50 A.B
6a"2+p,0 14n 6.9 0.64 _ 130 A.C
ca7%+8e 14n 5.9 1.04 A
116 . 300 400
1n1184p¢ Sam 0.82 0.14 {<1so {<‘50 A.B
sel®%4ge 600 19.0 3.2 35 68 A.B
LA“°+Dzo 404 0.68 0.062 130 A.C
Lal%% 4 e 404 0.23 . 0.041 620 A.C
220
Y +Be 100p t20 D

+*Standard® source 1s one curie at & distance of one centimeter from one gram of target material.
"0ther"” source 1s described in Figure 1 of reference A. ’
+References: A. B. Russell, D. Sachs, A. Wattenberg, R. Fields, Phys. Rev., 73: 545(1948), on
neutron yields.

B. D. J. Hughes, C. Eggler, Phys. Rev., 72: 902(1947), on neutron energies.
C. A. Wattenberg, Phys. Rev., 71: 497(1947), on neutron energies.
p. R. D. O'Neal, Phys, Rev., 70: 1(1946), on neutron energles.

#M. L. Wiedenbeck and C. J. Marhoefer, Physical Review 67: 54 (1945).

+6. R. Gamertsfelder and M. Goldhaber in Physical Review 89: 36B(1946) report a Ra-)/~Be source with
a yield of 6217 neutrons/second/Mc Ra.

: a-73-)0
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Other short-lived photoneutron sources have been investigated (reference C of Table 1). These
include F2° (12s) + Be, Al%% (2.4 J) +Be and C1%® (37m) + Be, all of which have greater than 0.1
useful gamma ray per dxsmtegranou. (This is to be compared to Na?* with one gamma ray of 2.8 Mev
per disintegration.) As7% (26.8h) + Be and As?® (26.8h) +D 0 provide relatively less efficient
neutron sources with 0.1 and less than 0.01 useful gamma per disintegration, respectively.

In addition to using gamma radiation from specific radioisotopes the radiation from fission
products may be used. Photoneutron yields from U?2® fission products irradiating heavy water are
described by S. Bernstein, W. M. Preston, G. Wolfe, R. E. Slattery in the Physical Review 71: 573
(1947) and also 72: 163 (1947).

‘ Gamma radiation produced in betatron or Van de Graaf accelerators may be used to generate
photoneutrons. Yield cutves for Van de Graaf gammas on beryllium have been determined by.
M. L. Wiedenbeck, Phys. Rev. 69: 235 (1946).

1.3 NEUTRON SOURCES USING PARTICLE ACCELERATORS

The deuteron-deuteron reaction, H*(H 2,n)He , can be used to ptoduce neutrons. Deuterons,
accelerated with any suitable source of electrostatic potential (e.g., Van de Graaf, Cockcroft-Walton,
etc.), bombard a heavy ice or heavy paraffin target. Protons ate produced at the same time by the
reaction H3(H?2,p)H?, with approximately as many protons produced as neutrons. The H*H?2,n)
reaction being exothermic with Q" +3.2 Mev. accounts for fairly good yields at relatively low
energies, Figure 3, since it is only necessary for the incident deuteron to penetrate the Coulomb
barrier of the target deuteron, no extra energy for excitation being needed. Although the reaction has
considerable advantage in yielding a reasonable number of monoenergetic neutrons for relatively
low energies the practical impossibility of designing a suitable target limits the use of the reaction
as a neutron source. (It must be remembered that practically all the deuterons are not successful
in producing neutrons but, rather, generate heat in the target.)

30 T T T 1 7 | 1 Y 1 Y
F B l
e y
* 20 //
i e
D V4
| =
| a
E 10— /// -
>
| I ' ,o()’ﬂ, il
'j loﬁﬂll n> | I | G i 3

o) o= .
0 100 200 300 400 500 600
DEUTERON ENERGY (kev)

Figure 3
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Another reaction using protons on lithium gives monoenergetic neutrons down to rather low
energies. The reaction is Li’(H},n)Be” with a Q-value of —1.62 Mev. Similar to the example dis-
cussed in Section 1.1 the threshold is greater than Q, being in this case 8/7 of 1.62 Mev or 1.85
Mev. If the lithium target is bombarded with protons of threshold energy the neutrons come off with
finite energy, about 30 kev, for then they move with the speed of the center of gravity. If the proton
energy is increased then there will be sufficient energy to give the neutrons a velocity with respect
to the center of gravity. The net velocity is calculated by vector addition of the velocity of
the center of gravity and the neutron velocity relative to the center of gravity, so that for high enough
energies, neutrons can have resultant velocities of zero or even backward velocities. For a given
proton energy, the energy of the neutrons will vary with the angle between the incident proton beam
and the resultant neutron direction, that is for each angle of emergence of neutrons there will be a
corresponding neutron energy. This will be discussed in greater detail in a later chapter.

Perhaps the most common neutron source is the “cyclotron source’” in which deuterons bombard
a beryllium target. In the reaction, Be?(H?,n)B1Y, the target is stable and can be made to dissipate
the heat generated in the *‘non-successful’’ collisions. For a thick target 1 Mev deuterons give
about 108 neutrons/sec/microamp; 8 Mev deuterons give 101° neutrons/sec/microamp.

PROBLEMS

1. In the calculation of Q for the reaction of equation (1-1) explain why you can use atomic
masses for such calculations, when it is true that nuclear masses alone are involved in the reaction.

2. Prove that one mass unit equals 931 Mev. Convert from mass units to grams; then, using
E =mc?, convert grams to ergs to Mev.

3. Given a hollow sphere of beryllium, inside radius 1 cm, outside radius 3 cm. A one gram
capsule of radium is placed at the center of the sphere. Neglecting the absorption of the gamma
radiation what is the approximate strength of this (7,n) source? If one curie of Na®?* were used in
place of the radium, what would be the source strength?

4. How many neutrons per second would one expect from a heavy hydrogen target bombarded by
one milliampere of 500-kilovolt deuterons?
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CHAPTER 11

COLLISIONS OF NEUTRONS WITH NUCLEI

2.1 GENERAL TYPES OF REACTIONS

One of the most important types of collision processes is the ''scattering’’ process. A
scattering process is characterized by the 1dentxty of one of the ejected particles with the incident '
particle. If a neutron collides with a target nucleus (in a later chapter we shall define in detail
what constitutes a *‘collision’’) and after the collision a neutron is observed leaving the scene,
then it may be said that the neutron bas been scatlered by the target nucleus. If the kinetic energy
of the neutron before the collision is equal to the sum of the kinetic energies of the recoil nucleus
and scattered neutron after such a colhsxon then the process is called *‘elastic scattering.*’ If
the kinetic energy is not conserved, i.e., some energy goes into nuclear excitation, then the process
is “‘inelastic scatteting.’”” Using the customary notation (see equation 1-1), these definitions may
be summarized as follows: :

Scattering process: A (n,n)A*
Elastic scattering: A=A* (2-1)
Inelastic scattering: _ A* = excited state of A

(A’ = target nucleus; A* =recoil aucleus)

For simplicity scattering processes are generally referred to as (n,n) processes.

In addition to the scattenn Focess; _colhslons of neutrons with nuclei may result in the
ejection of other particles or radmtlon, for example (n,)), (n,p), or (n,a) reactions. The distinction
between excited ot stable resultant nucleus is not generally made.

There are other types of reactions ocurring when neutrons collide with nuclei the most impot-
tant of which are the (n,2n) and (n, fission) reactions. In the (n,2n) reaction a neutron incident on
a nucleus results in the ejection of two neutrons, the recoil nucleus being isotopic with the target.
nucleus. This reaction is always endothermic. The (n, fission) or (n,f) reaction will be discussed
at length in a later chapter. In the (n, f) reacuon a neutron collides with a nucleus and as a result
fission occurs.

2.2 NEUTRON CROSS SECTIONS AS A FUNCTION OF ENERGY

The collision of neutrons with nuclei may be described in terms of the target presented by
the nuclei to the incident neutrons. Target size is specified by *‘cross section’’ or so many square
centimeters per atom. It bas become the custom to express cross sections in ‘‘barns’’ with one
barn defined as 10 ~2* cm?/ atom. If a beam of neutrons of density n neutrons per cubic centimeter
all moving with a velocity v centimeters per second is incident on a nuclear target of area o(cross
section), then the number of neutrons hitting the target per second will be nve. This can be
visualized by considering the target area o to move with a velocity v through the neutron beam. In
its motion the target will *‘sweep’’ out per second a volume vo in whxch there will be nvo neutrons,
since there are n neuttons per unit volume.
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While this representation is convenient it must be understood that the nucleus is not an area
in the usual geometrical sense, Among other things the area is dependent on the energy of the
incident particles. For neutrons this dependence may be understood qualitatively by considering
the variation of the de Broglie wavelength of neutrons with energy. The fundamental relationship
between the wavelength A of a particle and its momentum p is A=h/p where h is Planck’s constant.
In terms of neutron energy this becomes:

E = mv¥2 = (mv)¥/(2m) =p*/2m o p = vZ2mE
: (2-2)

Thus A = h/p = h/v2ImE  for v<<c
The condition that v must be less than ¢, the velocity of light, is necessary since the non-
relativistic expression for the kinetic energy has been used. (This limitation is negligible since
the rest mass of the neutron is 931 Mev.) Expressing the neutron energy E in electron-volts and
substituting:h = 6.61 X 10727 erg-sec., m = 1.675 X 10724 gm, 1 electron-volt = 1.601 X 10712 erg

iation (2-2) yields the following convenient relation: :
X = 0.286

X 10"8cm (E in electron-volts) (2-3)

Now, the diétance between atoms in a solid is of the order of 3 or 4 Angstroms, that is ~ 3 X 1078
cm. Putting numerical values into equation (2-3) shows that neutrons of about 0.01 ev have a
characteristic wavelength of approximately interatomic dimensions, or very many times larger than
any nuclear dimensions. To have a wavelength equal to the nuclear diameter of a medium weight-
nucleus, say 10712 cm, the neutron energy would have to be about 10 Mev.

Now, a nucleus of diameter 10™1%2cm, the diameter being defined as twice the range of nuclear
forces, will have a “*geometrical’’ cross section of about 1072* cm? or 1 barn. If the neutron were
a point particle then it would be reasonable to anticipate that all cross sections should be of the
order of barns. However, as shown in equation (2-3) if the neutron behaves in a manner consistent
with the fundamental basis of wave mechanics then a neutron only can be considered a *‘point’’ particle
with respect to the nucleus when its wavelength is at least less than nuclear dimensions. This
latter will be true only for fast neutrons, that is, with energies at least greater than 1 Mev. For
slower neutrons the wavelength increases so that for thermal neutrons of 1/40 ev energy Ais
about 2 X 10”8 cm. In this case it is the nucleus which is the *‘point’’ particle relative to the
neutron so that the neutron size might be expected to determine the cross section. Thus ¢ should
be of the order of A2 for slow neutrons. For thermal neutrons one might expect cross sections as
large as 1071® cm® or 108 times the fast neutron cross sections. Actually more rigorous theoretical
analysis shows that 32 is an outside figure and that o<)2,

The foregoing discussion is intended to present one argiment showing that it is not possible
to assign a unique geometrical cross section to a nucleus valid for all energies of incident neutrons,
since in the range of energies generally considered in practical cases, say from 10-3 to 107
electron-volts, the neutron’s *‘size’’ varies from 1078 to 10712 cm. Factors other than neutron size
will be found to affect the cross section; these will be discussed in a later chapter.

In keeping with the idea that the cross section is not a strictly geometrical quantity the re-
lation stated in the first paragraph of this section should be solved for ot
Processes per nucleus per unit time

o= : (2-4)
av

n = neutrons per unit volume in incident beam

v = neutron velocity

2-73- 14
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The quantity nv is usually called the *‘neutron flux’’ since it is the number of neutrons incident
per unit area per unit time on the target. Values of o will obey the approximate inequality

1024 cm® < o <A (2-5)
where the de Broglie wavelength A of the neutron is defined in equations (2-2) and (2-3).
2.3 MEASUREMENT OF TOTAL CROSS SECTIONS

The *‘total’’ cross section of a given material for incident neutrons is determined by measuring
the neutron transmission of a known sample of the material. A source emits neutrons so that a beam
of intensity I, (neutrons/sec/cn®) is incident on the sample, see Figure 4. As a result of scattering

" and absorption processes in passing through the material the neutron intensity is reduced to I.

The detector response with the sample ‘‘in’’ the beam and *‘out’’ of the beam are measured so that
Iand I , respectively, can be determined.

The geometrical arrangement must be such that any scattered neutron will not be detected.
This means that the solid angle of the absotber at the source and at the detector must be very small.
The broken line in Figure 4 shows how a scattered neutron might be detected if the neutron beam
were not propetly collimated. By defining the beam (i.e., making incident and transmitted beams
parallel) with suitable apertures the geometrical conditions mentioned can be met. In addition to
these geometrical conditions it is also necessary that any multiple scatteringprocess in which a
scattered neutron could be rescattered back into the beam has a negligible probability. This cannot
always be satisfied for “‘thick’® samples in which scattering predominates over absorption. (In
the discussion of neutron diffusion and slowing-down, in a later chapter, it will be obvious that the
exponential law to be derived herewith will not be valid.)

/ *GOLLIMATOR ( SCHEMATIC)

NEUTRON NEUTRON
SOURCE _ _ — - DETECTOR
- S—

SAMPLE

Figure 4. General arrangement for neutron transmission experiment (total cross section
measurement).

Q- 93 .
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2.4 THE GENERAL FEATURES OF COLLISIONS #

. In any collision process the ‘‘initial state’’ consists of a particle incident on a target nuclens
and the *‘final state’’ consists of an ejected particle and the recoil nucleus. For a given energy
of the initial state there are a number of possible energies of the ejected particle as well as a
number of possible energies of the recoil nucleus, provided these energies are consistent with
energy coaservation.

If the magnitude of the momentum of the ejected particle and its direction of motion are fixed,
then momentum conservation fixes the momentum of the recoil and thereby the recoil’s kinetic
energy. The conservation of energy law then fixes the state of excitation of the recoil nucleus.
Thus specifying the momentum (magnitude and direction) of the ejected particle specifies the final
state completely.

Suppose the ejected particle has an energy E. Then what is the probability that a transition
between initial and final states will occur? Assuming such transitions obey the general laws of
quantum mechanics, it can be shown that the probability that a transition will occur in which the
energy of the ejected particle is between E and E + dE can be written as a product Mg where
M = H|?/#%and p(E) is the density of possible final states in the neighbothood of E. H is a
matrix element which will be discussed qualitatively herewith and in a later chapter; 4t is Planck’s
constant divided by 2n

The density function can be derived from statistical mechanics considerations. In a number
of instances the variation of this factor will be found to be more effective than the variation of M.
Using a familiar technique in quantum mechanics, the ejected particle is imagined to be in large
box of volume (). This volume will be infinite in any practical case. The aumber of states of the
ejected particle which will have an energy E in this box is proportional to the volume in phase
space corresponding to this enetgy. With Cartesian coordinates where h is the linear dimension of
a cell in phase space (a cell can contain one state), then the number of states for which x is be-
tween x and x + dx, y’.between y and y + dy, etc. and p, is betv.veen p, and Py + d.Px’ P, between
. Py and P, +dp_, etc. is just dx dy dz dp_ dp dp! /h3%. Integrating over configuration space
(x,y,2,) reduces this to (0 dpx dp_dp ‘/h’ or (fllh ) times the momentum volume element. It is
apparent then that the number of states for which the tofal momentum p = ‘/an +p *+p 2is
between p and p + dp is just (1/h® times the volume elemeat between p and p + dp. This volume
element, a spherical shell in momentum space, is 47p3dp. Thus

Number of states with momentum between p and p + dp (29)
= dN = (Q/h®) 4mp3dp
The density of states per unit energy range, oE), can now be calculated from (2-9) by changing
from momentum to energy variables. For particles (q, p, n, etc.) E = mv?/2 = p2/2m so that E =
p dp/m = v dp. For photons E = hy = he/Aor since A = h/p this means E = pc or dE = c dp.
(In both cases dE/dp is the particle or photon velocity.) Substituting these into (2-9):

Number of states per unit energy interval with energy
between E and E + dE

dN 47Q) p?® (2-10)
PE) = gE g

where p%/v = m?v for particles
h213/c? for photons

#In all of the discussion it is assumed that the ejected particle is in its ®ground state,v f.e.,
not excited.

A-73-/,
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Figute S. Exponential absorption law.

It is apparent that in the absorber (Figure S) a layer of thickness Ax has a parallel beam of
I neutrons/sec/cm? incident on it. If N is the number of absorber atoms per cubic centimeter then
N Ax nuclei per square centimeter are presented as ‘‘targets’’ for the incident neutron beam. From
equation (2-4) it is apparent that the number of processes which will occur per unit area per unit
time is o, nV times the numbet of nuclei per unit area N Ax. Since nv is just the incident neutron

flux 1 this means that
Number of neutron collisions per unit area per unit time in layer Ax = o I N &x  (2-6)

whete o, =0, .., ® CrOSS section for all collision processes

Now, any collision removes the neutron from the parallel beam so the above is just ~Al, the
decrease in beam intensity. Equating aad solving yields the familiar exponential law:

~Al = o, IN Ox
-Al/1 = No Ax 2-7)
1= Ioe-No":a (integrating)
log (1./1)
% " T Na
where I, is the incid - ; beam intensity (at x = 0) and a is the thickness of the sample. The last

equation expresses the total cross section in terms of experimentally measurable quantities. The
total cross section o may be defined as -

or

+ e
at = Uelastie to inelastie Crchsorytion (2 8)

where a‘b”“u”jncludes all processes in which a neutron disappears, i.e., (0,7 (2, ), (n, p,), €tc.

R-93-/é
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The occurence of () in p(E) shows that as the volume, in which the ejected particle is confined,
is allowed tc become infinitely large the density of states becomes infinite or the particle can be
ejected with any energy (i.e., a continuum of possible energy states). The transition probability
does not become infinite, however, for the matrix elements contain () in such a way that M is pro-
portional to (1”1 Thus the probability of a transition to a state where the ejected particle or photon
has a momentum p_ (subscript for ejected or outgoing particle after the collision) is proportional
toM - p_?/v . Then for a single incident particle with velocity v, colliding with a single nucleus
it follows from equation (2-4) that the probability of a collision (per unit time) is v o where o is
the cross section for incident particles of velocity v, to result in outgoing particles of velocity
v,- Equating the probabilities and incorporating the various constants into M we obtain an equation
for the cross section:
Re” 1
'o v:l
Equation (2-11) is too general for one to understand fully its significance. Let us apply the
result to several specific situations:

o =M’ . (2-11)

Elastic Scattering

In an elastic scattering collision initial and final velocities are equal, i.e., v, = v .
Substituting this into (2-11) reduces the cross section to

oc=M m?

This means the cross section is proportional to M'. For slow neutrons, where the energy
range is small, the elastic scattering cross section will not depend appreciably on the
neutron energy. It should be pointed out that for elastic scattering from nuclei of small
mass number initial and final velocities are equal only in the center of gravity system and
that it is in this system that the foregoing derivation is true.

Absorption Processes

Suppose the recoil is heavy so that the ejected (small mass) particle has almost all the
kinetic energy in the final state. The situation is shown in Figure 6. A neutron of mass

m, velocity v hits the tatget nucleus, is absorbed and a new light (small mass) particle

is ejected thh mass m' and velocity v . Conservation of energy requires that the kinetic -
energy of the ejected particle must be equal to the kinetic energy of the incident neutron
plus whatever energy Q is available from the nuclear reaction:

n'v %2 =my %2 +Q
of  pt=(@)? (/@2 +(2/n' K]

Noting that p oz‘/ve = m'p, and substituting in (2-11) gives the.following expression for

the cross section:
o =M@ L [(@/m)v ? + (/)]
1
When Q is positive (exothermic reaction) and v, is small the cross section is proportional
to l/v —the so-called 1/v law. A negative Q and a very small v, does not make physical
sense, yvxng an imaginaty cross section and showing that the formula does not cover the
case. o should be zeto for such a situation.

o - Q-73-18
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Figure 6. Absorption process.

