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The Model-assisted paradigm presently dominates survey sampling.   Under
it, randomization-based theory is treated as the only true approach to
inference.  Models are helpful only when choosing between randomization-
based methods.   We propose an alternative theoretical paradigm.  Model-
based inference, which conditions on the realized sample, is the focus of this
approach.  Randomization-based methods, which  focus on the set of
hypothetical samples that could have been drawn, are employed solely to
provide protection against model failure.   Although the choices made under
the randomization-assisted model-based paradigm are often little different
from those recommended by Särndal et al. (1992), the motivation is clearer.
Moreover, the approach proposed here for variance estimation leads to a
logically coherent treatment of finite-population and small-sample
adjustments when they are needed.   
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I.  Introduction 

Särndal, Swensson, and Wretman (1992) did not coin the term “model-assisted

survey sampling,” but their impressive text-book has brought that approach to sample-

survey inference into the forefront of modern theory and practice.  The approach treats

randomization-based (usually called “design-based”) inference as the real goal of

survey sampling, but employs models to help choose between valid randomization-

based alternatives.   Typically, one chooses a randomization-consistent regression

estimation strategy that is model unbiased and has the smallest model-expected

randomization mean squared error.    

To estimate the variance of the chosen strategy, Särndal et al. recommend the

weighted residual variance estimator.   Oddly, the real theoretical advantage of this

variance estimator over the more traditional randomization-based variance estimator is

that it better estimates the model variance of the regression estimator (SSW, 1989; Kott

1990a), while still estimating the randomization mean squared error adequately.   The

use of this variance estimator suggests a different approach to survey sampling

inference: randomization-assisted model-based.  In that approach, the subject of this

discussion, one treats model-based inference as the goal of survey sampling, but

employs randomization methods to protect against inevitable model failure.   The

choices for the estimation strategy and variance estimator do not change in the typical

large-sample-much-larger-population environment, but the motivation behind the

choices becomes clearer.  Moreover, principled finite-population and small-sample
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adjustments present themselves when necessary.    

We will focus at first on a particular estimation strategy: the randomization

consistent regression estimator (often called the “generalized regression estimator” or

“GREG”) under Poisson sampling.  This estimator is, as the name implies,

randomization consistent.  More to the point, it is model unbiased.   Randomization

unbiasedness is a fairly useless property since it tell us what happens when we average

over all possible samples.  In practice, we know which sample we have drawn, so

averaging over samples we didn’t draw makes little sense.  That is why the

randomization-assisted model-based paradigm is principally concerned with the model

unbiasedness of a parameter estimator rather than its randomization bias.  By

restricting attention to randomization-consistent estimation strategies, we are simply

assuring ourselves that even when the model fails the estimator will likely not be too far

from what it is estimating.   

Section 2 describes the randomization-consistent-regression-estimator-under-

Poisson-sampling strategy, while Section 3 analyzes its randomization and model-

based properties, most of which are well known.   We revisit them here to lay the

foundation for variance estimation. 

We also revisit the Isaki-Fuller (1981) notion of the anticipated variance of an

estimation strategy, but reverse its definition.  Rather than choosing a strategy that has

a small model-expected (anticipated) randomization (true) variance, we advocate

choosing one with a small randomization-expected (anticipated before sampling)  model

(conditional on the realized sample) variance. 

Section 4 addresses variance estimation.  The emphasis in the simultaneous
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variance estimator is on estimating the model variance of the estimation strategy.  The

literature suggests this emphasis can result in better coverage estimates.  As protection

against model failure however, the same estimator provides a nearly randomization-

unbiased estimator of randomization mean squared error.  

Section 5 discusses how to modify the simultaneous variance estimator when n

is not that large.  In this, the section borrows many ideas from the strictly model-based

literature.  See, for example, Valliant, Dorfman, and Royall (2000, Chapter 5).   What is

new here, is the willingness to accept the asymptotic validity of randomization-based

properties in a model-based context while eschewing the relevance of averaging over

all possible samples.  

Section 6 addresses alternative sampling designs.  Of particular interest, is the

question of when the regression estimator is randomization consistent and what

happens when cross terms are added to the simultaneous variance estimator.  Section

7 provides some concluding remarks.  

