A Shallow-water Coastal Habitat Model for Regional Scale Evaluation of Management Decisions in the Chesapeake Region

C. L. Gallegos, D. E. Weller, X. Li, H-C. Kim, T. E. Jordan, P. J. Neale, J. P. Megonigal

Smithsonian Environmental Research Center

This research is funded by

U.S. EPA - Science To Achieve Results (STAR) Program

Grant # RD-8308701-0

Overview

- Study Systems
- Objectives and Tasks
- Modeling Approach
- Model Structure
- Preliminary Results
- Progress and Next Steps

Importance of Shallow-water Tributary Embayments (STE) in Chesapeake Bay

Formation of estuaries as drowned river mouths has resulted in highly articulated shorelines for east coast estuaries.

Shallow-water Tributary Embayments are Critical to Two of the Designated Use Categories

Susceptible to Large Phytoplankton Blooms due to Shallow Water and Proximity to Nutrient Sources

High Phytoplankton Productivity Results in Low A.M. D.O. and Large Diurnal Swings

MD Department of Natural Resources, "Eyes on the Bay", Shallow Water Monitoring Program, Rhode River 2004.

http://mddnr.chesapeakebay.net/newmontech/cont mon/eotb_results_graphs.cfm?station=SERC

Catastrophic Losses of SAV in Chesapeake Bay Occurred First in Western Shore STE

July 1967

Bayley, S., H. Rabin and C. H. Southwick, 1968. Recent decline in the distribution and abundance of Eurasian milfoil in Chesapeake Bay. Chesapeake Science 9: 173-181.

Areas Slated for Restoration of SAV are Concentrated in Shallow Tributary Embayments and Tidal Creeks

Chesapeake Bay Program Tier-II Restoration Goal: Restore SAV to the 1-m contour in areas in which it historically occurred.

Main CB Model Segmentation Scheme Treats Most STE as 1 to 3 Cells

Premise: The ecological importance of shallow-water tributary embayments far exceeds their volumetric contribution to the Bay, and the main-stem concentrations of water quality constituents.

Objectives and Tasks: Estuarine Modeling End Points

Objective: To provide a tool to predict the magnitude and trends of existing and emerging indicators of the ecological condition of critical shallow water habitats.

Important Stressors: Suspended Sediments Nutrients UV Irradiance

Model Output: Phytoplankton Chlorophyll Water Clarity (diffuse attenuation coefficient) Dissolved Oxygen

Objectives and Tasks: Watershed Inputs to STE

- Use spatial analysis to describe the "population" of STE around the shore of Chesapeake Bay and its major tributaries
- Apply previously developed statistical models relating land cover and physiographic province to nutrient discharges to quantify the distributions of local watershed inputs of water and nutrients across the population of STE

Modeling Approach

- STE exhibit a wide range of sizes, shapes, influence by local watershed, and exchange with main stem estuary
- STE are far too numerous to model individually, on a creekby-creek basis

Modeling Approach

- We are employing an approach that uses a large number of simple, generic models of subestuaries and tidal creeks, incorporating inputs from local watersheds, internal processing, and exchange at the seaward boundaries
- Our approach will make extensive use of Monte Carlo simulation and generalized sensitivity analysis to determine a range of outcomes, under different management scenarios, for the diversity of shallowwater systems encountered around Chesapeake Bay.

Model Structure: Conceptual

- We conceive of STE as part of a continuum of aquatic ecosystems linking watersheds with coastal marine waters
- Focus on well-mixed estuarine tidal waters, which contain a mixture of freshwater from their local watershed, and more saline
 Water from adjacent estuarine or coastal waters

Subestuary and Watershed Delineation

128 shallow subestuaries and their local watersheds were delineated around the Chesapeake Bay.

Analysis of Subestuary Metrics

Subectuary

Subectuary

Subectuary

Subestuary Subestuary

18 subestuary metrics were developed: subestuary area, volume, depth range, percentage of shallow water (0-1m, 1-2m, 0-2m),

mouth width, etc.

....

D	Name	Area(km2)	Perimeter(km)	Volume(km3)	
LK01	Elk River	9.36	59.05	0.0097	
OR01	Northeast River	15.84	40.63	0.0249	
CB101	Spesuit Narrows	5.50	84.39	0.0039	
CB201	Romney Creek	4.36	41.19	0.0032	
SH01	Bush River	31.30	107.95	0.0513	
UN01	Gunpowder River	49.46	192.16	0.0769	
1ID01	Middle River	9.86	67.50	0.0142	
AT01	Old Road Bay	3.43	18.05	0.0063	
AT02	Bear Creek	4.70	48.83	0.0101	
AC01	Back River	17.58	68.57	0.0256	
AT03	Northwest Harbor	3.32	33.12	0.0244	
AT04	Middle Branch	6.75	41.97	0.0254	
AT05	Curtis Creek	5.93	52.13	0.0258	
AT06	Stony Creek	2.64	25.84	0.0052	

Will provide input for parameter distributions in Generalized Sensitivity Analysis

Some Characteristic Metrics

Practical Application of Watershed/Subestuary Delineation

Potential SAV habitat and actual SAV presence in five subestuaries near Baltimore.

Percentage of SAV presence and coverage abundance (1971-2003) were calculated from VIMS SAV dataset.

Land use impact on SAV coverage abundance shows different pattern in different physiographic provinces.

See poster by Yong Li and Don Weller

SAV coverage abundance under different land uses for all selected subestuary-watersheds with different physiographic provinces of piedmont, coastal low land and costal upland.

SAV coverage abundance under different land uses for all selected subestuary-watersheds with physiographic province of coastal low land and costal upland.

Water Column Model Structure

- N vs. P limitation
- 3 Phyto & zoo sizefractions
- Sedimentation & remineralization
- Physical exchange with neighboring segments

Model Testing

*See poster by Hae-Cheol Kim

Progress

Scheduled Activity		Year 2			<u>Actual</u>	
Measure CDOM export from	*	*	*	*	Measurements commenced spring	
wetlands & watersheds					2004, nearing completion	
GIS analysis of subestuaries	*	*			Complete	
GIS analysis of coastal plain		*				
watersheds					Complete	
Statistical analysis of nutrient discharge data			*	*	Limited progress	
						Coding of subestuary componene models
Validate subestuary model predictions		*	*	*	Underway	
						Link Subestuary and watershed
models						
Model flow-alteration/land-use			*	*	Pending completion of	
change scenarios					watershed/subestuary linkage	

Next Steps

- Link watershed and subestuary models
- Iron out remaining issues in water column model
- Analyze nutrient discharge data
- Explore model parameter space (preliminary to generalized sensitivity analysis)