Inelastic Scattering

Consider a neutron of mass m incident on a nucleus of mass M. If the target nucleus is
not considered to be very heavy compared to the neutron then all variables should be
referred to the center of gravity system. In this case the neutron mass must be replaced
by its *'reduced mass’’ ¢ = mM/(m + M). (For M/m >> 1 this reduces to m so that
center of gravity and laboratoty systems are approximately the same.) Suppose the

first excitation level of the target nucleus is at an energy W above the ground state.

Then if the neutron has a kinetic energy uv 1'/ 2< W (center of gravity system) no inelastic
scattering can take place. But if uv 1’/ 2> W and the nucleus is excited to this level,

the kinetic enezgy of the outgoing neutron after the collision will be

(v, 2) = (uv /2) ~ ¥

so that the cross section becomes :

* 1
o =M LD FeMpXv /v) = M'u? 1 ~ LA
pv,®

vo V‘

Writing W as uv 2/2 with v, the threshold velocity for excitation of the nucleus to the
energy W makes it easier to see how the cross section might be expected to behave near
the threshold.

o=Mpu? Vi~ (v /v)?

=M p*V(v, 4 vV, Vv, =v /v,

For (v, = v )/ v, << 1 (near the threshold) the cross section is approximately M’ u®
vV (Z/v){v ~ v ) showing that near the threshold the cross section increases from zero
as the square root of the excess velocity, provided M’ can be considered coastant. Since

Z-73-/9
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the cross section is proportional to v _ the velocity of the neutron after inelastic scactering
it follows that this velocity should likewise increase in proportion to the square root of
the excess velocity near the threshold. This is illustrated in figure 7.

ve/ Vi = \[1 ---(v(,/v‘)2
Ye
' PARABOLIC
THRESHOLD
o]
Vit %
V. -_——’

Figure 7. Inelastic scattering of neutrons (v1 = lincident neutron velocity, v_ =
. e
scattered neutron velocity).

44
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Radiative Capture (n, )

The ejected particle is a photon so that instead of p?/v the quantity h®;2/c3 must be
considered, see equation (2-10). If the neutron hits a nucleus and is captured there is
generally an excess of energy — that energy associated with the binding of the neutron
to the nucleus. Neutron capture is almost always exothermic, one notable exception
being helium, The energy available for photon emission will be uv /2 + W where W

is the binding energy of the neutron. If the first photon corresponds to a drop to a

level L (not necessarily ground) then it will have an energy hy = p,v:/ 2 + W_. Now
as v, approaches zero the quantity hv approaches a fixed number W, so that h’b /c®
becomes constant. The other factor in the cross section is 1/v, which increases
rapidly. As a consequence (n, 7 ) processes should have cross sections which increase
as 1/v for siow neutrons (v ~ @), provided M’ itself is constant. '

(n, a) Processes

These reactions, in which the capture of a neutron results in the emission of an alpha
particle, can be endothermic or exothermic (Q positive or negative). As in the previous
example of an absorption process the energy equation in the center of gravity system is

LoV /2 = pn,v 32 +Q

with y  the reduced mass of the ejected alpha particle and y , the reduced mass of the
incident neutron. If Q is positive then v, * is at least (2Q/, ) so that the cross section
which from equation (2-11) is M '_;L.‘v./v 4 is going to obey the 1/v, law, at least for
small v Thus slow neutrons in an (n,d) process for which Q > 0 should be absorbed
according to a 1/v law. However, for Q< 0 the situation is different. Denoting the thres-
hold energy by Q = —u v /2 the energy equation can be reduced to (u /u v =

v}~ v ?) with v the threshold velocity. As discussed in the inlastic scattering
process the velocity of the emitted alphas should increase in proportion to the square
root of the excess velocity at the threshold, Figure 7. Actually, see Figure 8, the

tise in o is not parabolic. This is due to the variation of M’ in this case. Being a
charged particle the alpha has to escape through an electrostatic potential barrier
(*‘Gamow’’ barrier). This effectively decreases the cross section as shown in the figure.

2.5 EXAMPLES FROM EXPERIMENT

The absorption of neutrons by boron in the reaction B® (n, @ Li’ illustrates the
type process discussed at the end of the preceding section. Q is positive, about 3
Mev (although since Li7 is normally left in an excited state only about 2.5 Mev are available for
kinetic energy). For slow neutrons this reaction should go as 1/v. Experiment confirms this. In
unseparated boroa (B1® and B!?) the cross section has been measured over a wide range of
energies with the results shown in Figure 9. For room temperature neutrons the total cross section
is 737 bams; since this temperature® (15°C) corresponds to a neutron velocity of 2200 m/sec the
cross section is thus 737 X 2200/v = 1.62 X 10%/v in barns (v in meters per second). For pure
B° the room temperature cross section is 3525 bams. This high cross section and the ionizing
ability of both products (He* and Li7) aswell as the fact that functional dependence of o on
neutron energy E is relatively simple (o = 116/VE for o in bars E in ev) make boron extremely
useful in neutron detectors, particularly in the form of the gas BF .. If boron trifluoride is prepared
with boron enriched in the isotope B® the detector sensitivity for slow neutrons can be increased,
as is apparent from the cross section values, by as much as a factor of five.

sPigure 11 shows the relation betweem meutron velocities, energies, and temperatures.

CZ* ?-3:';2 |
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Figure 9. Boron. Total neutron cross section vs. neutron energy.
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It is well to keep in mind that the 1/v law holds for relative velocities. That is, when the
neutron velocities become small (comparable to thermal velocities) the thermal agitation of the
target nuclei must be considered in the application of the 1/v law. Suppose neutrons are incident
upon some material in which o is proportional to 1/v _,, where the subscripts have been added
to indicate that it is the relative velocity of neutron to target nucleus which counts. Suppose
further that a fraction N of all the target atoms are moving with an absolute velocity u relative
to some fixed laboratory frame of reference. Since o is proportional to 1/v__ and the number of
“‘meetings’ per second is proportional to N -v_ then the capture probability is A - N with A
a®constant. Summing over all possible target atom velocities 3 A - N, = A - N shows that the
total capture probability is a constant. "

Thus, the number of captures per unit time is a constant and independent of the
relative velocities betwean neutron and target atoms whenever the cross section is
proportional to 1/v. This independence of relative velocities can also be seen by inspection
of equation (2-4).

One of the early fundamental experiments (Physical Review 49:777 (1936)) was based on
this principle. In the experiment the transmission of a rotating boron covered disk, on which a
beam of neutrons was directed (axis of neutron beam inclined with respect to axis of disk rotation),
was measured. The 1/v law was verified by observing no change in transmission with variation
of rotational speed. The transmission by substances not obeying the 1/v law, e.g., cadmium, was
found to vary as the rotation was changed.

The lighter isotope of lithium reacts with neutrons according to the scheme Li%(n,a)H? with
a Q of +4.5 Mev. As anticipated in the previous section, neutron absorption is according to the
1/v law, at least up to about 0.1 ev. This is shown in Figure 10. It may be said in general that
the 1/v law holds to higher energies for light nuclei, where the energy levels are spaced far apart,
than for heavy nuclei where the energy levels are close packed and the factor M' varies sharply.
This will be discussed in some detail in Chapter IV.
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Figure 10. Lithium. Total neutron cross section vs. neutron energy.
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Absorption of neutrons by nitrogen, N1*(n,p)C*4, occurs with the relatively low Q value of
0.6 Mev. This is similar to the case discussed at the end of section 2.5. The 1/v law does not
hold, being overshadowed by the effect of the Gamow factor. In fact, the cross section is reduced
to only a few barns for room temperature neutrons. '

Neutron cross sections have been summarized in an article by H. H. Goldsmith, H. W. Ibser,

and B. T. Feld in the Reviews of Modern Physics 19:259 (1947). They represent part of the in-
creasing body of data of “‘neutron spectroscopy.’’
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PROBLEMS

1. A copp?t plate 1 cm thick reduces the intensity of a collimated beam of thermal neutrons
by a factor 0.36. What is o, (for thermal neutrons) in barns for copper? What thickness of copper
'‘would reduce the intensity by a factor of 0.5?

2. From the literature find an example of each of the processes: (2,8) ;. ¢se0 (B0, rasese?
(2,7, (n,0), (n,p). Record the cross section obsetved in each example,

3. What is the reduction in intensity of a beam of one electron-volt neutrons passing through
a 50 mg/cm® layer of boron?

4. The *‘average’’ distance a neutron goes before being absorbed in a substance whose
absorption cross section is o, is just 1/Ncr (N = target atoms/cc). On this basis what is the

average life of a ‘‘room temperatute” neutron in lithium? (Assume that o, = o' ,) What is the
average life in BF jat standard conditions?

A~43 =2



CHAPTER Il
STABLE ISOTOPE CHART AND REACTIONS INVOLVING NEUTRONS

3.1 THE SEGRE ISOTOPE CHART

Before considering in further detail the nature of neutron reactions it will be valuable to
review the essential features of stable isotopes and what these features imply about nuclear
reactions involving neutrons.

A convenient way to summarize data on the various nuclear species is by means of the
Segre Isotope Chart. In this chart the number of neutrons (N) is plotted on the vertical axis,
the number of protons (Z) on the horizontal axis. Identity and properties of stable and unstable
isotopes are labeled in each square corresponding to the observed (Z,N) values. Since the
resulting chart would have the general shape shown in Figure 12 and thereby be inconveniently
large (most of the chart would be blank space), the chart is usunally broken into sections and
~ the sections arranged in a somewhat interlocking pattem. Isotopes (constant Z) appear in the

same vertical column, isobars (constant Z t N) on the same diagonal, and isotones (constant N)
in the same horizontal row. '

The stable isotopes lie in a narrow region on the (Z + N) graph as shown in Figure 12.
For light elements this region is centered around the N = Z line; for heavier elements the
region deviates toward higher aumbers of neutrons so that for uranium the most stable isotope
has N — Z = 146 - 92 = 54. ' -
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zZ —»

Figure 12. Region of Stable Isotopes
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STABLE

KEY TO SEGRE CHART (AECD 2111)

Element mass aumber
Per cent abundance

Mass

Slow neutron capture
Magnetic moment, spin

Classification:

A lIsotope certain (A and Z certain)
B lsotope probable, element certain

C One of few isotopes, element certain

D Element certain
E Element probable
F Insufficient evidence

Class, type radiation

Half-life

. Mass

Emitted radiations,
energy in Mev

RADIOACTIVE
Type Radiation:
B~ Negtive beta particle
E Positive beta particle
Y Gamma ray
e~ Intemal conversion electron
K Electron capture
IT Isometric transition
o

Slow neutron capture cross section in bamns

Figure 13. Segre chart near a2,
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To illustrate the convenience of this representation and to show what data conceming
neutron reactions can be obtained from the chart the part of the diagram near aluminum is
reproduced in Figure 13. In the figure the single isotope of aluminum, A1*", is outlined with
heavy lines and the products of (a,7), (a,p), (n,@ and(n,2n)reactions on Al®7 indicated with
auxiliary symbols. It turns out that all these reactions lead to unstable end products. Except
for the product of the (n,2n) reaction these are all beta emitters.This is understandable, for
example, in the case of the (n,p) reaction where when stability is finally achieved the net effect
is the transformation of a neutron into a proton and an electron:

A%+ 5 Mg3" + H1
Mg" —s AT+
The net effect can be written as n —p + £ . Conversely, there exist (b,n) reactions for which

the net tesult isp—a 0 + B'. As the neutron mass is greater than that of proton plus electron
the transformation of a neutron is exothermic. The converse reaction is endothermic.

3-1)

The (n,2n) reaction, not generally as common as the other three, amounts to the extraction
of a neutron thereby producing a positron emitter and ultimately stable Mg 2%, This latter
illustrates the principle that unstable nuclei above the cutve of maximum stability are generally
beta emitters, those below positron emitters (or K-electron ‘‘capturers’’). Any one of these
processes - beta or positron emission or K-capture = produces an isobar of the unstable nucleus
so that the processes are along isobaric lines of slope = -1 on the Segre Chart as indicated in
Figure 12.

If aluminum is bombarded by neutrons of assorted energies, all the products may appear and
some sort of chemical separation would be used to separate the activities. If the energy of the
bombarding neutrons is controlable, it might be possible to favor the formation of one product
over the others by using neutrons of appropriate energy. In any case isolation of any one of the
beta-emitting products and examination of the energy spectrum of the emitted beta particles
would reveal that the spectrum is continuous with the general shape shown in Figure 14. This
is a somewhat unexpécted result inasmuch as gamma emission (and alpha emission of the
naturally radioactive nuclei) yields discrete spectra. The accepted explanation of this anomaly
is that the emission of a beta particle is always accompanied by the emission of a ‘*neutrino.””
Thus the decay of Mg>? can be written as:

Mg”e\ A1*® + 5 + v (v = neutrino)

The energy balance is Eg+E,, = E_, 0} with E, the energy of 5- decay and equal to the maximum
of the observed beta energy. F or Mg “this is 1.8 Mev. Since the energy E, can be divided
between the beta and the neutrino, it follows that there should be a continuous energy spectrum
for the beta particles.

Before such a scheme is acceptable it is necessary to show that the maximum beta energy
(E,), and not, say, the average beta energy, is the energy lost per nuclews on beta decay. This
can be readnly shown in many instances, For example, consider the decay of Mg 7 and the pro-~
duction of Mg

Mg®" 5 A1*7T + B +V+E,
Al®" +0 5> Mg*" +H' +Q
Adding:n - (8 +v+HY) =E_ +Q

Now the energy equivalence of the mass difference between neutron and hydrogen atom (proton
plus electron) assuming neutrino mass to be negligible is 0.75 Mev so that E, +Q should be

3-2)
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Figure 14. Typical Beta Spectrum..

0.75 Mev. Since E_ is 1.8 Mev it follows that Q must be ~1.05 for consistency. This is
observed experimentally, for the reaction Al 27 (n,p) Mg 7 is found to be endothermic with
a threshold corresponding to Q = ~1.05 Mev. If the observed Q were, say, ~1.2 Mev this
would imply that the energy given out upon beta-decay exceeds the maximum of the beta
spectrum. In this case to satisfy energy conservation the neutrino mass would have to be
assumed non-negligible.

Positron emission is similar in all tespects. As with beta emitters the total energy of
the reaction must be taken equal to the maximum energy of the emitted particle. Observed
spectra and reaction energies are quantitively consistent provided a neutral particle of
negligible mass (i.e., mass small compared to electronic mass) is assumed to accompany
the emission of a positron.

3.2 ISOTOPIC WEIGHTS AND THE BINDING ENERGY OF NEUTRONS

In an (n,)) reaction a neutron is captured by a nucleus and the excess energy emitted
as gamma radiation. The energy balance of the reaction leads to a quantitive measure of
the binding energy of the neutron to the target nucleus. A rough idea of the magnitude of
this energy may be obtained by assuming that the addition of a neutron to a nucleus of mass
number A increases its mass number to A + 1 and its mass by one unit. Since the neutron
mass is, in round numbers, 1.009 mass units this would indicate a binding energy of about
.009 mass units or 8 Mev. Actually the true atomic weight differs appreciably_ from the mass
number A in many cases. It has, in fact, been found convenient to define the fractional
deviation as the *'packing fraction®’: ‘

f(A) = (M-A)/A
M = atomic weight (a function of A)
A = mass number

(3-3)

A-93 -
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Figure 15. Packing Fraction.

The packing fraction can be determined from mass spectrométxic data, solid curve of Figure 15.
It can be seen that the packing fraction is slowly varying over all the stable nuclei except the
very light ones. '

It is possible to use the observed packing fraction curve to determine any regular variation
of the binding energy with atomic number. Solving equation (3-3) for M(A) and writing the corre-
sponding equation for M(A + 1), the atomic weight when A is increased by one yields:

M(A) = A [1 +§a)]
M@A+D=A+D [1+KA +1)] (-9
AM =M(A +1)-MA) =1+(A +1)f(A +1) -Af(A)
The AM is the increase in atomic mass if one neutron (or proton) is added. Subtracting this from
the average mass of neutron and proton, 1.0085, gives the binding energy of the added particle:
1.0085 - AM =.0085 - [(A + 1) £ (A + 1) - AKA)]
=.0085 - .;_‘K [Af(A)]

Writing the difference as a derivative makes it possible to estimate the binding energy by
observing the slope of the function Af(A). The broken line in Figure 15 shows how Af(A) varies
with A. Where Af(A) has a zero slope the binding energy of a neutron for proton) is .0085 mass

units or 8 Mev; where the slope is negative the binding energy is greater thaa 8 Mev, where
‘positive it is less than 8 Mev. The minimum occurs near A = 100.

aA-g3-3|
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What this means in so far as neutron reactions are concerned is that (n, 7) reactions will
involve enetgles of the order of 8 Mev. The only stable isotopes which will not bind a neutron
are He* and the neutron itself. Of course, any unstable isotope with excess neutrons will not
bind a neutron. In fact, referring to Figwre 12, the region above the beta emitters might be
described as *‘these nuclei will not bind neutrons®’ and that region below positron emitters as
“these nuclei will not bind protons.’’ Examples of nuclei in the upper region, that is, neutron
emitters, are found among the nuclei formed as the result of fission,

It should be pointed out that this 8 Mev rule for (n,?) reactions is just.a rough average and
that, particularly for light elements, the value may differ from this average. For example, the
opposite process or (,n) reaction occurs in the case of deuterium (see Chapter I) at a threshold
of 2.2 Mev and in the case of beryllium at 1.7 Mev, showing that the neutron binding energies
can differ considerably from 8 Mev.

PROBLEMS

1. Find five examples of each of (n,?7), (n,p), (n,9) and (a,2n) processes. Record the half-
lives of any radioactive product nuclex.

2. Calculate the binding energy of a neutron to each of the following nuclei: HY, H?, Li®,
Li?, Be%, B, B, Cc*? C?,

3. Calculate he packmg fraction and average binding energy of a neutron (or proton) in
the neighborhood of iron.

4. Write the equation for the transformation of a proton into a neutron (plus other partxcles)
What is the Q value?
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CHAPTER IV

MODELS OF NUCLEI AND OF NUCLEAR REACTIONS

4.1 THE COMPOUND NUCLEUS

In section 2.4 it was shown that for (n,)) processes the cross section for low energies is:

oc=M'm*v¥cy L (41
v
1

where v = frequency of emitted gamma, v; = velocity of incident neutron.. Of the more than one
hundred (n,?)) reactions known the 1/v law holds for most only very close to v, = 0. This is
due to the sharp variations of M ' associated with resonance phenomena.

An explanation of the nature of these resonances can be made in terms of the so-called
“*‘compound nucleus’’ model of reactions first proposed by Niels Bohr in Nature: 137: 344(1936).
In this model a nuclear reaction is a three-step scheme:

(Initial )+ (lncic}ent) - (Compound) - (Final ) + ( Outgoing ) 4-2)
Nucleus Particle Nucleus Nucleus Particle

This means that when a neutron hits a nucleus it does not knock out the first particle it hits.
Instead it distributes its energy among the various members of the nucleus and for some time
exists in combination with the original nucleus in a system called the compound nucleus,*
Whether a particle is emitted by the compound nucleus depends upon the probability of concen-

trating the necessary escape energy on one particle in the course of the many-body interactions
within the compound nucleus. An (n,?) process may be represented as:

A +N (A +n)* (A +n) +thy : (4-3)

The compound nucleus (A +n)* is in this instance the excited state of the final nucleus, the
asterisk being used to denote excitation.

The compound nucleus is relatively stable, that is to say the compound nucleus exists
for a time long compared to the time it would take a nuclear particle to cross the nucleus.
This latter time is of the order of 10™** cm divided by the neutron velocity (see Figure 11,
page 21), or for slow neutrons about 107'%/ 107 = 107*° second. The time of existence can
be inferred from the uncertainty principle which states that the product of the energy
uncertainty in a system (AE) and the time uncertainty (At), in this case the time during
which the system can be said to exist, is of the order of Planck’s constaat:

*  AE-At~h (4-4)

It is possible to determine the magnitude of the energy uncertainty to be discussed later, so
that At can be inferred. Sometimes Atis of the order of 10™** second or 10° times the crossing
time. In terms of the physical picture this means that the incident particle hits the nucleus,
distributes its energy among the nuclear particles, and very many “‘transit times'’ later the

necessary enesgy is concentrated in a constituent particle so that it can escape.