2.  The Regression Consistent Estimator Under Poisson Sampling  

Suppose we want to estimate a population (U) total, T = 3U yk based on a sample

(S) of y-values.  If the probability that population unit k is in the sample is Bk, then the

simple expansion estimator for T is t = 3S yk /Bk.  Another useful way to render t is as  

t = 3U  ykIk/Bk, where Ik is a random variable equal to 1 when k0S and 0 otherwise.  This

means E(Ik) = Bk.  Under randomization-based inference the yk are fixed constants,
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while the Ik are random variables.  It is easy to see that t is a randomization-unbiased

estimator of T; that is, Ep(t) = T, where the subscript p denotes the expectation with

respect to the Ik (this is a convention; the p derives from “probability sampling”).

The randomization variance of t is Varp(t) = Ep[(t !T)2] = 3U (yk /Bk)(yi /Bi)(Bki ! BkBi), 

where 3U denotes  3k0U 3i0U in this context, and Bki = E(IkIi) is the joint selection

probability of units k and i.  When k = i, Bki = Bk.  The randomization variance of t 

depends on how exactly the sample is drawn, and in particular of the joint selection

probabilities. 

Under Poisson sampling, each unit k is sampled independently of every other

unit in the population.  Consequently,   Bki = BkBi when k�i.    This simplifies the

randomization variance of t immensely: Varp(t) = 3U (yk /Bk)
2(Bk !Bk

2) =  3U (yk
2/Bk)(1 !Bk),

which leads to the simple unbiased randomization variance estimator:

varp(t) = 3S (yk /Bk)
2(1 !Bk).

  We will be principally concerned here with the estimation strategy that

combines Poisson sampling with the following regression estimator: 

tR = t + (3U xk ! 3S Bk
-1xk)(3S ckBk

-1xk!xk)
 -1 3S ckBk

-1xk!yk,                                        (1)

where xk = (xk1, ..., xkQ)  is a row vector of values known for all S, ck is a non-negative

constant, 3U xk is known, and  3S ckBk
-1xk!xk is invertible.

The regression estimator in equation (1) is a very slight variation of the general

regression estimator (GREG) in Särndal, Swensson, and Wretman. (1992).  A good
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review of regression estimators in the survey sampling context is Brewer (1994).   The

GREG is poorly named because it does not include purely model-based regression

estimators. 

The regression estimator in equation (1) can be rewritten as tR = 3S akyk, where

ak is the regression weight of k:

             ak =   Bk
-1 + ( 3 xi ! 3 Bi

-1xi)( 3 ciBi
-1xi!xi)

 -1 ckBk
-1xk!.                                 (2)

                                            i0U     i0S        i0S

It is well known (and easy to see) that the ak satisfy the calibration equation: 3S akxk =

3U xk.

3.   Properties of the Estimation Strategy        

The regression estimator, tR, under Poisson sampling has both desirable

randomization-based and model-based properties under mild conditions, as we shall

see. 

The randomization-based properties of tR are asymptotic (we use the more

accurate modifier “randomization” in place of the often-used  “design” throughout the

text).   That is to say, they depend on the expected sample size, n*, being large.   A

sufficient condition for an estimation strategy (an estimator coupled with a sampling

design) to be randomization consistent is that its relative mean squared error should

approach 0 as n* grows arbitrarily large.  

Let N be the population size of U.  We want to entertain the possibility that O(n*)
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is less than O(N).  Consequently, paralleling a number of authors, we assume the

following as N and n grow arbitrarily large and Q remains fixed: 

                            0  <  L2   #  3 |2k|
* /N  <  B2   < 4,            *= 1, ..., 8;                (3)

                                                        i0U

where equation (3) applies when 2k equal yk, any component of xk, ck, and n*/(NBk).  

The relative randomization mean squared error of the expansion estimator, t, 

under Poisson sampling is 3U (yk
2/Bk)(1!Bk)/(3U yk)

2 < 3U (yk
2/Bk)/(3U yk)

2.  Equation (3)  

and Schwarz’s inequality assure that the numerator of this last expression is O(N2/n*),

while its denominator is O(N2).  Thus, the relative randomization mean squared of t

under Poisson sampling is  O(1/n*), and the estimation strategy is randomization

consistent.  Furthermore, since EP[(t !T)2]/T2 = O(1/n*),   (t !T)/T = Op(1/¾n*),  and 

t !T = Op(N/¾n*), which we will often write as NOp(1/¾n*) for convenience .   Formally,

this means (t ! T)/N = Op(1/¾n*)    

It is now not hard to show that the regression estimator, tR, from equation (1) 

under Poisson sampling and the assumptions in equation (3) is equal to t + NOp(1/¾n*).  

