Exhaled nitric oxide in children with asthma:

Outdoor- versus indoor-generated PM
 Short term PM exposure

Therese Mar, Ryan Allen, Karen Jansen, Jane Koenig, Timothy Larson, Thomas Lumley, Sally Liu University of Washington

Background

- Exhaled nitric oxide (eNO) is a ubiquitous molecule in the body and is a non-invasive marker of airway inflammation
- eNO is known to be elevated in individuals with asthma, is increased when a subject is having an asthma attack, and is decreased in those individuals using corticosteroid medication
- eNO has been compared with other techniques for measuring inflammation (ex. breath condensate, induced sputum)

Subject Characteristics

- 19 subjects: 14 male, 5 female
- Ages 6-13
- Medication use:

 10 inhaled
 corticosteroid (ICS)
 users
 - 9 ICS nonusers
- FEV1%: 67-100%

Data Collection

$PM_{2.5}$

- Local outdoor (HI)
- Local indoor (HI)
- Personal (HPEM)
- Average of 3 central sites: Kent, Lynnwood, and Lake Forest Park (TEOM)

Health Endpoint

 Daily concentration of eNO (ppb)

Estimating Exposure to Ambient and Non-ambient PM

Source-Specific Exposure Model

$$E_{t} = E_{a} + E_{ig} + \text{"personal cloud"}$$

$$E_{ig} = (1-y)(C_{ig})$$

$$E_{a} = [y + (1-y)(F_{inf})]C_{a}$$

$$\alpha = \text{"attenuation factor"}$$

$$E_{t} = \text{HPEM or pDR}$$

y = fraction of time spent outdoors $C_a = \text{ambient (outdoor) concentration (HI or neph)}$ $C_{ig} = \text{indoor-generated concentration} = C_i - C_a(F_{inf})$ $C_i = \text{indoor concentration (HI or neph)}$

Results

- Associations between various measured PM metrics and exhaled NO
- Associations between estimated concentrations of outdoor- and indoorgenerated PM2.5 and eNO

Results ICS nonusers eNO, ppb (95% CI)

For a10 ug/m³ increase in PM_{2.5}, eNO increase

- Personal: 4.5 (1.02, 7.9)
- Indoor: 4.2 (1.02, 7.4)
- Outdoor: 4.3 (1.4, 7.2)
- Central: 4.2 (1.2, 6.4)
- EIG: -3.3 (-1.1, 7.7)
- EAG: 5.0 (0.3,9.7)
 - No effects were seen in ICS users

Previous findings

- Exhaled NO is a feasible, non-invasive technique for measuring airway inflammation
- Various measures of PM_{2.5} were associated with a marker of airway inflammation in children with asthma
- Inhaled corticosteroid use attenuated the association between eNO and PM2.5
- Other panel studies have reported associations between PM2.5 and eNO. (Adamkiewicz et al, 2004; Jansen et al, 2004)

Short term analysis

- Objectives:
- To determine the effect of short term PM exposure (hourly lags) on exhaled nitric oxide

Methods

- Polynomial distributed lag model
- Hourly lags of PM up to 48 hours
- Model controlled for temperature, relative humidity, ambient NO concentrations and medication use

Polynomial distributed lag model

$$E[Y] = B_0 + b_i + B_1(Z1_{ids} - \overline{Z1}_{is}) + B_2 med_i + B_3 med_i * (Z1_{ids} - \overline{Z1}_{is})$$

$$+B_{4}(Z2_{ids}-\overline{Z2}_{is})+B_{5}med_{i}*(Z2_{ids}-\overline{Z2}_{is})+B_{6}(Z3_{ids}-\overline{Z3}_{is}) +B_{7}med_{i}*(Z3_{ids}-\overline{Z3}_{is})+B_{8}(Z4_{ids}-\overline{Z4}_{is})+B_{9}med_{i}*(Z4_{ids}-\overline{Z4}_{is})$$

$$+B_{10}(W_{ids}-\overline{W}_{is})+B_{11}age+B_{12}rh+B_{13}temp$$

where

$$Z1 = \sum_{n=1}^{24} PMlag_n$$
, $Z2 = \sum_{n=1}^{24} n * PMlag_n$, $Z3 = \sum_{n=1}^{24} n^2 * PMlag_n$ and $Z4 = \sum_{n=1}^{24} n^3 * PMlag_n$

W is the ambient NO concentration

Averaged PM effect

PM	change in eNO per 10 μg/m3 PM	95% Lower Cl	95% Upper Cl
lag 1 hour	7.16	3.72	10.59
lag 4 hour	6.39	2.85	9.93
lag 8 hour	0.56	-1.07	2.20
PM 2.5 averaged from 7pm to 4 am	1.61	0.15	3.07
PM 10 averaged from 7 pm to 4 am	2.27	0.78	3.77

effect of lags on eNO

Conclusions

- eNO is associated with PM exposure up to 11 hours prior to eNO measurement
- An association between eNO and PM averaged during high wood smoke hours (7 pm to 4 am) was observed