¥ The distribution of energy smong all nuclear particles arises from the fact that the nuclear
particles interact with forces comparadble to the force exerted upon any nuclear particle by the incident
neutron. This is different from the case in atomie collisions when, say, an electron hite an atom. In this
latter case the intersction between the colliding electron and the electron being struck is large compared
to the interaction between the struck electron and the other electrons of the atom. Put another way,
collisions detwveen nentrons snd nuele1 -ust ‘be eonudored '-cny-body' problems wheress electron-atom
collisions can generally be reduced to a two-body (of one body {h a field) problem. For an excellent
discussion of these differences end 8 general introduction to nuclear processes see H. A. Bethe in Reviews
of Modern Physics 9:71 to 74 (1937) .

0-93-37
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4.2 NEUTRON RESONANCES, LEVEL SPACING

The quantity M' in equation (4-1) depends upon certain matrix elements H as described in
section 2.4. These matrix elemeats in turn depend upon the possible states of the intermediate
or compound nucleus in such a way that when the sum of the incident particle’s kinetic energy
and binding energy is equal (or nearly equal) to the energy of some excited state of the
compound nucleus then the factor M’ becomes large resulting in a peak in the absorption cross
section for this particular kinetic energy of the incident particle. When the particle’s kinetic
energy is such that the total energy available to the compound nucleus is different from any
energy corresponding to an excited state of the compound nucleus then the factor M’ is
relatively constant for variation in incident particle energy.

Putiing:'vthese observations symbolically the general nuclear process can be written:
A+P-C—B *R
A = initial (target) nucleus (4-5)
P = incident particle
C = compound nucleus

B = residual (recoil) nucleus
R = emitted particle

with the energy relations:

(Conservation of Energy) W, + WP tE, = Wy +V,  +E,

(4-6)

(Definitionof E, ) W, + W +E_ =W

L]

= intemal energy of initial nucleus
= internal (binding) energy of incident particle
= kinetic energy of incident particle
= internal énergy of residual nucleus
= internal (binding) energy of emitted particle
= kinetic energy of emitted particle
. = kinetic energy of incident particle when that
kinetic energy is just equal to that necessary
to bring the compound nucleus to an excited
state characterized by internal energy W,
= intemnal energy of compound nucleus C at resonance r.

mMagadamg =

W W ow YW

w
or
Pethaps the best way to appreciate the significance of equations (4-5) and (4-6) is to consider

the (n,?) process. A is the target nucleus, P the neutron, B the residual nucleus (isotopic to A but
with one unit increase in mass number), and R the emitted gamma photon. Assume A is in the

]+ 1o~k eesneapendios jor ,’I” .y The energy level system of the initial state,
1If

R
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4.2 NEUTRON RESONANCES, LEVEL SPACING

The quantity M’ in equation (4-1) depends upon certain matrix elements H as described in
section 2.4. These matrix elements in turn depend upon the possible states of the intermediate
or compound nucleus in such a way that when the sum of the incident particle’s kinetic energy
and binding energy is equal (or nearly equal) to the energy of some excited state of the
compound nucleus then the factor M’ becomes large resulting in a peak in the absorption cross
section for this particular kinetic energy of the incident particle. When the particle’s kiaetic
energy is such that the total energy available to the compound nucleus is different from any
energy comesponding to an excited state of the compound nucleus then the factor M' is
relatively constant for variation in incident particle energy.

Putting these observations symbolically the general nuclear process can be written:
A+P—~C—B +R
A = initial (target) nucleus (4-5)
P = incident particle
C = compound nucleus

B = residual (recoil) nucleus
R = emitted particle

with the energy relations:

(Conservation of Energy) W, + WP tE, = W, ¢V, +E,

.. (4-6)
(Definition of E, ) W, + E
= mtemal energy of initial nucleus
= intemnal (binding) enetgy of incident particle
= kinetic energy of incident particle
= intemal énergy of residual nucleus
= internal (binding) energy of emitted particle
= kinetic energy of emitted particle
, = kinetic energy of incident particle when that

kinetic energy is just equal to that necessary

to bring the compouad nucleus to an excited

state characterized by internal energy W
W, = internal energy of compound nucleus C at resonance r.

 Perhaps the best way to appreciate the significance of equations (4-5) and (4-6) is to consider

the (n,7) process. A is the target nucleus, P the neutron, B the residual nucleus (isotopic to A but
with one unit increase in mass number), and R the emitted gamma photon. Assume A is in the
ground state with corresponding intemal energy W,. The energy level system of the initial state,
see Figure 16, will be a continuum since the incident neutron kinetic energy (E ) can vary con-
tinuously. When the energy of the neutron approaches certain critical values E_, E ., . . . the
total energy of the initial state corresponds to the energy levels of the compound nucleus W¢,, W,
. « ., respectively, and the probability of neutron absorption increases as shown in the lower graph
of Figure 16. Now since the compound nucleus when excited to any one of these levels can get rid
of its excess energy by more than one process, e.g., (1,7, (n,0), (n,p), it follows that all the
resonance peaks observed in the cross section do not necessarily correspond to an (n,7) process.
For medium weight nuclei one can be certain from energy considerations and the effect of the Coulomb
potential batrier that at least the first few levels do correspond to true neutron capture. Of course,
neutrons with large kinetic energies may bring the compound nucleus to excited states where several
processes compete in achieving ultimate stability.

A-93-3
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If the first resonance peak occurs on the average for, say, nuclei of medium weight at E_"E,
then it would be anticipated that the energy level spacing of medium weight nuclei (in the region
of excitation corresponding to the binding enetgy of the incident particle) is of the order of
magunitude of E, For medium weight nuclei such *‘first capture resonances’’ occur at ~10 electron
volts, so that the energy level spacing at compound nucleus energies (W, + W~ 8 Mev) is of
the order of 10 electron volts. Experiments with such nuclei that are near thcxt ground states (e.g.,
excitation by gammas) indicate that the spacing between energy levels is of order of 10% or 10°
electron volts at low energies.

4.3 TWO NUCLEAR MODELS

The fact that the level spacing decreases very rapidly with excitation energy for medium (or
large) weight nuclei needs explanation. Qualitatively this fact can be appreciated by considering
two models of the compound nucleus: (1) a mechanical system with many degrees of freedom (2)

2 neutron-proton gas.

In the first model the nucleus is represented by a mechanical system with A members ( A =
mass number), each member having three degrees of freedom. Since the total number of degrees of
freedom is 3A the system will sustain vibrations with 3A characteristic frequencies. With a
vibtation frequency V there is associated an energy h?. If the system is vibrating with frequencies
v, and ¥, at once it has an energy hv, +hv . In general it will have an energy:

+ + +
a.lhv1 a’hv’ aahva ceses auhv“

where the a’s are integers. If v =V, =V, etc., it is easy to see that at high energies there will
be more levels per unit energy. This is strictly an inexact qualitative argument but the basic
idea, that a system of many degrees of freedom will pack its energy levels at high energy, is
correct.

This type of consideration can he refined by depicting the nucleus as a liquid drop (Bohr
and Kalckar proposal: Kgl. Dansk Acad. Vol. 14, No. 10, (1937)). The liquid drop is held together
by the attraction of each part of the drop to the nearestneighboring part of the drop, that is by
short range forces (short compared to droplet dimensiaons). Drop volume is proportional to drop
mass. Similarly nuclear forces are short range forces with each proton attracted to the very few
neighboring neutrons or protons and the nuclear volume is proportional to the total number of
neutrons and protons in the nucleus. Considering a spherical drop there are a number of possible
modes of vibration. Higher modes will be characterized by a relatively ‘*wrinkled’’ surface, that
is many nodal lines; the energies corresponding to these higher modes will be relatively closer
together than those for lower and fundamental modes. This liquid drop model will be discussed
later in the chapter on fission.

The second nuclear model is a Fermi gas of neutrons and protons in a potential well. The
temperature of the gas is T. When T = 0 the nucleus is in the ground state with some particles
moving rather fast nonetheless because of the Pauli exclusion principle. If energy is fed into
the gas some particles move faster and T increases. It can be sbown that for a degenerate gas
of the type here considered the energy is proportional to the T 2 rather than T. In fact,

Energy =U = (7%/4% A/ DT
A = number of partiéles
T=kT

{ =energy of ground state

A~F3 -2
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Figure 17. Fermi gas model: potential well

In the potential well chosen for the nuclear model, Figure 17, { is ~ 20 Mev. Writing U as ar?
the entropy S (= U/ 97) is just 2aT or 7/AU/L. The entropy is customarily written as log

P + constant where P is the probability of the state in question or statistically the number of
states per unit energy interval. Thus

S =log P + constant

or P =constant * ¢® = P.e AU/

with P_ the value of P at U = 0. Applying this to a medium nucleus with 8 Mev excitation

(A ™ 100, {~ 20 Mev) shows that the density of states is P, e® ot P, 108, That is the
density of states (number of states per unit energy) at 8 Mev is 10® tuncs what it is at the
ground state. This is somewhat too high.

In conclusion it should be pointed out that the foregoing only indicates trends and
should not be taken for more than it is worth. The essential idea is that the nucleus is a
system with many degrees of freedom. Almost any approach shows logarithmic vanauon in
level density. Achieving aumerical consistency is an almost impossible task betause of the
lack of fundamental knowledge of nuclear forces and the lack of mathematical apparatus for
handling what is essentially a many-body problem. |

The teader is referred to Bethe's “‘Nuclear Physics, Part B'’ (Rev. Mod. Phys. 9(1937))
section 53, pages 79 to 90, for a summary of the various approaches to the problem of nuclear
encrgy level distributions.
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PROBLEMS

1. Find all the information you can in the literature about indium and gold resonances for
neutrons. :

2. From the literature find the first resbnances for nuclei with mass numbers A = 100 to
A =150. Make an estimate of the level spacing in this range.

3. Make a table of level density for Be at 4, 6, 8, 10 Mev excitation using the neutron-
proton gas model. Do the same for Fe, Ag, Au.

-73-38



RR

SRR R
AECD - 2664

CHAPTER V

THE SCATTERING OF NEUTRONS

5.1 THE BREIT-WIGNER FORMULA

For certain special cases, the matrix elements occurring in the general formula for the cross
section, that is, the factor M discussed briefly in section 2.4, can be reduced to relatively simple
formulas. In particular, if the resonance levels of a compound nucleus are far apart and we are
interested in the cross section in the neighborhood of one of the resonance levels, the expression
for the cross section of an (a,b) process can be shown to take the form:

l_'. rb

o(ab) = 7wx®
2 3
(E, - E‘) + ("%/4) (5-1)

K =A/2 =H/VE_; p = oM/(m +M)

E_ is the kinetic energy of the incident particle, A, its deBroglie wavelength, m the mass of the
incident particle, M the mass of the target nucleus, E  is the resonance level energy (E pr i
Section 4.2) of the compound nucleus, and I" the width of the resonance peak at half its maximum
value. Actually equation (5-1), known as the Breit-Wigner formula, should be multiplied by factors
depending on the spins of the initial particles and the compound nucleus. For simplicity, consider
these factors to be incorporated in the [", and I"\. I"_ and " are the partial widths of the resonance
peak and are associated with the probability of emitting **a’* and **b’* particles, respectively.
Their exact form is rather complicated, but since the probability of emission of a particle **b”* of
momentum p [ see equation (2-11)] is proportional to P2/ v, then so is "+ The relative probability
that the outgoing particle will be an **a’* particle is [" /T, relative probability that it will be a **b**
particle, I /T, etc., so that the sum of all [ s

2ry =T (5-2)

b §

i = a,b,...
If 7, is the average time of emission of a particle i after the formation of the compound nucleus, then
r, o S4r- (5-3)
This is a restatement of the uncertainty relation discussed in section 4.1 and expressed in
- equation (4-~4). The probability that no particle i has been emitted from the nucleus up to a time
tis }L"bmexp (-t/7) = exp (13 /1) =e" vT

where t is the average life of the compound nucleus:
- -1
T = [31/7,)

If one describes the emission in terms of the disintegration constant \ = 1/ 7 the exponential
relation is seen to be the familiar exp (—~At). The average life 7 is seento satisfy the Heisenberg
‘relation in the same manner as the Ty that is, f‘,r:' +.

The Breit-Wigner formula of equation (5-1) can be applied to any nuclear collision involving
the formation of a compound nucleus , provided that the resonance levels are not so close together

(5-4)

35
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that they appreciably distort this one-level formula. It can be applied, for example, to (n,y) processes .
For resonance capture in indium, it is observed* that E | = 1.44 ev, o (n,)) at resonance = 26,000
bamns, I" ¥ 0.09 ev. In addition, the experimental measurements show that only neutrons and gammas
are observed to be emitted (thusI" =" + " ), and mote gammas are emitted than neutrons

(l_',y> I",)- With these experimental data, it is desited to find the number of neutrons emitted

for each gamma emitted. The solution follows from equation (5-1):

o (n,y) at resonance = 47 7;2 r, 1"'7/ rs

& =5/ V2mE » m =Neutron mass
Substituting the experimental values of o and E _gives the value
e r.r, /T2 = 0.015

Since I, <" \thea ") X" = 0.09 ev. Also I',[", /T3 [' /T = 0.015, from which ", = 0.015I" =

0.015 x 0.09 = 0.0013 ev. Thus the ratio of widths is I"n/r‘ y = 0.015, or for each thousand gammas
emitted, approximately 15 neutrons will be emitted.

The same reasoning for gold and silver! shows that:

Auw: E_=48ev,0 ”'-\1 60,000 batns, [= 0.1 ev (experimental)

™
r,=0.01ev, I, =0.1ev, T /" = 0.11(calculated)

Ag: E.=5.1ev, o = 7200 barns, [ = 0.19 ev (experimental)
[, =0.0027ev, "= 0.19ev, ", /T = 0.014 (calculated)

Thé capture reactions for indium, gold, and silver are very useful in methods of slow neutron
detection.

5.2 SOME GENERAL CONSIDERATIONS ON NEUTRON SCATTERING
For the elastic scattering of low-energy neutrons, formula (5-1), by virtue of the relations a =

" b=nandE_ T 0, reduces to

o(a,n) =7K*0, 2 /E 2 (5-5)

[E, =0, T<<E]

The inequality is assumed and limits the applicability to neutrons whose energy is less than the
first resonance energy and to cases where the width of the first resonance energy level is much
less than the energy itself. Now since ) is proportional to 1/pv, and I is proportional to pe2 / v,

or p.zve where P, and v, are momentum and velocity of the neutron, and since v = v (elastic
collision), then it follows that }\n 2 r, is proportional to u? and should be fairly constant for
scattering of neutrons with energies less than the first resonance energy.

*Physical Review 7 : 186  (1047) -
ys. Review 70!

A-93-4
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The curve for scattering in hydrogen (paraffin) shown in Figure 18 exhibits a fairly constant
. cross section of 21 barns at low neutron energies. However, at very low neutron velocities, there
is a sudden increase of o . This is explicable in terms of the variation of 2. For neutrons
scattered from hydrogen, u is half the neutron mass except where the relative neutron-proton
velocity is too small to provide sufficient energy to free the hydrogen (bound to the paraffin) or
excite the molecule. In this latter instance, which obtains for very slow neutrons, the hydrogen
bound in the large molecule has an effective mass that is very large. Thus

u =Y% for E_ > binding energy of H to paraffin
g =1 for E << binding energy of H to paraffin

So that the [", will stand in the ratio of the squares of y, or 1:4. This will increase the scattering
cross section for very slow neutrons. In Figure 18, it is seen that experiment confirms that this
inctease is by a factor of 4 so that the neutron scattering cross section (measured in chilled
paraffin®) is about 80 barns. This result may be stated as follows. The scattering cross section
for siow neutrons incident on bound protons is four times that for free protons.

5.3 SCATTERING BY A POTENTIAL

In cases where resonance effects are negligible, the problem of elastic scattering of neutrons
can be treated by considering the target nucleus to be replaced by a potential well. The analysis,

then carried through by the usual methods of Schroedinger theory, turns out to yield results valid
for thermal neutrons scattered by many elements. It is possible to determine accurate information
on o, even though the shape of the potential is not known with any certainty.

80

70

O roraL | BARNS)

0 { { \ 1 i { L | |
0001 001 - 01 10 10 100 10° 10* 10° 100 10
NEUTRON ENERGY (ev )

Figure 18. Hydrogen Cross Section [ Rev. Modern Phys. 19:260 (1947)].

#Also measured using graphite filter, See Phys. Rev. 70:815 (1846).
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Figure 19. Potential Well Representation of Neutron-Nucleus Interaction.

Figure 19 shows the general shape of the potential well. The wave function s of the incident
particle satisfies the Schroedinger equation:

VA + (20/B®D[E = U@)] ¢ =0 (5-6)

Where E is the incident particle enetgy and U the nuclear potential. Considering only s scattering
(zero angular momentum), the Schroedinger equation reduces to the radial equation:

1 d dy 2m
2 + -— =
2 dr f dr A2 (E U] Y=0 (5-7)
or u’ + 2m/AHE - Un =0
with u =npand v’ = d3u/de?

The latter simplified form is derived from the relations u” = (r)" = (e’ + ' =)’ +
2y' = (1/tXry')’ where the primes indicate differentiation with respect to r. '

Now in the scattering problem at hand, equation (5-7) must be solved for the particular form
of U(r) chosen to represent the nucleus with the boundary conditions y=0 at r = » and i finite
elsewhere. Inspection of (5-7) shows that whenever E — U>0, the curvature of u is negative
(u curves toward r axis), that js, u”’/u = =’ 2m/A2) (E -~ U)<0. For E — U<0, the curvature
u’/u>0, and for E - U = 0, it follows that u"/u= 0. Referring to Figure 19, it is apparent
that there are three cases to consider: (a) E>0, in which case E — U>0forallr, (b) E =0,
for which E — U>0 within the nucleus and E - U =0 outside (¢) E<O0, in which case E - U>0
inside the nucleus and E —~ U<0 outside. The solutions for the three classes of values of
(E = U) can be readily determined to be:

A-73-Y
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E - U>0 u-=Asin [M\mE-UYA® t] + Bcos[vVImE-U)/A? 1]
E - Us0 u=A'r + B’ (5-8)

E - U<0 u =‘A"exp[-¢§;(U-‘E)ﬂ5' t] + BYexp(+Im(U-E)/A? 1]

Boundary conditions determine the values of A, B, A’, B’, etc. These conditions are that u/r
(=) is finite everywhere and vanishes at infinity. In addition, the first derivative must be continuous.

With these conditions and the solutions of (5-8) in mind,Figure 20 can be constructed. In all
instances, u must be zero at r = 0, since u/r = \ymust remain finite. The variation of u with r is
fairly straightforward for the cases E>0 and E =0. The situation when E<0 needs explanation. Near
the origin, the usual oscillation is observed with increasing period as the function E — U decreases.
Atr =r_(see Figure 20), the oscillation stops, and at greater values of r, the exponential solution,
Iast equation, (5-8), must reduce to a single negative exponential, since the positive exponeatial
would not satisfy the condition that u/r is finite at r =o. That this reduction to a single negative
exponential is not possible for all values of E is shown in Figure 20 (E<0) whete for E = E., the
coefficient of the positive exponential is negative and for E = E , the coefficient is positive.
Between E_ and E _, there must be some value of E for which the coefficient vanishes. There may
be a number of values of E for which u/r is finite at r = @. These are the allowed values of E for
E<O0 corresponding to the discrete spectrum or the bound states of the system.

The case E>0 corresponds to the case of an incident particle (positive kinetic energy). As
shown in Figure 20, the wave function outside the nuclear radius is a sine function A sin (/m?
£+48) where § is a phase shift dependent on the wave function within the nucleus to which the sine
must be joined (at r = R). The sine function does not, when extrapolated, seem to come from the
origin (dotted line figure) but appears to have its origin at a distance **a’’ from r = 0. This distance
is related to & by the equation a/A = §/2x7 with A= 2+h/ /2mE (the de Broglie wavelength of the
incident particle).

~ Now it can be proved* that the scattering cross section is directly dependent on this phase
shift § in such a way that when § is small (or an integral multiple of ), the scattering cross section
is small, and when § is 772 (or an integral multiple of 77/2), the cross section is a maximum. The
relation between § and o is: '

o, = (47563/m3v?) sin® 5 (s scattering only) (5-9)

The limitation to s scattering means that the incident particle has zero angular momentum. On a
classical basis, a particle with velocity v at large distinces from the nucleus moving in sucha
direction that it would pass the nucleus (if unaffected by nuclear forces)at a distance b, Figure 21,
has an angular momentum mvb. According to quantum mechanical principles, this must be quantized,
ormvb = I (1 =0, 1, 2...). Thus b = Hi/mv, or b = IX(A = de Broglie waveleagth x 27). The region
between 1 =0 and 1 = 1 or b =0 to be = K is the region of s scattering. Between b = Aand 2Ais
the p scattering region. Now if the nuclear size is less than A, that is, R<A=b/mv, then it is
obvious that no p scattering is possible. Particles passing at **p distances’’ from the aucleus will
not be aware of the nucleus, due to the short range character of nuclear forces. Recalling the dis-
cussion in section 2.2, it is apparent then that there is s scattering only if the neutrons are
slow. ‘

" For very low velocities, the formula (5-9) can be simplified. This is due to the fact that the
wave function inside the nucleus will change very little with changes in E when E is small. For
this reason, *‘a’’ does not vary. However, \increases as E#}, with the net result that a/\becomes

sRasetti, F. "Eloments of Nuclear Physics,” 1036. Premtice-Nall, p. 204ff Mott, N.F. and
H.S.W.Massey, *Theory of Atomic Collisionms,® Oxford, 1933.
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Figure 20. Scattering from a “‘poteatial well.”’
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S SCATTERING IF X<b <R

Figure 21. Quantitizing the angular momentum.

very small. Since § = 2s(a/\), we can replace sin? § by 82 and obtain

Opeat = AnB%/mPv2)4#*2%/N?) = 4ma® (E~0) (5-10)

The simplification follows from the relation A = h/mv.
In the case of bound states, the scattering formula (5-9) can be shown to reduce to

2

Ogeat “mle +(E/2)] (5-11)

€ = binding energy of neutron when bound to the nucleus
E = kinetic energy of incident neutron

It is not always necessaty for € to be positive or *real.’’ There are cases where “‘virtual%’ statés of a
nucleus may exist, these virtual states being characterized by negative €. In such cases, the neutrori wave
function will be periodic inside and outside the nucleus but will have a larger amplitude inside than outside
for that particular energy associated with the virtual state. When € is negative, the absolute value is used
in equation (5-11). An example of this occurs in the scattering of neutrons by protons. (The protons
ate considered *‘free’’ i.e., not bound chemically, in the following.) The cross section for scattering
of slow neutrons by protons is dependent on what states are possible for the deuteron (combination
of neutron and proton). There are two types of states, **singlet’’ and “tnplet” states, associated
with zero and unit total spin quantum number:

S = 0 (one singlet states; antxpatallel spins)
S = ] (three triplet states; parallel spins)
(Number of states =25 + 1)

It has been observed experimentally that the stable ground state of the deuteron is the S = ] state,
so that the triplet deuteron state has a positive €. The S = 0 state is probably virtual, although

=734
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Figure 22. Fast neutron detector and recoil proton collimator.
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Figure 23. Carbon and oxygen cross sections. [Rev. Mod. Phys. 19:266 (1947). ]

A-93- 4



AECD - 2664
¢ 43

A
it is so small that it might be of either sign, Thus the scattering cross section for neutrons on free
protons is:

= 4787 (3 1 + 1 1
et M 4 e, ¥ (E/2) 4 [€.[+(E/D

where € = energy of parallel spins state of the deuteron €, = energy of antiparallel spins state
(virtual) and the 3/4 and 1/4 factors properly weight triplet and singlet states, respectively.

Direct experimental evidence for the existence of singlet and triplet states of the deuteron
can be obtained from measurements of slow neutron scattering on hydrogen molecules. The hydrogen
molecule can have two forms,*‘ortho’’ and **para.”’ In orthohydrogen, the two protons have parallel
spins, while in parahydrogen, they are antiparallel. Now a slow neutron (de Broglie wavelength
larger than interatomic distance) incident on parahydrogen will be scattered by one proton with spin
parallel to the incident neutron spin and by the other with antiparallel spin. The resultant néutron
wave will be made up of real state scattering plus virtual state scattering (if the antiparallel
spin, singlet state, of the deuteron is virtual). Since on theoretical grounds scattering for real
states is 180° out of phase with that for virtual states, it follows that parahydrogen scattering
should result in out-of-phase scattering from the two antiparallel spin hydtogen atoms, i.e., a
small scattering cross section. Similarly, scattering of slow neutrons on orthohydrogen should
result in scattering *‘in phase’’ from the two atoms, resulting in a larger scattering cross section.
This has been observed experimentally and confirms the hypothesis of a virtual singlet state of
the deuteron. ‘

The scatteting of neutrons in hydrogen is the basis of an important method for fast neutron
detection. If a thin layer of paraffin is exposed to the neutron flux, then each neutron that is scattered
gives rise to a recoil proton. The recoil proton has an energy of the same order of magnitude as the
neutron energy. The proton, being charged, can be detected by an jonization chamber, as shown at
the left in Figure 22. To measure neutron energies a collimating device (right in Figure 22) can
be used so that anly protons scattered in the ditection of the incident neutron flux are allowed to
enter the ionization chamber. The pluse in the chamber can be calibrated in temms of proton energy,
and in this way the original neutron energies can be determined. Of course, the paraffin must be
sufficiently thin to make multiple scattering of the incident neutrons negligible. (This limitation will
be understood better after Chapter VI.)

In general, neutron scattering cross sections show complicated variations with energy. These
irregularities are related to resonance phenomena not covered in the simple theory of these sections.
Cross section versus neutron epergy for two important scatterers, carbon and oxygen, are shown in
Figure 23. It is not always possible to measure scattering cross sections directly. Generally, total.
cross sections are measured. For fast neutrons scatteriag predominates, so that the total cross
section is effectively equivalent to the scattering cross section. For lower energies (below 1 Mev)
this is not generally true, although for graphite and oxygen scattering predominates.

5.4 THE SCATTERING OF NEUTRONS

Referting to Figure 11, page 21, it is apparent that neutrons with energies less than 1 ev have
de Broglie wavelengths of the order of Angstroms (1078 cm) or greater. Since interatomic distances
are likewise of the order of Angstroms, it might be expected that slow neutrons scattered by atoms
will exhibit interference effects. This is actually the case. The anomalous scattering of slow
neutrons by ortho- and parahydrogen, as we have seen, can be explained as an interference effect.

It is possible to study these effects by experiments analogous to those used in the study of
x-ray diffraction and interference. Suppose a collimated flux of slow neutrons, Figure 24, is incident
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Figure 24. Scattering of neutrons by single crystal.

on a crystal. If the angle of incidence 4 (angle between incident beam and ctystal surface) is
varied and for each value of g the scattered intensity is measured with the detector, it is found
that neutrons obey a Bragg-like formula:

aA = 2asino 5-12)
where n = order of interference
a = interplanar spacing
A = de Broglie wavelength of neutron (h/mv)
For first order interference, equation (5-12) may be solved for the neutron velocity v:
v = h/(2ma sin 6) (5-13)

This shows that if a beam of neutrons with a continuous range of velocities impinges on a crystal,
those neutrons of the proper v for the angle & will be reflected in a shatp beam at an angle equal
to the angle of incidence. Neutrons with other velocities will simply be scattered in the material
in a normal way.

One can easily check the fact that the reflected beam really contains those neutrons whose
velocity is given by the Bragg formula by taking readings with and without a boron absorber in front
of the detector for various angles. The boron cross section as a function of v is well known
(Figure 9, page 18), so that from the observed o versus & cutve, one can compute v versus 6.

This latter would be found to be the Bragg relation, aside from complications due to higher order
reflections, etc.

It is apparent that the combination of a crystal and neutron detector can be used* to analyze .
a beam of neutrons for its velocity distribution (in 2 manner analogous to the analysis of an x-ray
beam for wavelength distribution). For example, the slowed-down neutrons emerging from a tank

*Neutron crystal spectrometry has been made possible using the high neutron flux from chain rescting
piles, see Phys. Rev. 70: 667 (1946); 71:752, 787 (1047).
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Figure 25. Scattering of neutrons by microcrystals.

of water, in which a neutron source has been placed, can be analyzed and found to have a Maxwellian
diseribution.

Microcrystalline substances scatter neutrons much better than regular crystalline substances.
“This can be understood by tracing the course of a neutron through a microcrystalline medium,
Figure 25. If the Bragg condition is not fulfilled when the neutron arrives at the first microcrystal,
then the neutron will pass on through. Otherwise, it will be reflected. When the neutron arrives at
the next microcrystal, it must once again pass the test of not fulfilling the Bragg condition if it is
not to be scattered. Were there but one crystal the neutron would have but one test to pass. How-
ever, with many randomly oriented microctystals, the neutron has a large chance of being scattered.
For a single large crystal, only those neutrons whose velocity satisfies the Bragg condition will
be scattered. For the microcrystalline structure, sooner or later all velocity neutrons of the original
beam will be removed as the beam passes from one crystal to the next.*

There is one very important difference between x-ray and neutron scattering. If the crystal is
composed of two isotopes, the x-ray scattering is not particularly different from that which would
be observed for a single isotope species, since x-rayscattering depends on the extranuclear
properties of an atom. Since the extranuclear properties of two isotopes are very nearly the same,
x-ray scattering is insensitive to isotope differences. On the other hand, in neutron scattering,
the nucleus itself enters into the scattering process. Nuclei are such that in addition to de-
termining the magnitude of the scattering cross sections, the phases of the scattered neutrons are
determined.

Consider a neutron being scattered by two isotopes. If the first species has a scattering cross
section o, then the amplitude of the scattered neutron wave is proportional to /— Similarly, the
the second species scatters with amplitude proportional to Vo, o+ Suppose we write these amplitudes

in a sum and difference form:

#This effect was observed in early experiments on silica: Phys. Rev. B54:771 (1938); 855:1101 (1839).
See also recent data in Phys. Rev. 70:815 (1946), 79:741 {1948).
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Vo, = + '
1 2 2 (5-14)
o, («&‘ »f&:)-(f&: - fo—) |
2 2 '

Thefirst term is common to both, that is, the scattered amplitude is the same for this term (the
so-called *‘coherent®’ part). The second term, *‘incoherent’’ part, is opposite in sign for the two
amplitudes. The coherent part gives rise to interference, whereas the incoherent part gives riseto
scattering as if from an unordered assembly of atoms.

How deep will a beam of neutrons penetrate inside a crystal if the Bragg condition is satisfied?
Consider a beam of v neutrons/cm?®/sec incident on a simple cubic crystal, Figure 26. If there
wéte. but one atom in the crystal, then the number of neutrons scattered would be vo neutrons/sec.
This would be isotropic, so that at a distance r from the crystal, the intensity would reduce to ‘

vo/(4mr 2).

[ALTHOUGH REFLECTION IS NEUTRONS,/cm?/SEC
SHOWN AS IF FROM ONLY 4.2 ,2 AT DISTANGE r FROM
ONE PLANE, ACTUALLY TOP vo N*M*/r CRYSTAL SCATTERED

' MoLAYERS GONTRIBUTE] FROM M, LAYERS

¥= NEUTRONS /Am¥/SEC \,s&@

*

> ¥

>

o\ CUBIC LATTIGE
% INTERPLANAR SPAGING:a
p
'@ SATISFIES BRAGG RELATION
nA=2a SIN 6

Figure 26. Bragg reflection of neutrons.
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The amplitude of the neutron wave would be Yvo/dm /r. Let us estimate the amplitude of
the scattered wave in the reinforced directon. This will be the amplitude for the single atom times
the number of atoms participating in the scattering, that is

N X N X Mx/vo/4mw /t
The intensity in this direction will thus be N*M*vo/ (477¢?) neutroas/cm®/sec.
Now the angular spread* of the beam after scattering is just }»./ beam diameter or A/ (Na sin 6)-
Thus the area of the scattered beam in the reinforced direction is r® times the angular width

squared or ¢? M /(Nasin6)3. Multiplying this by the intensity gives the number of neutrons
scattered in the reinforced direction:

[N‘M’w’/(«i'rrt’)] [£2 )2 /(Na sin 6)?]

= VO'N’M’( N a)?/ (4 sin® 6) neutrons/sec
It is to be noted that in the above derivation, the attenuation of the neutron intensity in passing
through the M layers has been neglected. If we further simplify by considering all reflections are
fitst order (n=1=2a sin §/)), then the total number of neutrons per second in the reinforced direction
is '
Neutrons/ sec scattered = vor NM2/n (5-15)

Now if the crystal were a perfect reflector, then all incident neutrons would be removed from the
beam, that is, just v (neutrons/cm?/sec) times (Nasin&)?, the beam area. This number can be
considered the upper limit for the scattered beam. Thus

wNM? /71 < yNZa? sin® 0

ot oM? < a¥( 7r/4)(\/a)? (5-16)

the latter since sin & A/ 2a for first order effects. If we assume A a, the inequality may be
written as an order of magnitude relation M <a/ vou

What is the significance of this inequality? It means that the layers beyond M_ = a/vo
do not contribute to the scattered beam. Put another way, the beam does not penetrate beyond M
layers. Numerically, if a is 3X107® cm and o about 4X10724 cm®/atom, then M is of the order of
3x10-8/2x10713 = 10%, Thus about 10* planes play a vital part in Bragg reflection. The depth of
penetration will be M_a or ~ 5 X 10~* cm =5 microns.

Throughout the foregoing discussion, it has been assumed that the only attenuation of neutrons
is due to Bragg-like reflection. Consider a heterogeneous beam of neutrons incideat on a large
petfect crystal. Those neutrons that satisfy the Bragg condition will be scattered out of the
beam in penetrating the first few microns. However, those that do not satisfy the Bragg condition
generally will not be transmitted without some loss in intensity. The reasons for this are:

1. The presence of isotopes makes a random irregularity resulting in incoherent scattering
for all velocities. '

2. The random variation of the spin direction of nuclei also results in incoherent scattering.

3. Even if the crystal were regular, the thermal motions of the atoms would contribute to non-
Bragg scattering.

4. The crystal atoms will generally have a finite absorption cross section even though
o <<o,.

sThe formula should be mitiplied by a constant depending on shape of beam area. See any standard
physical optics text.
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It is possible to use interference phenomena to obtain very slow neutrons. Rewriting the
Bragg formula, equation (5-12), as A = 2a (sin §/n) or A < 2a, it is apparent that neutrons with
A> 2a cannot be Bragg-reflected. All scattering of neutrons with wavelength greater than twice
the interplanar spacing would be due to the four listed causes. If graphite is used, the fact that
there is only one isotope (~99%) and the spin is zero (even mass numbers usually have zero spins)
minimizes scattering from spin and isotopic irregularities. For graphite, 2a = 6.69 X 1078 ¢,
so that the limiting A is 6.69 Aagstroms, correspondiag to a neutron energy of (0.2848)%/ A2
(see Figure 11, page 21), or 0.0018 ev. Suppose (Figure 27) a Maxwellian distribution of neutrons,
peaking at 0.025 ev for graphite at room temperature, is incident on a polycrystalline piece of
graphite. Then, as a consequence of interference, the graphite will (in an appreciable distance)
weed out all neutrons with energies above 0.0018 ev. Only those very slow neutrons with A> 2a
will not be scattered out of the beam by Bragg reflections. Moreover, because of relative isotopic
uniformity, zero spin, and small absorption, these *‘cold’’ neutrons will be able to get through the
graphite with minimum attenuation. Thus it is possible to secure a very t‘cold’* beam using thermal
neutrons aad a polycrystalline graphite *“filter.”’*

“COLD" NEUTRONS IN
SHADED AREA ARE
TRANSMITTED THROUGH
POLYERYSTALLH'\IE GRAPHITE FILTER

5) 1 2 3 4 5
E/KT —>

NUMBER OF NEUTRONS PER UNIT
ENERGY INTERVAL ( ARB. UNITS )

Figure 27. Maxwell distribution and ‘‘cold’’ neutrons.

rgee "Production of Low Euergy Neutrons by Filtering through Graphite® by H. L. Anderson, E. Fermi,
L. Marshall, Pnysical Review 70: 815 (1946) - With a 23 em graphite filter, nentrons corresponding to 18K
(or 7.15 Angstroms) were obtained.
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- Neutrons exhibit total reflection charactetistics in a manner analogous to x radiation. If a
beam of x rays is incident on a polished surface at a glancing angle, the beam is totally reflected.
Most substances have indices of refraction for x rays very slightly less than uaity. The index of
refraction is closely related to the scattering properties of the substances since the interference
of scattered x rays and incident x rays is responsible for the resulting wave transmitted in the
substances. The change of phase in the transmitted wave can be described most conyeniently in
terms of wave velocity change or a refractive index. The same phenomena occur for neutrons
incident at glancing angles on a polished surface. The index of refraction for neutrons is also
very close to unity. This means that a converging lens for neutrons would have to bulge very much
along the axis to be effective if it were made of substances where the refractive index is slightly
greater than unity. For substances in which the refractive index is less than unity, a converging
lens would look like the diverging lens of optics, that is, very thin close to the axis and thick at
distances far from the axis. While these lenses are possible in principle, the fact that the refractive
index is always very close to unity makes neutron leases impractical.

PROBLEMS

1. Given R = 0.282 X 107*2cm (the classical electron radius) and a depth of a rectangular
potential well of 10.8 Mev (the singlet state of the deuteron) and of 19.7 Mev (triplet state), answer
the following questions concerning the scattering of neutrons by protons.

1. Are there any bound states in each of these cases?
2. What is the value of ‘‘a*’?
3. What is the average cross section for low velocity neutrons in hydrogen?

2. For NaCl [using the (001) planes only] make a table of the A reflected (1st and 2nd order)
at the following various values of angle 6 = 1, 2, 3, 4, 5, 10, 20, 30, 40°. Calculate the neutron
energy in ev for each \. What is the relative intensity of first and second order beams, assuming
a Maxwell distribution (T = 300°K) for the neutrons?

3. Show that if a continuous distribution of neutrons impinges on a microcrystalline substance
where M< M, that the scattered intensity is of the order of that expected from a noncrystalline
substance of the same number of atoms for all energy neutrons. Use the fact that the resolution of
a microcrystal reflecting neutrons of wavelength A according to the Bragg formula is given by
SN A~ 1/M '
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CHAPTER VI

THE SLOWING DOWN OF NEUTRONS

6.1 THE CHANGE OF DIRECTION AND ENERGY UPON COLLISION

When a neutron is elastically scattered by a nucleus, the nucleus being initially at rest,
_generally there is a transfer of kinetic energy from the neutron to the nucleus. If the struck
nucleus is hydrogen, then the neutron will lose of the order of half its energy in the collision. .
Successive collisions will, on the average, continue this process, so that a 1 Mev neutron
becomes thermal (0.025 ev) in about 24 collisions.

In this chapter, we shall consider in detail the nature of this slowing down process. It
will be found that classical collision theory is applicable and leads to results in agreement
with experiment.. As in the classical problems of colliding bodies, it is convenient to set up
two frames of reference:

The laboratony system ( R system) -In this system, the frame of reference is determined by
considesing the target body at rest before the collision.

The center of gravity system (C system) - In this the frame of reference is determined by
considering the center of gravity of target and projectile at rest.

In the latter, it is apparent that we are looking at the assemblage of colliding bodies as a
whole and considering its center of gravity as stationary. It is important to note that all
experimental measurements made of nuclear collisions use the laboratory system of
reference. On the other hand, practically all laboratory system of reference. On the other
‘hand, practically all theoretical calculations are made in the center of gravity system.
We shall see that the C system affords a view of things that is basically simpler than that
of the R system.

Consider in the R system the collision of a neutron (mass = I)of velocity v with a
nucleus of mass A, initially at rest. Since the total mass of the system of colliding particles
is A + 1 and the initial neutron momentum is 1- v, it follows that the velocity of the center of
gravity (as seen in the R system) is v/{A + 1). The velocities of the nucleus A and the
néutron relative to the center of gravity are v/(A + 1) and vA/(A + 1), respectively. These
velocities are in opposite directions, so that the total momentum of the system with respect
to the center of gravity is zero. After the collision, the magnitudes of the velocities are
uncahnged, but the directions of motion are along a different line. (see Figure 28). The
magnitudes must remain unchanged, since the total momentum with respect to the center of
gravity must remain zero. The change in direction will depend upon the exact nature of the
collision. If O is the angle between the initial direction and scattered direction (in the
C system), then & = 0 means the collision was ‘‘glancing’ while 8 = 7 means it was “‘head-
on’’

It is apparent that an observer in the C system would see the two colliding bodies
initially heading for each other along a single straight line, with the heavier body moving
more slowly. After the collision, the C system observer would see the two bodies moving
away in diametrically opposite directions, with unchanged velocities. The C system
observer wonld say that the collision process was isotropicif all angles (6) between
“*before’’ and “‘after’’ directions of motion were equally probable. As the C system has no
preferred direction of motion (center of gravity at rest), we adopt the same terminology and
call the scattering isotorpic when all values of O are equally probable.

50
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Figure 28. Neutron Scattering: Center of gravity system.

Now the transformation from the C system to the R system is readily made if we consider
that the C and R systems move relative to each other with a velocity equal to the velocity of the
center of mass in the laboratory system. This velocity is the same as the initial velocity of the
nucleus A in the C system, or just v/(A + 1). Taking this vector and adding it to the “‘after’’
velocity of the neutron in the C system [vA/(A + 1)] gives us the *“‘after’’ velocity (v%) of the
neutron in the R system (see Figure 29). It is apparent thac the angle of scattering in the C
system, that is, 8, is not the same as the angle of scattering in the R system, &.It is readily
proved (by the sine law) that

A sin (6-¢) = sin ¢
or tanp= _Asin O (6-1)
1+Acos®
Both expressions ate equivalent. With either, it is possible to convert scattering angles from one
system to the other.

The neutron energy before the collision in the R system is mv 2/2. After the collision, it is
mv’ 2/2. Thus the ratio of neutron energies after and before collision as observed in the R system
is (v’ /v)™ This ratio can be determined from Figure 29 by the cosine law:

v 2=lva+ D12+ [vaA/(A + DI ® + [2Av%/(A + 1)®] cos €

6-2)
K.E. after collision _ E'’ A% +1 +2Acos 8

K.E. before collision E = (A + n*
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Figure 29. Neutron Scacceriné in laboratory (R) system,

It should be noted that although equation (6-2) is the ratio of the kinetic energies observed in the
laboratory system, nevertheless, the angle 6 is the angle of scattering as observed in the center of
gravity system. This could be expressed in terms of the laboratory scattering angle ¢ by means of
equation (6-1). However, since we are going to want to average over all angles, we will keep the

C system scattering angle, as avetaging in the C system is relatively simple. In fact, for isotropic
scattering, the average of the cosines of 6 is zero:

(cos ) ,, = [fcos 6 27 sin 6 461/ [f2 7sin 6d0] =0 (6-3)

On the other hand, the average of the cosine of the laboratory scattering angle is not equal to zero
but is a positive number, showing that the colliding particles have.a tendency to preserve their
direction of motion. From equation (6-1), {: follows that:
cos ¢-1/mr’ AcosCO +1 0 +1
VA% +1+2Acos O

Averaging the cos P as before:
(cos ¢).“ = cosPr2msin 640 . }'(A cos @ + 1) sin 6 d6 =_—2'I 5
727Tsin 646 °2A®+1+2AcosO)F 3

o

As was expected, the average of the cosine is greatest for neutron collisions with lighter nuclei;
thae is, the tendency to keep going in the original direction is greatest when the target nucleus has
the least mass.

A-F3-5¢
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Let us re~examine the ratio of neutron kinetic energies after and before a collision, E’/E
of equation (6-2). The maximum and minimum values are:
E' _A%+1+2AcosB _ 1 for € = 0 (glancing collision)

E (A +1* ( ) for & = 7 (head on-collision)
' A+]

(6-5)

In collisions with hydrogen, A = 1, the limits ate thus zero and unity. Fot heavier atoms, it is
impossible to bring the neutron to rest. When A >>1, the minimum is (A-D?/(A+1)% = 1- (4/A) +
(8/A3)..., so that for A = 100, the greatest possible loss of ncutron kinetic energy after a single
scattering is 4%. For A = 200, it is 2%.

Now what isthe relative probability of a neutron’s having an energy E’ (between the limits
just described) after a collision? Assuming isotropic scattering, the probability dp that the
neutron is scattered into the solid angle between & and 6 + df is equal to that solid angle
divided by the total solid angle 47%

dp = (Solid angle between & and € + d6)/4m = 277 sin 8d 6 /47 = sin 6d 6/2
The relation between dp and the range of final energy which coixesponds to this range of angles
is found by differentiation of equation (6-2).
' + _ _ 2AE sin 966 4A
dE’ =~———— ==E 2
(A+D* . (A+D)

The negative sign means that increasing & corresponds to decreasing E. Hence

The probability that the 2 .
' final energy is between =dp = A+D” dE (6-6)
E' andE’ +dE’ 44 E
where the negative sign has been dropped so dE’ 1s considered positive. Equation (6~6) means
that the prodability of the f»nal energy being B' is independent of &'. Figure 30 is a graph of
the distribution function p(E ) versus E'/E, showing it to be a constant, (A +1) 2/4A between
E'/E =(A - D*/(A+ 1) and E'/E = 1. As a check on the normalization of (6-6), it should be

noted that the area uander the distribution curve is unity:
JE ") dE'’ }[(A+l)2/4A] d(E ' /E)

( A+1
=[(A+1)?/4A] [1-(:‘:—‘:11)%} 1

Using this distribution function, we could now calculate the#&Verage of E.' /E. However, it is
more convenient to consider the average of the natural logarithm of the energy ratio that is, log,
(EJE’). This isdue to the fact that, since the per cent loss in enefgy is on the average the
same, the neutron’s energy decreases in successive collisions, as shown in Figure 31. In each
collision, it is the log E rather thaa E which changes by a relatively fixed amount. Evaluation
of the average of loge(E/E )proceeds as follows

=1( log (7250 f Iog (E/E) p(E ' )dE*
Iin
= j log ., (E/E )((4+1)*/4A]

E( A—l!
(A+D*®
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Afrer some algebra, this reduces to:
' 2
[=1-AD" 1o A*L

2A ®A-1

For A>>1, this can be reduced to {7 (2A“~§¥)/A2 or L ™ 2/(A +-2-).
’ 3

EVE —b

Figure 30. Neutron energy distribution after single elastic scattering.

ENERGY AFTER GCOLLISIONS 1,2,3,4...... INITIAL
4 3 2 1 ENERGY
b = e
E=0 E——b

Figure 31. Neutron energy after successive collisions.
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The average logarithmic energy decrease per collision, {, is 0.158 for carbon {(A=12). For
hydrogen, { = 1 = average log E/E " so that E'/E is, on the average, 1/e. To reduce a I-Mev
neutron to D.025 ev (thermal energies) by collisions with hydrogen, one would require v
collisions with:

L =log (E/E") _log (10%/0.025) . log, 4 "107 = 17.5
log (E/E4) | ¢

For carhon, since {is 0.158, about 17.5/0.158 or 110 collisions would be required.
‘6.2 NEUTRON DISTRIBUTION FROM POINT SOURCE - EXPERIMENTAL METHODS

Knowledge of the nature of the process of slowing down of neutrons by collisions is essential
in the treatment of most problems in which neutron fluxes are introduced into media. Perhaps the
simplest question to be answered is: ‘‘Given a point source of monoenergetic neutrons, what is
the steady state spatial distribution as a function of energy?’’ The answer will be basic, since
any source distribution can be considered a superposition of point sources.

Suppose there is a radium-beryllium neutron source in a large tank of water. For hydrogen the
scattering cross section is particularly large at low energies so that a I-Mev neutron will do most
of its traveling between the first few collisions, as shown qualitatively in Figure 32. The distribu-
tion of neutrons from the source in water can be investigated by using detectors sensitive to
different energy neutrons. Materials such as indium, rhodium, or iodine, each of which has a strong
resonance for one particular neutron energy, can be used as detectors for that energy, provided
that the neutron absotption corresponding to the resonance level results in the production of radio--
activity. Figure 33 sketches the cross section versus energy curve for indium. The reference given
with the figure contains further details and bibliographies on activation of such materials. When

. possible, the detectors are made into foils. Elimination of the effects of thermal neutrons (since:
most of the detectors, in addition to being responsive to particular resonance energy neutrons, are
generally responsive to thermal neutrons as well) is accomplished by surrounding the detector with
cadmium. The effect of cadmium may be seen by inspection of its cross section versus energy
curve, the broken line of Figure 33.

1 MEY

Figure 32. Mean free path decreases as energy does in hydrogenous materials.
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Figure 33. Cross section versus energy cutve for indium.

Retuming to, the neutton source in the tank of water, it is apparent that the investigation of
the distribution of 1.44-ev neutrons (indium resonance) may be made* by placing indium foils
sandwiched between cadmium foils at various positions in the tank. The degree of activation of
the indium (taking into the account the decay of radioactive indium during the period of exposure)
in the various positions is proportional to the density of 1.44-ev neutrons at those positions. If
the cadmium foils were removed and the difference between the activation of the bare indium foil
and the activation of the sandwiched foils (Cd-In-Cd) were computed, then the relative densities
of thermal (cadmium) neutrons can be determined for the various tank positiogs. The spatial
distribution of *~ 37-ev neutrons can be determined using an iodine detector.' Putting all these
cutves together yields the radial distribution of the density of the various energy neutrons in the
water, as sketched on Figure 34.

* For details see "Ra-(1~-Be Neutrons in Water® by J. N. Rush in Phys. Rev. 73:871(1048) .

1. For iodine resonance see Phys. Rev., 71:174(1947). There are apparently two resonance levels,
v 32 evand’” 42 ev.

a-93-6
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( NOT TO SCALE)

ACTIVATION

Figure 34. Neutron source in water.

6.3 DISTRIBUTION OF NEUTRONS FROM POINT SOURCE - CALCULATION OF rz

Consider a point source of neutrons of energy E_ located in an infinite homogeneous medium.
The neutrons are slowed down by collisions after leavmg the source. Consider all the neutrons of
energy E. How far away from the source ate they on the average? What is the average of the square
of the distance from the source r™_ ?

If a neutron from a source S undergoes successive collisions (Figure 35), with successive
—o
displacements of l l l ‘, ...1 then the resultant displacement is:

—_ - — -
= + + +
e=l vE 410+ o Iu

—

and the square of the displacement (?‘ r) is:

- - =
1,

SRS LS LED LU LS (MRS WEN WIS ML W s}

To obtain the average of the foregoing expression, we bteak the averaging into three steps (Figuze 36).
First, we average over the azimuthal angle Ykeeping &, the angle of scattéring in the laboratory
system, and the lengths I constant. Then we average over 1 and finally over ¢. The average over

Y is accomplished by use of the theorem:

[cos (1, &)] Jay = €°5 (1, 2) cos (2, 3) cos (3,4) (6-8)

A-73-6/
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Figure 35. Typical neutron paths.
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Figure 36. Displ

acement vectots in neutron scattering.
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with cos (m,n) = cosine of angle between i: and T;

This theorem may be ptoved by considering l_‘ fixed. Then, with 1 fixed, consider the vector l to
be averaged by allowing 1 i, to rotate around T g Figure 37 shows the three vectors l g and l
arranged to form edges of a tetrahedron. The base plane has been constructed by passmg a plane
perpendicular to la and intersecting I at unit fength. The figure is to be used in the averaging
process where 1 is allowed to rotate ‘about T, g So that the angle Y indicated on the diagram is to
be varied from O to 277 in the averaging process. Considering the triangles APB and BPC of

_ Figure 37 it is apparent from elementary trigonometry that
AP =1; AB = sin (1,3); PB = cos (1,3); BC =PB « tan (3,4) = cos (1,3) tan (3,4)
PC =PB/cos (3,4) = cos (1,3)/cos (3,4)

The quantity (AC)2 can be found by use of the cosine law in triangle APC and in triangle ABC.
Equating these two values gives:

A0? = (AP)2 +(PC)? - 2 (APXPC) cos (1,4) = (AB)Z + (BC)? - 2(ABXBC) cos ¥/

'Solving this equation for cos (1,4) and substituting the trigonometric formulas for the various
sides (AP, PC, AB, BC) yield the following:

cos (1,4) = cos (1,3) cos (3,4) + sin (1,3) sin (3,4) cos Y

Pad -
As 1 rotates around l3 the cos Y averages out to zero. The angle between these two vectors (3,4)
being constant duting this averaging process means that the average of the cos (1,4) becomes:

[cos (1,4)] - " [cos (1,3)] o CO0s (3,4) (6-9)

Figure 37. Averaging over azimuthal angle (¥),

=73
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Now, in the above, __t.he vector I was kept fixed and 1 averaged. If r " is kept fixed and l
allowed torotate about I, we find, m a manner similar to that used in denvmg (6-9), that:

[cos (1,3)] = [cos (1, 2)] -+ cos (2,3) (6-10)

However, smce vectors l.1 andT 1, are successive vectors the average of the cos (1,2) is a constant;
that is, when I rotates about T, p the angle (1,2) remains constant. Substitution of equation (6-10)
into equation (6-9) proves the theorem stated in equation (6-8). The theorem may be generalized to
apply to any succession of such vectors averaged over angle Y (as shown in Figure 36):

[cos (a,z)] Ve = cos (a,b) + cos (b,c)cos (b',c)... cos (y,z)
(6-11)

(1"1’

- P .
¥ le, 1 are successive vectors)

Now consider the average over L If Kn is the mean free path, then the ptobabxhty that 1 lies
between l and 1 + dl is exp (-1 /K ). The average of l and l can be readily dctermmed'

. =0 -1/N . ] =X
) [;f exp (-1/0 dl] / [J; exp (-1/Nd! 612)

a%, = (117 exp (i/Aa] / ([ exp (/A dil =228

(The subscripts **n’’ have been omitted for simplification of notation.) The first relation of equation
(6-12) is in a sense a definition, since the average of ! is just the mean free path.,

Retuming to the original equation for r®, we may now write the equation for t® averaged over
the Y’s and I’s:

rzl,l,bav = 2)\: + Zkzz + 2)\: +... 2}\1 + 2[}\1}\2 cos (1,2)
(6-13) -

+ }‘i)\s cos (1,2) cos (2,3) +... }\3)\’ cos (2,3) + vl

In the case of hydrogen, this calculation can be completed in an exact way. Generally it is convenient
to make some approximations. Let us assume that it takes a large number of collisions to produce a
small change in energy. This will be valid for neutron collisions with heavy atoms (A>>1). The
various angles of equation (6-13), (1,2), (2,3), etc., may take on all values from 0 to 7. We must
average over the various possible angles, recalling that these angles are the successive angles of
scattering as measured in the laboratory system, angle ¢of Fi igure 29. As we have proved in equation
(6-4), the average of the cosines of these angles for isotropic scatterers is 2/(3A), a aumber tbat
decreases with increasing A. This fact may be used to advantage if we note the coefficient of 7\
(6-13):

2[N +X, cos(1,2) + A cos (1,2) cos (2,3) + ...]

Since successive terms when averaged over scattering angles, will have increasing powers of 2/(3A),
_they will diminish rapidly in the approxzimation being considered, so that the various Xs occurring in

A-43- 65
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successive terms may be replaced by Kl itself. This is valid if the A’s change very little between
successive collisions. In this manner, the coefficient of A L is approximated by:
‘ 27 2
2 - e
2[>\1+>\1C+>'-1c "‘...] ”1-1(':’ 34

Consistent with our approximation, the finite series has been considered to be infinite. It can be
teadily shown that the error becomes negligible for A >>1 (and absotption processes are very few
compared to scattering). Substitution of this approximation into (6-13) yields

2 2 2 2 b
27,2, 25 222 2 s« A2

.o

.1:—& i-C 1-C " 1~C 1€ y=,
where C = 2/(3A) as before. The sum may be written as an integral if the change of energy is small
for each collision:

Number of collisions between E + AE and E =

G

log (E +AE) ~log E
3

-

= AE/(£E)

Thus 2 .2 % o ik MExe’ (6-14)
1-2 1=1 =~ 1-2 E E'
3A 3A

The integration variable is primed to distinguish it from the limits.

In (6-14) £ is the average decrease in the natural logarithm of the energy per collision, defined in
equation (6-7). The dependence of the mean free path on the energy has been noted by writifi§
AXE). E , is the initial neutron energy at the source, and E is the energy of the neutron at thé .
particular position r. Equation (6-14) the average displacement-squared for neutrons of energy E
when the scattering is done by heavy nuclei. : '

It is often convenient to use logarithmic variables, in which case the average of the displace-
ment-squared is: '

log E
tz" = —&-ll——z——) f Kg (6‘)&6' Withe' = log QE ' (6.15)
§Z logeE (A>>1)

As was mentioned previously, the formula for (r’)" can be derived exactly. The result
[Ricerca Sci. 7:13(1936)] is: ‘

£2, = 2030) + 2A* () + 2 J 2 (@)dx + 2N0) [ Nme™/% dx
+ 2X0)NaJe ™/ 3 + 2Xa) [ Nx)e™ V3 gy (6-16)

+ 2 Nu)du J Aaex)e ™/ %ix

° °

<

where x = log (EO/E' ), a= loge(Eo/E)

At
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As in equations (6-15) and (6-14). the energy of the neutrons at the source is E and the formula
predicts the average of the displacement-squared for neutrons of energy E. E’ s the variable of
integration and disappears upon substitution of the limits,

Referring to Figure 18; page 37, we note that the cross section for neutrons inhydrogen is
very nearly constant (™ 21 bams) over a wide range of energies = from about 1 ev (where the effect
of chemical binding forces becomes negligible) to about 10 kev. For slowing down in this region, A
is constant, and the formula (6-16) can be reduced to the form:

1’2“ = f(Eo) - 6)\'2108 ,E : 6-17)
Using Ra-Be as a neutron source in a tank of water, we find the following data experimentally:

Slowing to Rh resonance (1.28 ev): r® o 276.6 cm*®

Slowing to I resonance (37 ev): rzw =262.2 cm®

It follows then from equation (6-17), which is valid in this range of energies, that:
[(rz) ,for Rh] = [(?) _ for 1] = 6N log (37/1.28) = 14.4 cm®

from which A2 = (14.4/20.2 cm ® or A= 0,84 cm. This is an average mean free path, to be compared with
appropriate averages of dxfferentxal data. Recent data on Ra—Be neutrons in water [Phys. Rev. 73:271
(1948)] mdxcates that r for indium (1.44 ev) is 272 cm®,

6.4 DISTRIBUTION OF NEUTRONS FROM POINT SOURCE - AGE EQUATION

In the last section, we have discussed one description of the space distribution of neutrons for a
a point source in an infinite homogeneous medium. In this section, we shall detive an expression for
the neutron *‘age’’ rather than the average of the displacement-squared. This *‘age’’ is likewise a
distance-squared. (The somewhat misleading nomenclature results from the analogy between the present
problem and heat flow.)

As before, neutrons with energy E are fed into the scattering medium. Our interest is in the space
distribution of neutrons of various energies. Accordingly we define a steady-state neutron density
function n(x,y,z€ ) such that n(x,y,z,€) dxdydzd £ is the number of neutrons in the volume element
dxdydz, with the logarithm of their energy between € and t + d& (where, as before, & = log E). Consider
* the volume element and the neutrons in it in the given energy range. Per unit time, this volume element
wiﬂ feceive neutrons in this energy range from two sources: (1) from diffusion of neutrons of this energy
from. outside the volume element and (2) from higher energy neutrons in the volume element which have
their ¢epergy degraded into the given energy range.

From the first source, diffusion, the contribution to the neutron population in the volume element
can be calculated using methods of kinetic theory. The diffusion coefficient is:

Ay
= A =
P ¥/3 Gl1-cos ¢"]) (6-18)

where Ais the mean free path for scattetmg, (cos ¢) the average of cosines of the angle of scatter-

ing in the laboratory system, and v the neutron velocxty A, is called the “‘wransport mean free path.”
At isthe distance that a neutron would travel on the avetage in the direction of its initial motion after

an infinite number of collisions, each collision resulting in an average deflection given by kos @),

A~93-44
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and each collision being followed by one mean free path (A) movement. As shown in equation
(6-18), A and A are related by the equation:

A
= - (6'19)
}‘t 1 -~ (cos $) o«
For isotropic scattering, equation (6-4), since (cos ¢) v - 2/(3A), the relation between the
transport mean free path and the mean free path is:

A

) AN
t 1-‘2-
3A

5 ;
When A >>1, 1A, (1 + in) AZA. As in kinetic theory, the neutron cutreat density S is related

to the diffusion coefficient by: A
: S=—-D n (neutrons/cm?*/sec) _ (6-20)

This is a vector equation, with S in the ditection of the gradient. Notation is standard:

n=gradn = ix(anlax) +i_(9n/9y) + iz(an/az) withi, i , and i, the unit vectors in the x, y,
and z directions. Consider the face dydz of the volume element at (x,y,z). The neutron current
out of this face (in the negative x-direction) is D(9n/3x )so that the number of neutrons per unit
time in the energy range between € and €+ dE.  going out of the face dydz ac (x,y,2) is
D(9n/9x) dydzd€ . . At the opposite face at (x + dx, y, z) the number of neutrons per unit time
in the energy range de coming into the volume element(negative x-direction) is:

3, A% .
D (Set S5 dx) dydzd

The net gain of neutrons per unit time in the volume element is thus D(0%n/9x?) dxdydzd € .
Taking other pairs of faces and adding up, we obtain:

Neutrons in energy range between
€and & +dt diffusing into the =D ?%ndxdydzd  (6-21)
volume dxdydz per unit time ‘

with  ? the Laplacian = (9%/3x®) + (3%/3y % +(3%/3z%).

Now consider the other source of neutrons, those in the volume element which are slowed
down to the proper energy range (between € and £+ d&. ). The number of collisions of a neutron
in unit time is v/ If this is multiplied by the average change in € per collision, that is by &
the result £v/A is the loss of £ per unit time. Representing values of € as points on a straight
line, Figure 38, a neutron can be visualized as moving down the Z line with a velocity &v/A

(€= LOG,E) | |
NEUTRON PROCEEDS DOWN € AXIS WITH SPEED= WA
@;)/X(t)‘“" |<——§v(s+de)IX(¢+d¢)
L0104 i ' —
€ €t de .
€——p

Figure 38. Slowing down of neutrons: appearance on & axis.
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(velocity meaning loss of £ per unit time). At the point €, the number of neutrons in the volume
element dxdydz which move out of the range of energies (between€ and £ + d%) per unit time
is:

(& (e)/ ME)] - a(x,y,2,2) dxdydz
_ where the functional dependent of v and A on E£has been indicated. The number per unit time
moving into the top of the energy range at € + dE.is:

[&v(e+ aey/ ME+ d8)] - a(xy,z, €+ d Mxdydz
W& 3
[f AE) + 3¢ [ v(e)n] de ] dxdydz

The net increase per unit time of neutrons in the range d€ and in the volume element dxdydz is
obtained by subtracting outgoing from incoming:

M = 2_. £) .
Net increase 3% 73 ’!6(;) I(X,y,z,ﬁ)] dxdydzde (6-22)

Combining equation (6-22) with equation (6-21) gives the slowing down differential equation.
Since we are concerned with the steady-state (time-independent) aeutron density, the sum of
equations (6-21) and (6-22) must be zero:

2 .9 LoV o
Dv n+ 3¢ K(é—x) 0 (6'23)
Ay
ithD® —0— 3
s "3[1 - (cos P ] Mt

A= N(E), v = w(€), n =n(x,y,2,&), =log E

Equation (6-23) can be transformed into the same form as the classical heat conduction
equation by the introduction of new dependeat and independent variables. The dependent variable
is the so-called **slowing down density’’ defined as:

q = &wm/A (6-24)

The name is descriptive. As pointed out earlier, the loss of € per unit time per neutron is £v/A
(Figure 38). Multiplied by the neutron density n, this is then the total loss in€ per unit time per
unit volume per unit energy interval or, expressed differently, the number of neutrons per unit
volume per unit time crossing any value £ on the £axis. Ia the steady state, if q is integrated over
all space, the number of neutrons crossing any value £ per unit time is certainly the sumber of
neutrons fed into the system per unit time, i.e., a constant. Thus J«x,y,2,€)dxdydz = constant for
all £. If qis substituted into equation (6-23), the result is:

AMeE) v 39 - ¢ .
3E[1 - (cos D) ] et 5e (6-25)
This is a simpler form than equation (6-23) since the differential operators only operate on q. The

independent variable can be changed to further simplify the form. Let us mtroduce the independent
variable 7, the **age” (often called the*'Fermi age’’):

‘l'! - 93 ’, é
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T= 1 "N (e e’
38(1 - cos @) ) J (€ 6-29)

It is apparent that Thas the dimensions of length®, Differentiating q with respect to &:

9 .2q 37 . -3 [__¥(®)
9¢ 97 9t oT l}fl-—(cosQS)“]

Substitute into equation (6-25) and cancel out the common factor. The result is the **Age Equation’:

2 . 9q »
vaes 5 (6-27)

with q and Tdefined by equations (6-24) and (6-26).

‘ A considerable advantage is secured by these transformations in that equation (6-27) is identical
in form to the heat conduction equation: o

v °r =y 2L °
Ot

Thus q is analogous to temperature and 7to time. Just as temperature will decrease with increasing
time (no heat sources), so will the neutron *born’’ with enetgy* 80 lose its energy £ with increasing
“age’’ % This can be seen by inspection of equation (6-26), where 70 as €~ & and 7 increases
with decrease in € (or Tincreases as the *‘time since birth” increases).

Let us apply the age equation to the point source problem. Given a point source of neutrons with
energy E  in an infinite medium, what is the density of the neutrons as a function of E and position?
First solve the age equation for q, borrowing the correspoading solution of the heat equation:

q= _..__g_ e-r’/4'r (6-28)
(4,",')'/3

Identification of Q as the source strength, that is, the number of neutrons with energy E .
introduced into the system in unit time, follows by integrating q over all space using spherical polar

coordinates:
™

[+ 0]
I qe &7 = 4nlQ/am®®) [ e /4T3 =

[+ +]
Jexp (- axFx%ix = V/ (40>,

since

Let us examine the form of the solutions equation (6-28). In Figure 39, a sketch of q versus 1
for large and small values of 7shows that as E decreases from E o(i.e., as Tincreases), the space

* Although € 18 conveniently referred to as the neutron’s energy, it should be remembered that £1s the natural
logarithm of the neutron energy.

Q-93+4
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Figure 39. Point Source Solution of age equation.

distribution for the energy E gets broader and broader. This is as one would expect. Fast neutrons
“ate distributed close to the soutce, and slow neutrons ate spread out. (Note that the area under the
curves betweenr and r + dr i in the figure does not give the number of neutrons per unit time arriving
in that inteewal. A factor 477t® must be introduced. In fact, 4mr%q dr is the number of neutrons per

unit time arriving in the space interval between r and r + dr.) :

In.problem 5 at the end of this chapter, the average of r® is calculated from q. The result, 67
is similar to that obtained in Section 6.3.

PROBLEMS
1. Consider the colhsxon of neutrons with beryllium. What is the average angle of scattenng
observed in the laboratory frame of reference? In the center of gravity system? :

2. Calculate £ for H®, He ,Be , 0%, U®®, In each case, how many collisions will be needed to
reduce a neutron’d energy from 1 Mev to 1 ev?
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3. Suppose a point source of fast neutrons is placed in a large tank of water. At various distances
from the source, indium foils (sandwiched between cadmium foils) are exposed to the neutron flux and
thereby activated. Exposure times and foil areas are constant. The following data are obtained (after
correction for activity decay, etc.):

flem) 6 8 10 12 14 16 18 20 22 24 26 28 30
A(in) 890 550 302 180 101 61 40 26 18 11.5 8.7 5.7 4.0

r is the distance from the source to the indium detector, and A is the activity in counts pet minute of
the indium detector (acnvxty is due to 1.44 ev neutrons). From these data, calculate (r* ) (N.B.
The activity A is not proportional to the number of neutrons in the interval between r and r +dr.)
Values of A for larger t can be determined by semilogarithmic extrapolation.

4. Consider a substance in which A is constant. In this case, what is the relation between the
age T and the actual *‘time from birth’'?

5. Using the poiht source solution for q, find (t’) in terms of 7. Apply this result to the
hydrogen problem discussed in the sections before and after equation (6-17) Show that the same values
are obtained using age theoty as in the vector averaging process.
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CHAPTER VII

THE DISTRIBUTION OF SLOW NEUTRONS IN A MEDIUM

7.1 THE DIFFERENTIAL EQUATION FOR SLOW NEUTRONS

Calculation of the distribution of neutrons of various energies in a medium involves two dis-
tinct problems. First, there is the slowing down problem dealt with in the last chapter. The
neutrons do not continue to be slowed down indefinitely, for the nuclei they collide with are not at
rest but have vibrational energies corresponding to their temperature. Eventually the neutrons come
into thermal equilibrium with these nuclei and show a Maxwellian distribution* corresponding to
the temperature of the /medium. Clearly the problem of the spatial distribution of these slowed down
or thermal neutrons is quite distinct from that of the distributions of neutrons being slowed down
and must be handled by different methods.

In approaching this second problem, we ask, *‘Given a source of thermal neutrons, what can be
said about their stationary state distribution in a medium?’’ We seek a differential equation as our
description. Let n(x,y,z) be the density of thermal neurrons at x,y,z. As in the derivation of the
age equation, we consider a unit volume. There are three mechanisms by which the number of neutrons
in this volume element change with time: (1) diffusion into or out of the volume element, (2) absorp-
tion + or capture of neutrons in the volume element, and (3) generation of thermal neutrons in the
volume element by the slowing down of fast neutrons to thermal energies. The first mechanism will
yield DV?n neutrons per unit time per unit volume, as in deriving equation (6-21) of Chapter VI.
The second mechanism decreases the neutron density per unit time by —n/g,where g is the mean
time for absorption or capture. The third is just the slowing down density q evaluated for thermal
energies, since q (¢) is the number of neutrons per unit volume per unit time arriving at a particular
logarithmic energy e. To emphasize that q is to be evaluated for thermal energies, we write q.
Adding the three contributions together gives the differential equation for the time rate of change
of the neutron density:

DV®n — (n/6) + q, = 3n/3t (7-1)

where n(x,y,z,t)dxdydz is the number of thermal neutrons in the volume element dxdydz at time t,
(n/ 6)dxdydz is the number of thermal neutrons absorbed per second in the volume element dxdydz
at time t, and q, dxdydz is the number of thermal neutrons created (by slowing down) per unit
time in dxdydz. It should be remembered that q, is a function of x,y,z which can be determined
from the age equation with the proper boundary conditions. Since D = A v/3, equation (7-1) can
be rewritten for the steady state:

3 3q,
V%a =~ — n + — =0
AV 8 Ay
By defining:
A = vg = ‘'capture mean free path”
L = VAA t/3 **diffusion length”’ (7-2)

sNumber of neutrons with velocities between v and v + av 1is proportional to vzexp (—nvz/zk'r_) dv. ~

fThis mechanism should perhaps also have been considered in the slowing down process. But wheress
orders of magnitude are such that in the slowing down the consideration of absorption is usually a
refinement, here it i3 a necessity.

- ?3 -7
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the steady state equation becomes:
V3 - — —F=0

L2 Nv . (7'3)

For a point source of slow neutrons (q, =0 except at r = 0 where q, is a delta function),
the equation reduces to:

V% - (/L3 =0 (7-4)
The solution is spherically symmetrical, so equation (7-4) reduces to the radial equation:
1 d f.2 de n '
— - {r =0 -
r dr dr ) L2 (75)

Let u =nr. The equation becomes u” — (u/L?) =0 where u” = d%u/dr® Solutions are u = exp
(£r/L). The boundary condition that n-0 as r~ o eliminates the positive exponential, so the
solution is:

e—r/L
r

The constant A can be evaluated by considering a small sphere enclosing the source at the origin.
The neutron current, equation (6-20) of Chapter VI, is =DVn = ~Ddn/dr = =DAe™ 7™ [ —1/(Lr)
—1/r2]. Multiplying this by the area of the sphere 47r? and letting 10 gives 47DA. This isthe
source strength Q. Thus A is Q/ (4nD) or 3Q/(4m A v) The complete solunon to (7-3) for a point
source of Q slow neutrons per unit time is:

_ 3 e—r/l.) o
" 417)\'_7 ( r (7:6)

The solution may be checked by substitution in equation (7-5).

The point source solution is particularly important since any source can be'represented by

a proper assembly of point sources, and the corresponding solution is the superposition of these
point source solutions.

To solve this equation for a point source of fast neutrons we set up an integral over a
distribution of thermal neutron point sources all over space that arise from the slowing down of
the fast neutrons (see Figure 40). Now we can find the density of slow neutrons at a distance
r from the point source of fast neutrons as follows. In any volume element dV, a distance
from the point source of fast neutrons, there are q, dV thermal neutrons per second being pro-
duced by the slowing down process where q, [see equation (6-28)] is:

q, = -Q e—p2/4-r
T (41I'T)3/2

with = age for thermal neutrons,

Q

The volume element dV is expressed in spherical coordinates, dV = p%dp sih #d 6 d¢, and the
polar axis (¢ = 0) is taken to pass through the point at which we are finding' the thermal neutron

fast neutron source strength (neutrons/second).

U=73-
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“+— PROBLEM:WHAT S DENSITY OF THERMAL
NEUTRONS OF P 7

N ™
r

g,dV THERMAL NEUTRONS
PER SECOND MADE IN dV
BY SLOWING DOWN PROCESS

dv

CFAST NEUTRON SOURGE

Figure 40. Point source of fast neutrons,

density (see point P in Figure 40). Now point P is a distance |7~ T| =Vp® + 12 ~2a cos 6
from the source q, dV. As a consequence, the density of thermal neutrons observed at P from
this source is given by equation (7-6) with the appropriate source strength and radial distance

substituted:
Thermal neutrons at P} _ 39,4V il o - 7L
\from source at dV \ 4Ty g
Adding up the contributions from all sources means we integrate over dV. Substituting for Qo

|p — 7], carrying out the integration over the azimuthal angle ¢ and changing variable . =cos ¢
finally gives:

(Thermal neutron density at distance r from fast neutron source of strength Q)

[+o]

f J’ - 2rar VP + r’—zprﬂ /1
n(r) = . L p2dpd -7
® 2>\v(41r¢)3/2 ey pok

p=0 p=-1

In equation (7-7).)\ eV T and L are the transport mean free path, velocity, age, and diffusion
length for thermal neutrons.

Y
BN
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NN NN
FREE SPACE SCATTERING

=N

Figure 41. Neutron density behavior at boundary surface.

3 i

7.2 BOUNDARY CONDITIONS FOR THE SLOW NEUTRON DIFFERENTIAL EQUATION

In order to solve the slow neutron differential equation, the behavior of n or some function of

n at the spatial boundaries must be known. Consider a finite convex (i.€., not re-entrant) medium
with a neutron source in it and free space everywhere around it. What can be said of q ot n at
the bounding surface? To a first approximation, q or n can be taken equal to zero. This is made
somewhat plausible by the argument that free space acts as a perfect sink; namely, it absorbs
all neutrons and returns none. It, therefore, acts as such a heavy drain on the neutron density at
the boundary that no density can be maintained there.

Actually it can be shown that 2 mote proper boundary condition is that n or q vanish at -

a surface (2/ 3)Kt away from the bounding surface,* where ')\tis the neutron transport mean free
path in the medium. Consider a plane bounding surface, Figure 41. The neutron density in the
neighborhood of the boundary can be approximated by a linear function of the distance: n =

p(a+ x). This can be shown to satisfy equation (7-4) for a one-dimensional situation. The flux

at the bounding surface is just DVn [see equation (6-20)] in the negative x direction. Since the
gradient of n is just dn/dx, the flux is D(dn/dx) =D *p = (X‘y/ 3)p. The flux can be calculated by
another means. In Figure 42, it is apparent that the probability that a neutron coming from the
unit volume AV will reach the surface at point P is exp(—’f/ﬁgf—e ). Moreover, the fraction of the

total solid angle included between ¢ and ¢ +dg is sin § dg/2 [see equation following equation
(6-5)] . Since the volume AV is the source of nAV/(A /v) neutrons per unit time (an equal number
of neutrons return to the volume per unit time in the steady state), then the total number of
neutrons crossing the boundary per unit time and coming from the volume AV is:

Wf 2 exp(__x/}\cos O)(sin 6 do/2)(nvAV/A)
f=0 *

¢A more refined derivation gives 0.71 Kt‘

a-93-7
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FREE SPAGE SCATTERING MEDIUM

Figure 42. Neutron flux calculation at boundary.

Substituting for n [ =p( o+ x)] and rearranging this equation becomes:

/2
(1/2) f p(at )(v/N)e™ /A0S D i g 49 AV

=0

Consider the volume to have unit area perpendicular to the x axis and depth dx. Then integrating
the foregoing expression over x would give the total number of neutrons each second coming to
the surface from an infinite column of unit cross-sectional area perpendicular to the surface. But
this is seen to be the flux or the number of neutrons crossing unit area of the surface per second,
provided, of course, that everything can be assumed uniform perpendicular to the x direction. Thus
the flux is:

(1/2) J J. p( at x(v/A )™ (A0 &) gin 4 g ax
V]

0
Change variables to u =cos ¢ and integrate first over x, then over p. The result is (vp/2A)
{¢ "'>\r/2) + (}\t' /3)]. Equating this to the previous result for the flux, p)\tv/ 3 and solving for a
gives a=(2/3)A, But ais the x intercept of the neutron flux. Therefore, we have shown that n
vanishes at a distance (2/3)A outside the bounding surface.

It must be noted that this boundary condition really describes n at the boundary, not beyond
the boundary. In particular, the boundary condition does not mean that n vanishes at x = —(2/3)A,
and is negative beyond that point. What has been proved is simply that tke density at a
bounding surface behaves as though n is a linear function of x, venishing at x =

~(2/3)\

(A-73-7
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7.3 THE DIFFUSION LENGTH IN WATER AND GRAPHITE

To be able to use the slow neutron diffusion equation (7-3), it is necessary to know the
value of L, the diffusion length. Measurement of L for water can be accomplished by placing
a water tank on a pile (or on the thermal column of a pile), as in Figure 43. Provided diameter
and height of water are very much greater than the diffusion length itself, the problem may be
considered to be one dimensional. The bottom surface is a plane source of thermal neutrons.
Equation (7-3) becomes: ’

d%n/dx® - (0/L.3) = 0
(7-8)
n=n, e~ /L

where x is the distance from the bottom of the water tank. Measurements are made with and
without cadmium separating the pile and water tank to determine (by subtraction) n for thermal
neutrons as a function of x. The exponential decrease of n with x as predicted in equation

(7-8) is measured and L detetmined for water. The valueisL . = 2.8 cm. If a block of
paraffin is used, the result is the same, showing that the absorbing mechanism in the case of
water and paraffin is the same; namely, hydrogen capture. The effect of carbon or oxygen absorp-

‘tion is negligible compared to hydrogen.

h,R>> L x=i h

L= DIFFUSION LENGTH

(Lng 02 BCM) . WATER
<R — =

_/C4(REMOVABLE)

ay v A

Figure 43. Measurement of diffusion length in water,

293
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There are other> ways tn measure L. and related constants for water. Some are described in
a paper by Fermi and Amaldi, Phys. Rev. 49:899 (1936). The diffusion length is dependent upon
temperature. For water, the relation is:

L =2.64 + 0.0061 T
(L in cm, T in °C) ‘ (79
As shown in equation (7-2), the diffusion length is related to the mean free path for absorp-

tion ('A) and the transport mean free path ()\'). Knowing L. and )\t, we can calculate A, or vice
" versa.

For a substance such as graphite, the diffusion length is so large as to make the method
just described impractical for determination of L. The one-dimensional approximation will not be
valid when L is of the order of the dimensions of the medium. As a consequence, the three-dimen-
sional problem must be solved.

The physical atrangement is shown in Figure 44. A fast neutron source is at point P (u,u,0)
on the bottom surface of the graphite pile. The height of the pile is much larger than the diffusion
length, whereas the edge dimensions *‘a’’ are of the same order of magnitude as L. The slowing
down equation, V2q — (dq/3d7) = 0, can be solved for this arrangement by use of Fourier
analysis (same methods as used in solution of heat conduction problems). The result is:

o

q = (4/a®XQ/V4ur) e—‘z/" X e"'"z"'("z + 2/ sin (wrx/a) sin (wry/a)

- r,s =1

(Q = source strength = fast neutrons/sec) (7-10)
| (a,0,h)
|

Pa
e a
| a = 30CM
|
' h [FAST NEUTRON
' SOURCE (Ra-Be)
' IS AT( U,U,O)]
L)
z Ll Rt h>> 1L
. y =Y, (0,0,0)
()
X (0,0,0)
{o,00)
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Evaluation of + by experiment using a Ra-Be neutron seurce shows that the source has three
well-defined neutron energies, giving three superposed distributions. The following table gives
the age values for the three components in graphite at different energies and the percentage of
each component present.

TABLE 2 — Ra-Be NEUTRONS IN GRAPHITl;Z

PER CENT 7 (INDTUM RESONANCE), CM> v {JODINE RESONANCE), M2
15.0 130 54
69.3 340 - 268
15.7 815 736

Such data are sometimes given in terms of the range r_, which is equal to 2v7.

[+ ?

From the data of Table 2, it is appatent that at 30 cm or so from the source, q will be very
small. In this case, the *'source’’ term in the slow neutron diffusion differential equation (7-3)
will be small. The slow neutron density n will be a solution to equation (7-4), i.e.,

V2% — (3/L%m =0

at such distances from the source. Because of the boundary conditions (the slow neutrons are
produced by slowing down from the Ra-Be source), the solution is assumed to have the form:
o

n = 2 n_(2) sin (wrx/a) sin (nsy/a)
ra=1

Substituting this into the differential equation gives an equation fot n__ (2):

dzn“’—- [—"-;' (t* + s? +-—:—] n_ =0

2
dz? a

This equation has a simple exponeatial solution, exp (~z/b ), with b__ equal to the reciprocal
of the square root of the expression in brackets. Thus, the solution for n is:

n = E e"‘z/ bn sin (nrx/a)sin (nsy/a) ‘
re =1 (7-11)
with (1/b_2®) = (#*/a?) (c? + s?) + (1/L?)

It can be seen that as r and s increase the exponential damps out rapidly with increasing z.
Experimentally it suffices to compare activation measurements by slow neutrons in such a column
for the r = s = 1 component:
—z/b_, . .
n= e 1% sin (wx/a) sin (ny/a)
' (7-12)
with (I/b ) = /(277a% + (1/L%)

For a typical graphite sample, the constants are: density = 1.551 gm/ cm?; b = 28.38 cm;
_ a =150.49 cm. Since the neutron density does not vanish exactly at the edge, we must add

&-93-7:
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2 %(2/3) X, to the 150.49 cm, making a = 153.29 cm (A= 2.1 cm). As L depends on density, it
is conventional to reduce all values of L to the value L would be if the density were 1.60
gm/cm?®, This makes it possible to compare directly different lots of graphite tested in this way.

In the following table, some of the results obtained in this manner for four common substances
are listed. A

TABLE 3 — DIFFUSION LENGTHS AND RELATED CONSTANTS FOR H,0,D, 0,

Be, AND C
2
DENS1TY, G/cm® AToms/cm? L. cw L%/ . cu
H,0 1.0 0.0334 x 10%% 2.85 0.142
D,0 1.1 0.0331 x 10%* 100 0.80
BE 1.8 0.1235 x 10°% 31 0.87
c 1.62 0.0871 x 10%% 50.2 0.903

The microscopic constants in problems such as those just described are usually two: o,
the scattering cross section, and 0,, the absorption cross section. These are related to L, ,
and A in the following manner:

A . A 1
¢t 1-(cos ¢),,’ " no,
1 Oy A
vg= A= ";6_‘; N = a—:: ‘—>\— (7-13)
3

Definitions of the different symbols are:

n = atoms/cm?

v =neutron velocity

o =mean lifetime for absorption

(cos ¢),, =average of the cosine of the angle of scattering in the lab system =
2/(3A) for isotropic scattering (A is mass number)

A, = transport mean free path

A = mean free path for scattering

= absorption mean free path
L = diffusion length
N = average number of scattering collisions made per absorption

7.4 THE ALBEDO OR THE REFLECTIVITY OF BOUNDING SURFACES FOR NEUTRONS

So far in this chapter, we have outlined the methods of obtaining neutron distributions in
media due to sources within them. However, neutrons are often introduced into a medium from the
outside. It is convenient to define a reflectivity, or, as it is called, albedo (*‘whiteness’’ in
Latin), for a surface. It is simply the fraction of the incident neutrons eventually’ returned or
“reflected” from the surface. An albedo of unity means perfect reflection; an albedo of zero

-73-9
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means perfect (black body) absorption.*

Let us solve a typical problem. We shall calculate the albedo of an infinite plane surface
for slow neutrons. But first it will be necessary to solve the following problem: **Given a medium
bounded at x = 0 and occupying all of space to the right of this plane, what is the probability
that a slow neutron starting at a point d units distant from x = 0 will escape from the medium,
i.e., will reach x = 07’

We shall do this problem twice, using two very different approaches. First, we shall use
the slow neutron diffusion equation and assume that the problem is one dimensional, i.e., that
the neutrons move only in thé x direction. The second method will involve the solution of an
integral equation.

Assume a point source of neutrons at x = d on the x axis. We must calculate the flux at the
origin for unit source strength, This is precisely the escape probability, since the boundary of
the medium is at the origin. The slow neutron diffusion equation is in this case:

n

2 — =
an—Lz—-O

(everywhere but at x = d), and since this is a one-dimensional problem, the solution is:

a =Ae~x/x. --Ae+x/L

for 0 < x < d, assuming the boundary condition n(x = 0) =0. For x> d, n = Be =*/L_ These two

solutions must join at x = d (see Figure 45) so that n is continuous and the gradient dn/dx

D P

Figure 45. Joining solutions at discoatinuity.

has a finite discontinuity. To find the amount of this discontinuity, integrate the complete
diffusion equation (7-3) throughout a small *‘volume’’ surrounding the source:

ate ate

d2n n '
f[d—;-z—-— Lz] dx =—/%_dx
a- € d-€

The first term is {dn/dx] : f 5 , the discontinuity in dn/dx. The second term vanishes as

€ ~0, for n must, for physical reasons, be a continuous function of x. The last term is simply

*See Fermi's paper on the motion of neutrons in hydrogenous substances in Ricerca Sci. 7:13 (1936)-

S | A-73-t
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—Q/D where Q is the source strength at x =d and D is the diffusion coefficient )\tv/3. Thus,
the conditions on n and dn/dx at d are:

Continuity of n) Ae~ %% _Aet®/L _pe~o/L

(Discontinuity of _ A /1 ye—8/L _ ‘oL _ —a/n
—Q/D in dn/dx) A /L (A/L)e (B/L)e +(Q/D)

‘Hence A =-LQe"’/“ /2D and B =LQ (1 — e~2%/1),

The flux at x = 0 is then D (dn/dx) __, = Qe %% and for unit source strength it is simply
e~ %/ This gives the probablhty, p (d), that a slow neutron at a distance d from bounding sur-
face will eventually escape from the medium.

~ Before we use this result to find the albedo of such a one-dimensional medium for neutrons
incident on the boundaty from the outside, let us do the problem in another way. In addition to
the methods of diffusion, there is a more exact and rigorous way to attack problems of the type
being discussed. To find the neutron density in a particular volume ¥ at a time t, one could
investigate the density of neutrons that are moving toward ¥ and are in the other volumes at
various earlier times ¢’ so that (considering their velocities and distances from ¥) they would-
be in ¥ at the time ¢, The neutron density at ¥ at the time t could be expressed as some sort
of sum or integral of these other neutron densities. We would be led to an integral equation in
the neutron density n. T "

Thus in addition to the differential equation method of solving diffusion problems, there
is an integral equation method, too. It would be well to stop a moment and compare the relative
merits of the two approaches. In setting up the diffusion differential equation, it had to be
assumed the quantities such as n, dn/dx, etc. vary slowly with respect to the mean free path
of the diffusing particles. Further, it was assumed that densities of particles were large enough
so that speaking of quantities such as dn/dx made sense. In particular, one would not expect
- that the solution of a problem like the following by diffusion methods would give physically
true results: “Find n(r, 6, ¢ ), the density of slow neutrons in a sphere of radius \/2, if there
is a point slow neutron source at the center of the sphere and A is the mean free path of slow
neutrons in the medium of the sphere.’’ There are, however, no such restrictions on the use of
integral equation me thods. No assumptions about the variation of dn/dx with distance, etc.,
need be made. Integral equation methods are more general and usually more difficult. It often
becomes expedient to do diffusion problems by means of differential equations and proper
boundary conditions first in order to get a rough idea about the function in question. Then the
more exact solution can be obtained by means of an integral equation. This is the procedure we
shall follow here. We have obtained p(dJ, the probability that a neutron d@ units from the boundary
of a one-dimensional medium will escape it, by means of the diffusion differential equation. Let
us now apply integral methods.

Consider a neutron at d. As it leaves d, one of two things may occur. It may go to the left
(toward the boundary), or it may go to the right, each with a 50% chance. If it goes to the left,
it may escape before it suffers a collision, or it may experience a collision. The probability
that a neutron at d will escape without a collision is, therefore, the product (1/2) x e~ Y/A A
where )\ is the mean free path between collisions (mfp for scattering when o, > > o). Howevet,
a neutron may escape even if it suffers a collision. Suppose the neutron suffers its first collision

A-93-9%
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at x and that #(x) is the probability that a neutron from 4 suffers its first collision at x (either to
right or left of d). Now #(x) is the probability that a neutron at x will eventually escape. The
probability #(d) that a neutron at 4 can escape is made up of two terms, the first of which is the
probability of escape without collision, and the second is the sum of all possible products of

n(x) $( x), i.e., probability that the neutron is scattered to x times the probability of escape from
x:

p(d) =de "/ 4 ; " (x)p(x)

x

It is assumed in the equation that there is isotropic scattering in the lab system, i.e.,
that $(x)depends only on xand not on the side from which the neutron arrives at x.In detail, the
sum should be written:

d
Lf°- x-d)/A .dx p(x) N—l ___/ ""(!‘d)/}\ dx p(x ) (7- 14)
2 A N
0

whete the first integral gives the probability that a neutron starting from 4 will go left, suffer a
colligion at x, but will eventually escape, and the second integral gives the probability for the

same thing with initial motion to the right. N in equation (7-14) is the ratio o / o, given in equation
(7-13), the average number of scattering collisions made per absorption. The probability that the
collision at x is a scattering is 0,/(0, +o,) or N/(N +1) = (N~ 1)/N for N > > 1. Simplifying
equation (7-14) by combining the integrals and adding the no-collision escape probability gives:

- ES —— \‘x N“l
pld ..-— a/N f L V= p(x) N (7-15)

Since the solution of the differential equation gave p(d) =e™ 4/%  we therefore try p(d)=Ae™ ™
as the solution of this integral equation. Doing this, we find that:
Y-
p(d) = ————, AV¥ (7-16)
/N+1 ©
From equation (7-13) we note that N =A /A=3L"/ 2/ A A. Expressing the exponential of equation
(7-16) in terms of L gives exp (—dV /\t/ A/ AL) ) wlnch is to be compared to the exponential
exp (=—d/L) derived by the differential equation method.

We are now ready to attack the original problem of finding the albedo. Say a beam of slow neutrons
moving along the x axis from the left (negative x) hits the plane x=0. The probability that a neutron
of the beam will make its first collision in dx at x is e ’/A(dx/ \). The probability of not being

absorbed and escaping from here is p(x) NNl Hence the albedo is:

e 3]
[ e dx N-1 /N-1
,B = fe /A A P(x) T = 7};:—-1——-—- (7‘17)
0 kS

A nonabsorbing medium (N ~® ) would eventually return all neutrons and have an albedo of 1.

If we wish to know g for an angle of incident & we are forced to drop the one-dimensional
attack and the problem becomes more difficult. The result is:
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go
) —-—-———-—-'Nq - | 7
ﬁ YN+/3cos @ ‘ (7-18)

This is inconsistent with the first result at 6 =0, only because this solution allows for the fact that al-
though ¢ =0 for the incident neutrons, they are not restricted to move along the x axis in the medium.
The effect of allowing motion at angles to the x axis is to allow longer paths and hence more chance for
absorption. This makes 3 slightly smaller.

Suppose we wish to measure the albedo for slow neutrons on paraffin. A direct measurement would
be difficult, for even if a collimated slow neutron beam can be made to impinge on some paraffin, neutrons
would be coming off at all angles from all over the surface of the paraffin, and their detection would not
be easy. A much simpler way to find the albedo is the following. Place a thin-foil* slow neutron detector
(Figure 46) somewhete in the middle of a mass of paraffin whose boundaries are far enough away from the
foil that the paraffin can be considered infinite in extent. By means of some neutron source, we induce an
activity in the foil, Call this activity A. Next back the foil on one side with some cadmium, enough that
the cadmium will zbsorb practically all the slow neutrons hitting it but not enough to distort the neutron
flux field appreciably. Measure the new activity in the detector foil. Call this activity B. Now the ratio
(A/B) bears a simple relation to the albedo. To understand this, consider the number of neutrons v hitting
the foil each second in sityation B. It is clear that for a uniform distribution of slow neutrons, the foil in
case A would have’  neutrons per second hitting it from each side and would have at least 2v slow
neutrons hitting it per second. Actually, more than 2 slow neutrons will hit the foil in case A, for some
of the neutrons pissing through the foil can return and pass through it again, there being no cadmium
about to prevent this (see Figure 47). In fact, we can calculate the average number of times a neutron
about to hit the foil will pass through it before it is eventually absorbed in the paraffin. Certainly the
probability that this neutron will return through the foil is 3, the albedo of the paraffin for slow neutrons.
The probability that it will make at least two trips is 8 X S or S?, and so on. Thus the total number of
passages through the foil for a neutron about to hit it is on the average:

1+8+ 8%+ 11—3

Hence, there would be 2v /(1-) slow neutrons hitting the foil each second, rather than simply 2v/
neutrons. From this it follows that:

A 21//(l~—,3) 2
_ 2 — e = 1-2(B/A 7-
. . VAR e

In this manner a measurement of the two activities A and B suffices to determine the albedo. For paraffin,
A/B is 11. From equation (7-19), it follows that the albedo for paraffin is B=0.82. This type of measurement
would not be feasible with poor absotbers of neutrons, for it has to be assumed that the diffusion length in
the medium is small compared to the foil size, i.e., that most of the “‘reflection’” takes place close to the
foil. Further, if the detector is not thin, it acts as its own cadmium, so to speak, and a correction must be
made for the absorption in the foil.

3By a thin foil is meant one where there is little modification of the neutron distribution due to
the presence of the foil, i.e., one for which O’totn8<<1, where O'tot 1s the total cross section, 7 the
number of atoms per cn3, and § the foil thickness.

A-4 3-8
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Figure 46. Measurement of albedo.

PARAFFIN

e 4
-~ B NEUTRONS GET BACK
FOR EACH NEUTRON INCIDENT

Figure 47. Multiple transmission in albedo experiment.
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PROBLEMS

1. The diffusion length for thermal neutrons in water is 2.8 cm. Now the neutron distribution
is Maxwellian, so the average velocity is V =(2/V/ ) V (where v is the velocity i mv?/2 = kT)
or V = /8kT/nm. To calculate the mean free path for absorption (A ), we must use o, for neutrons
with velocity V rather than v. Given o, = 0.31 barns for room temperature neutrons (v = 2200 m/sec;
see Figure 11, page 24), calculate A for V neutrons. What is the transport mean free path for
thermal neutrons (Maxwell distribution) in water?

‘2. If £ is the average fraction (averaged over angles of incidence) of incident neutrons absorbed
in the foil, find the relation between A/B and the albedo.

A-93-%6



AECD - 2664

CHAPTER VIII

NUCLEAR FISSION

8.1 THE BINDING ENERGIES OF NUCLEI

Before we proceed to take up the subject of fission, it is necessaty to understand the general
‘nature of the forces that hold nuclei together. For this purpose, we should like to find an expression
for the nuclear binding energy. As we have seen in Chapter III the nuclear mass is related to the
binding enetgy. The telation is simply: '

M =(A - ZM, +ZM_ - (Binding energy /c? (8-1)

with M the nuclear mass, M the neutron mass, M the proton mass, and A,Z the mass and atomic
numbers, tespecnvely. 'I'ins relationship shows that we may check any conclusions about nuclear
binding energies by comparison with nuclear masses.

In the absence of exact knowledge conceming the nuclear fotces, the problem of finding the
dependence of binding energy on Z and A is a difficult one. We must examine our empirical knowledge
about nuclei for implications concerning the nuclear forces ot the biading energy. Our empirical
knowledge includes:

Nuclear size and constancy of density of nuclear matter.
Tendency of Z to be equal to A/2.

Effectiveness of Coulomb forces in making Z less than 4/2.
Rarity of nuclei with even A and odd Z.

Each of these factors will be considered separately in its effect on the nuclear binding energy.

Consider first the nuclear size. From scattering and other expenments with heavy nuclei it is
found that nuclear radii are proportional to A1/2, In fact, ,

_ R = 1.48 x 107337 3¢ (8-2)
fairly well fits the known data, although this formula does not mean much if applied to the very
lightest nuclei. For the ptesent puspose, the formula implies that the average density of constituent
particles is about the same in all auclei. It is quite likely that the density within a single nucleus
does not vary much from one region within the aucleus to another. If a certain binding energy resule-
ing from nuclear forces is to be associated with two nuclear particles within the nucleus a given
distance apart, it is clear from the foregoing that this binding energy per unit volume of the nucleus
is constant, inasmuch as the average distances between constituent particles are everywhere the
same. We conclude, therefore, that the binding energy of nuclei is essentially proportional to their
volume or to A. Th terms of the energy of the nucleus (the negative of the binding energy), we have
then E ™~-a A, whete a N is some positive coefficient which these considerations have not sufficed
to detenmne. .This is not completely accurate, since we have failed to consider the fact that the
nuclear constituents at the nuclear surface are not bound as strongly as particles inside. The aumber
of such particles is proportional to the surface area so that we must subtract a number proportional
to A*® (or R ®) from our previous estimate E . Thus:

E,=-a,A+a AV (8-3)
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The second consideration, the tendency of Z to be equal to A/2, should be taken into accouat.
Since A is the total number of nuclear particles (neutrons plus protons) this tendency means that there
is a tendency for the number of protons to be the same as the number of neutrons. (While it is true
that for heavy nuclei there are fewer protons than neutrons, we shall assume that this is due to the
electrostatic repulsion between protons, which will be considered next. In other words, we are
assuming that if it were not for Coulomb forces between protons, there would be equal numbers of
protons and neutrons in nuclei.) There are at least three types of nuclear forces within a nucleus:
neutron-proton, proton-proton, and neutron-neutron. In view of the equality of the number of protons and
neutrons in nuclei, the last two types of forces must be of the same order of magpitude. For if the
proton-proton forces were stronger, nuclei with more protons than neutrons would tend to be more strongly
bound, hence more stable than those with equal numbers of each. If the energy of isobars (same A,
different Z) were plotted against Z, we should get a curve symmetric about Z - A/2, as nuclei with Z
protons and A-Z neutrons would have the same energy as those with Z neutrons and (A-Z protons,
assuming equahty of neutron-neutron and proton-proton forces. The isobar cutve as shown in Figure 48
shows a minimum at Z = A/2 since nuclei for which Z = A/2 are the most stable. Thus E,, the energy
associated with the departure from equality in the number of protons and neutrons, must be proportional
to some even power of Z—(A/2). For simplicity, consider that in the neighborhood of Z = A/2, the energy
E 3 is proportional to the square of Z~(A/2). To see what the '‘dimensions’’ of the coefficient should be,
consider two nuclei with the same value for Z/A, one having an A twice the other, so that both nuclei have

Z —

Figure 48. Quadratic shape of energy surface,

A-93-5§
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the same fractional excess of neutrons over protons, but one has twice as many particles. The
larger nucleus will have twice the E _ if we associate with each extra or unpaired patticle a certain
fixed energy. It follows then that E should be proportional to A, or:

2 A -2)? A
E,=a,A (.X—_zl)2 =a, .JT (8-4)

The effect of Coulomb forces between protons can be taken into account by finding the energy
Eg associated with the Z protons being distributed in a sphere of radius R. This is a simple problem
in electrostatics if we consider the charge uniformly distributed throughout the sphere. In this case,
the potential energy of a charge Ze uniformly distributed throughout a sphere of radius R is just 3/5)
(Ze)a/R in ergs (e in esu). Substituting for R from equation (8-1) and for *‘e’’ and then converting
ergs to mass units, the Coulomb energy becomes:

E, = 0.000627 Z2/AY? (8-5)

Our last consideration concems the dependence of the binding energy on the even or odd aumbers
of protons and neutrons. It has been found empirically that there are few stable nuclei with even atomic
weight A and odd atomic number Z. In fact, it can be said that the most stable nuclei tend to have both
Z and A-Z even. Slightly less stability occurs in the cases Z odd, A-Z even, and Z even, 'A-Z odd. Clearly
forces between nuclear constituents must, therefore, show a dependence on whether an even ot odd
number of neutrons and protons are about and so must the binding energy, An explanation has been
advanced based on the idea that constituents tend to fill the nucleus’ lowest enetgy levels and that
strong forces exist between the pairs of neutrons ot protons that can fill the same level. It has been
empirically determined that E, = & can be assigned as a correction term to our expression for the
binding energy on the following basis (8 in mass units):

=0 for A odd
§ = -0.036/A%/* for A even, Z even (8-6)
$ = +0.036/A%/* for A even, Z odd

Combining the various terms, equations (8-3) to (8-6) and substituting in equation (8-1), the nuclear

mass (in mass units):
(4-zy z?
M = 1.00893 A - 0.00081 Z - alA + azAz/3 + a, —%—-A———- + 0'000627K'I7§ + &

We must now evaluate the coefficients a , a

and a . First, a_ is evaluated by setting dM/dZ = 0. The
resulting equation between Z and A, -

27

_ 0.00081 +a,

A
: 8-7)
2a, +0.001254A%°
is one for which M is a minimum and, therefore, gives the stablest values of Z for any A. Fitting this
equation to the known stable isotopes gives a best value for ag of 0.083 in mass units. The other
constants, a and a,, are determined by fitting the equation for M to the known data for nuclear masses,
with the resulting values a_ = 0.00504 and a 2 0.014. Hence the complete expression for the nuclear

mass as a function of A and Z is:

A_ ) 2

=7 2

M(A,Z) = 0.99389 A - 0.00081Z + 0.0144%° + o.oss(z + 0.000627 St ? (8)
A

A 73-87
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This formula can be used for calculation of the binding energies of neutrons to isotopes of
uranium. This information will be very closely connected with the ability of slow neutrons to fission
these various isotopes, as we shall see. Let us calculate the binding energy of a neutron to U

U : M =235.11240 [from equation (8-8)]
Neutron: M = 1.00893

Sum = 236.12133

Uy = — 236.11401 {also equation (8-8)]

Binding energy = 0.00732 mass units or 6.81 Mev

Similarly the binding energies of neutrons to U™, U™, and U™ wolild be 5.51, 6.56, and 5.31 Mev,
respectively. The alternation of the magnitudes of the binding energies comes from the factor 8.
This alternation is superposed on the regular variation of M(A,Z) with A and Z given by the other
five terms of equation (8-8).

Additional examples of this type are given in the problems at the end of the chapter.

8.2 THE FISSION PROCESS — ENERGY CONSIDERATIONS

The packing fraction curve (see Section 3.2 and Figure 15) shows that in the region of uranium,
the packing fraction is of the order 0.0006, whereas for middle-weight nuclei it isof the order —0.0007.
This implies that the heavy nuclei are not energetically stable against breaking into two middle-sized
nuclei. Examining this more closely, we see that the energy that would be released in such a splitting
is M(A,Z) — 2M(A/2, Z/2). If this is positive, the splitting is energetically possible. Thls difference
can be written in terms of the packing fractions:

A Z A
A [M(A,Z) ~-A _ M7~ "Z}
A A
2

or A times the difference in the packing fractions. Thus, when the difference between the packing
fractions is positive, then fission is energetically possible. It is to be noted that the packing fraction
diffetence does not give the energy released in a fission process. In Figure 49, the curve of N versus

Z is shown (see also Figure 12). The transition from P to Q on the diagram results in an energy release
ptoportional to the packing fraction difference. Actually in fission the end state is on the curve of
stable isotopes at point R in Figure 49. Since R is at a lower mass point, the energy release in fission
is greaterthan that given in equation (8-9). For example, if A is 240, then A/2 is 120; Z, is 93.74,
equation (B8-7), for A = 240, and Z / 2 is then 46.87. Using A/2 =120 and the formula for Z gives

the stable Zm as $1.15, or about 4 units from Z /2 (That is Z /2 ) This means that about
four beta particles will be emitted per fragment after fission.

(8-9)

From the packing fraction curves, it appears that fission is exoergic for all nuclei with A greater
than 100. Why, then, is fission such a rare process? Consider a nucleus that breaks into two fission
fragments. Plot the enetgy of the nucleus, i.e., the fragments, as a function of the distance between |
the two parts. At infinite separation, the energy is taken to be zero. When the fragments are combined
(t = 0), we know from measurements that the energy is about 200 Mev or greater. What about poiats
between r = 0 and infinity? Up to a distance of the order of the diameter of the fragments, it is the
Coulomb energy between the particles alone that contributes to the energy between particles, since
that is the only force acting between the fragments. This energy is (Ze/2)%/t. When r is less than
the diameter of the fragm ents, the energy must change in such a way that it becomes the fission energy
(200 Mev) at r = 0. If (Ze/2) /r is smaller than, equal to, or greater than the fission energy atr =
diameter of the fragments, then there are three corresponding transition curves, Figure 50, which can

L-73-9.
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Figure 50. Transition curves for fission fragments.
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be drawn to connect the Coulomb potential curve to the known energy at r = 0. Presumably stable
‘nuclei with A > 100 are represented by curves of the type I, with barrier heights of the order of

50 Mev, since the Coulomb potential at r = nuclear diameter is greater than the fission energy.
Presumably uranium would be represented by a curve like II, where the barrier is about 6 Mev.
Substances whose energy curve would be given by III would naturally not exist for long. This lacter
curve presumably represents nonexisting transuranics.*

Consider r = B to be of the order of the diameter of a fxssmn fragment. Then from equation (8-2),
B=2% 148 X 10 '“’(A/Z)m Using this value for B, we can plot E g(the Coulomb potential at r = B).
as a function of mass number A, Figure 51. Similarly we can draw a curve E,, the excess of mass
* of a parent nucleus of mass number A over that of its two fragments (i.e, the fission energy). This
latter curve becomes negative below A =85 ‘and ctosses the curve for E  at about A = 250. From
such a graph, one can get E, - E, for any A. The quantity E 4 is a measure of the height of
the energy barrier against fission.

- 200 MEV

-100 MEV Eg

0 50 100 150 200 250 A .___3

Figure 51. Energy barrier against fission.

* For a somewhat more detailed discussion of the transition curves, see the Bohr, Wheeler paper,
Phys. Rev, 56:426 (1039) .

A=9 3%
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It is possible, of course, to investigate more precisely the shape of the energy versus fragment
separation curve near r = 0 if some specific model is assumed. Considering the Bohr liquid drop
model, we assume that the original nucleus is a sphere and then calculate the change in energy for
a small deformation. Let us further assume that the sphere, in beginning to split, deforms in a very
simple manner, namely, it stretches shghtly in one direction and flattens our perpendicularly to
this direction, thus becoming an ellipsoid. If we assume that the sphere does not change its volume
on becoming an ellipsoid, and this is reasonable in view of the fact that all nuclei tend to maintain
the same density of nuclear particles, the change in the energy of the nucleus upon deformation will
be due to only two of the the five factors discussed in the last section. First, the surface energy
will tend to increase with deformation because more surface will be exposed. Second, the
electrostatic energy will decrease because the repelling charges will be effectively separated
to some extent. Thus we have at least two energies changmg in opposite ways with deformation of
a spherical nucleus. The surface or capillary enetgy is proportional to the surface area or A3
and the electrostatic energy is proportional to Z2p /3 , which is ~ AY®, The latter energy becom.es
- more important for heavy nuclei so that for heavy nuclei it islikely that the energy of a nucleus tends
to decrease with deformation, making a spherical nucleus unstable. The opposite is true for light
nuclei. From this picture, it is in heavy nuclei that we would expect fission.

Let us investigate in some detail the change of energy of a spherical nucleus upon distortion.
The surface energy is proportional to the surface area, which for an ellipsoid is:

27b® + 2 ﬂ_a_"';_axcos (b/a)
Vas - b2

a and b ate the semimajor and semumnor axes, respectxvel (Note that for b = a this reduces to

47b 3, since arcos (b/a) 2 arctan ( a?—b”® /b °~ va®—~ b? /b.) The electrostatic energy of a

charge distributed throughout the volume of an elhpsoxd can be shown to be ~

3 Z3%?2 log aﬂ‘a"-b5
10 y 317 *a-va®_ b7

(This reduces to (3/5) (Z%/r) for b = a =r.) Now consider a sphere of original radius R. If it is
stretched in one direction, then a = R (1 +£). The minor axis b changes so as to keep the volume of
the sphere constant, i.e., (47/3 ab?® =(47/3)R 3 from which b = R/Y] + &, Substituting for a and b
in the two energy expressions above and developmg the results in powers of €, we find the -
electrostatic energy to be:

£’+““]

47rR”[1 +2e2, ]
5

It is to be noted that the first terms in each of these equations are simply the electrostatic enetgy
and surface area, respectively, of the undistorted sphete, while the second terms are the cortec-
tions for distortion. The correction term for the electrostatic energy is negative, indicating a
decrease with distortion; that for the surface area is positive, corresponding to an increase in area.
Usiag the proper coefficients for these energies from the formula for M(A,Z), equation (8-8), the

excess in energy of the ellipsoid over the sphere is:

3 2% ).
5 R

M

and the surface eziergy to be:

22 1 z3
& ;[(0.014 AV _5_(0.000627) 7\773]

A-739
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The condition for stability against deformation is that the bracket be positive, that is:
2
L< 447 | (8-10)

For uranium Z3/A is 36, while for lower elements its value is even smaller, indicating that the
foregoing condition for instability is too stringent.

Actually, instability will occur for lower values of Z%/A than the limiting value given by
equation (8-10). For potential curves of the shape shown in Figure 52, the barrier is rather trans-
parent, and one could expect appreciable spontaneous fission. The probability of leakage through
the barrier will be finite, so that the decay constant with respect to fission will not be zero. Even
for U™, there are ~ 20 fissions per gram per hour spontaneously (corresponding to a *‘fission half-
life’’ of about 10 ™ years), so that for heavier atoms this may soon become a prominent phenomenon.

Ourprincipal interest is not in spontaneous fissions but in fissions brought about by neutrons.
Neutrons can cause fissions by contributing their kinetic energy and their binding energy to the
nucleus. This enetgy is at least 5 or 6 Mev (the binding energy of the neutron) and may raise the
energy of the nucleus high enough within the barrier for a fission to take place before the excess
energy is lost by gamma radiation. Because of the fact that the binding energy of neutrons to nuclei
with an odd number of neutrons is larger than it is to those with an even number of neutrods (see
~ equation (8-6)) it is reasonable to expect fission for thermal neutrons to be more prevalent for those
nuclei with an odd number of neutrons. This is confirmed by experiment. U™ is not fissioned by
thermal neutrons whereas U®® is. Moreover the other *‘fissionable’’ materials, U®® and Pu®®, each
have an odd number of neutrons. From facts such as these and photofission thresholds, one can
estimate that for uranium the height of the fission barrier is of the order of 5 Mev.

1 SHALLOW TROUGH (LOW BARRIER)

r ——p

Figure 52. Possible potential barrier in spontaneous fission,
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It is to be kept in mind that in the consideration of the competition of fission with other pro-
cesses, it is not sufficient to consider energies alone, as we have done. For fission, one must
not only have the energy rise to the top of the barrier, but is is also necessary that this energy be
concentrated in the proper modes of motion for fission. This may take some time, so that competing
processes may occur at the expense of fission. Since the number of modes, and hence of useless
nonfission modes, increases with excitation energy, it may, therefore, be very likely that the reason
photofission with ~ 100-Mev gamma rays on lower nuclei has not been observed is because the
energy does not get concentrated in a proper mode before it is lost by some other way than fission.

8.3 THE FISSION PROCESS -~ RESULTING PARTICLES

When a nucleus fissions there are, in addition to the two fragments, a number of other particles
observed. They are neutrons, beta particles, gamma rays, and often fast alpha particles. Some
of these are observed to accompany the fission process, and others are emitted at various times
following the fissioning itself.

The fission fragments themselves have been studied in great detail*. The distribution of
fission fragments for U225 as a function of mass, shown in Figure 53, consists of two nearly
identical peaks with maxima at mass numbers 96 and 140. If U235 js fissioned by a neutron, and
in the course of fissioning two neutrons are emitted, then the mass number corresponding to
equal splitting would be A =117, The observed yield for equal splitting (A = 117) is only 0.01%,
whereas the maximum yields (at A = 96 and 140) are about 6.5%. In each case, the fission fragment
formed is unstable (see Figure 49) because of the excess of neutrons. For example, the nucleus
with mass number 140, yield 6.3%, finishes up as stable Ce**? after a sequence of beta decays:

140 140 140 7. 140 __, ~.140
é‘e:_.ﬂ) ves O Saee BaT T oy Latt e ((:£=5a) (8-11)

A large number of such ‘‘fission product chains’’ have been identified.

It should be noted that the distribution of masses also gives the distribution of the relative
kinetic energies of fission fragments. This follows from the conservation of momentum. If E and
E _ are the kinetic energies of the fission fragments M ) and M_, then conservation of momentum
requires that M.V =MV, or VIME = V2ME . Thus M /M, = E,/E ,so that the heavier
of a pair of fission fragments has the smaller kinetic energy. The absolute value of the enetgy E |
corresponding to the mass M follows from the fact that the total energy El + }32 is a constant
(~ 160 Mev) and the total mass M, + M, is a constant (~ 234 m.u.).

The neutrons emitted in fission are classed as either **pronipt’’ or ‘*delayed’’. The term
“prompt’’ means that the neutrons leave the fission fragment after its formation in times shorter
than we can measure, An estimate of 107 1% second can be made by considering the fission prod-
uct as the splitting of a drop. The final fragments are not of spherical shape (Figure 54), so there
will be a considerable vibrational energy associated with oscillations about the equilibrium
(spherical) shape of the fragment. This excitation energy may be sufficient to evaporate a neutron,
especially since neutron binding energies in fission fragments are small because of the excess
of neutrons. For example, assume that U?®® is made to fission by a neutron, and two fragments
with A = 118 and Z = 46 appear. Using the formula for M(A,Z), equation (8-8), one can calculate
binding energies for various nuclei of weight A = 118:

#See "Nuclel Formed in Fission: Decay Characteristics, Fission Yields and Chain Relationships®
issued by the Plutonium Project in J. Am. Chem. Soc. 68: 2411(1948) and Rev. Mod. Phys. 18:513(1846).
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Figure 54. Fission of a liquid drop.

zZ 44 45 46 47 48 49 50
Neutron :
Binding 2.5 6.8 3.6 7.8 4.7 9.0 5.8
Energy
(Mev)

(where Z =50 is the stable value for Z if A =118). Thus, neutrons may be lightly bound to fission
fragments. Whenever neutron emission is energetically possible, neutron emission is likely, be-
cause of the absence of a barrier for neutrons. As a matter of fact, one could conclude fromobser-
vations that considerable excitation energy must be present in the fragments, because from one

to three neutrons are emitted per fission in the tase of U238,

The energies of the neutrons that come off at fission are given in the distribution curve in
Figure 55. In the center of gravity system of neutron and fission fragment, the neutron energy
distribution would be approximately Maxwellian, with a *‘temperature’” cotresponding to the exci-

_tation of the fragment. To get the theoretical curve for the distribution in the laboratory system,
one would have to take account of the motion of the fission fragment and the dependence of emission
probability on neutron energy. :

In addition to these prompt neutrons about 1% are delayed. To explain the emission of delayed
neutrons, consider (Figure 56) a fragment A, which undergoes a g disintegration to a nucleus B.
Usually this disintegration will go to the ground state of B, but occasionally the nucleus B may
end up in an excited state with excitation energy greather than B. E., the binding energy of-a
neutron. In such a case, neutron emission becomes quite likely. Such neutrons would come off very

Q-3
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quickly after the Sdecay and would, therefore, show decay periods that correspond to the periods
of the disintegration of A to the excited state of B.

The delayed neutron periods that have been observed and their yields are listed in Table 4.
The fitst two periods are rather well verified and have been identified to be emitted by Kr®? and
Xel®? respectively*. The shortest period is not yet definitely confirmed.

TABLE 4 ~DELAYED NEUTRONS FROM UZ?3® [Phys. Rev. 74:1330(1948)] t.

HALF-LIFE (SEc) RELATIVE INTENSITY DELAYED NEUTRONS
PER PROMPT NEUTRON, (%)

§5.3 + 0.7 0.054 0.025

22,4 £ 0.4 0.294 ' 0.166

5.5 + 0.3 : 0.297 0.213

1.7 £ 0.2 0.279 0.241

Q.36 + 0.07 0.076 0.085
(0.0044 % 0.0007 1) {~.02)

8.4 THE FISSION PROCESS - GENERAL NATURE OF CROSS SECTION

The cross sections for capture and fission for the isotopes of uranium and plutonium that have
so far been investigated show a rather complicated dependence on energy. For some isotopes, the
(n,f) cross section decreases with neutron energy, whereas for others it increases. Some isotopes
show an (n,f) threshold, whereas some have an (n,f) cross section that follows the 1/v law at low
energies. Pronounced resonances for capture are apparent at low neutron energies in isotopes like
U238 The resonances become less striking at higher energies, where they tend to become smeared

out.

sPhys. Rev. 732:548 (147).

TPhys. Rev. 74:1330 (1948). ‘
‘l‘similar periods have been found for the delayed neutrons in plutonium fission. See Phys. Rev.73:567
and 570 (1947). The per cent of delayed neutrons per prompt neutron is taken from Phys. Rev. 73:111 (19848).
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PROBLEMS

1. Substituting the cotrect value for a_ into equation (8-7) gives a relation between Z, and
A. Compare points predicted by this equationwith the corresponding values for about ten known
stable isotopes. Make the comparison graphical.

2. Dempster, in Physical Review 53:870 (1938), gives a curve of the packing fraction vs.
the mass number. Using equation (8-8), plot packing fractions expected ‘‘theoretically’’ along
with Dempster’s experimental curve and note the degree of agreement.

3. Calculate the binding energies of neutrons toTh%z,Aulw, Sm14® In115 454 Mn®5, Use
the formula for M(A,Z), as was done at the end of Section 8.1. Sufficiently accurate experimental
data for nuclear masses (for such an application as this) exist only for the lightest nuclei.

4. At what atomic number is instability reached according to the inequality of equation (8-10)?
Use the expression for Z,, the proper value of Z for a nucleus of weight A, that has been developed
in equation (8-7). v

5. Detive an energy distribution curve for fission neutrons, assuming a velocity V for the
fission fragment and a Maxwell distribution of energies in the center of gravity system. Also assume
that the probability of neutron escape is proportional to their velocity.
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