Thus, like t, tR is randomization consistent.  Furthermore,  (tR !T)/T = Op(1/¾n*), and the

relative mean squared error of tR is O(1/n*).  Assuming, as we will from now on, that

N-1(3U ckxk!xk) is invertible, let B = (3U ckxk!xk)
-1 3U ckxk!yk, and  ek = yk ! xkB, so that 

3U cixi!ei = 0 and 3S ciBi
-1xi!ei = NOP(1/¾n*).  We can now express the error of tR as

tR ! T =  3  aiyi  ! 3  yi  =  3   aiei ! 3  ei  
                         i0S        i0U       i0S        i0U
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          =  3  ei /Bi + ( 3 xk ! 3 Bk
-1xk)( 3  ckBk

-1xk!xk)
-1 3  ciBi

-1xi!ei ! 3 ei 
                         i0S            i0U     i0S          i0S                 i0S               i0U

          =  3 ei /Bi ! 3 ei   + NOp(1/n*) .
                         i0S         i0U

This tells us that  the randomization mean squared error of tR under Poisson sampling is

dominated by VarP( 3S ek /Bk) =  3U (ek
2/Bk)(1!Bk).   This is identical to the variance of the

expansion estimator under Poisson sampling except that ek has replaced yk. 

Suppose the yk were random variables that satisfied the following model:

                                     yk = xk$ + ,k,                            (4)

where $ is an unknown column vector, E(,k*xk, Ik) = E(,k,i*xk,xi, Ik, Ii) = 0 for k � i, and 

E(,k
2 *Ik) = Fk

2 = f(xk, zk) <  4, where zk is a vector of values associated with k.  The Fk
2 

need not be known.  Moreover, there is no reason (yet) why Ik cannot be a function of

the components of xk and zk.

It is easy to see that as long as the regression weights satisfy the calibration

equation, 3S akxk = 3U xk, tR will be model unbiased in the sense that E,(tR ! T) = 0.  

Moreover, its model variance (as an estimator of T) is 

E,[(tR ! T)2]  =  E,[( 3 ai,i ! 3 ,i)
2]

                                          i0S        i0U

                    =  3 ai
2Fi

2 ! 2 3S aiFi
2 +  3  Fi

2 

                                    i0S             i0S           i0U
                                                          

=  3 ai
2Fi

2 ! 3 aiFi
2 ! ( 3  aiFi

2 ! 3 Fi
2).                   

                                    i0S          i0S          i0S          i0U
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When Fi
2 has the form xih, for some not-necessarily-specified vector h, then 

3S aiFi
2 = 3U Fi

2, and the model variance of tR collapses to  3S (ai
2 ! ai)Fi

2.  Alternatively, if

we add  2k = Fk
2 to the variables assumed to satisfy equation (3), then one can see that

the model variance of tR is O(N2/n*) =(N2/n*)O(1), while 3S aiFi
2 ! 3U Fi

2 is Op(N/¾n*) =

(N2/n*)O(¾n*/N) .   Although we are interested in model-based expectations, we plan to

invoke a large-sample, randomization-based equality.   Model-based theory, at least as

viewed here, does not deny the applicability of the law of large numbers to probability

sampling.  It simply resists taking averages (expectations) across all possible samples.

Our last equality suggests the following asymptotic approximation for the model

variance of tR:

                        E,[(tR ! T)2] .  3  ai
2Fi

2 ! 3  aiFi
2,                                                 (5)

                                                         i0S          i0S

which drops a Op(N/¾n*) = (N2/n*)O(¾n*/N) term.

What about likewise replacing ai
2 by Bi

-2 (and ai by Bi
-1) in equation (5)?  Such a

substitution  would effectively drop (N2/n*)Op(1/¾n*) terms since it is not hard to show

that 3S ai
2Fi

2 =  3S Bi
-2Fi

2 + (N2/n*)Op(1/¾n*) under our assumptions.  

Suppose finite-population correction matters.  At the extreme,  N = O(n*), and

(N2/n*)Op(1/¾n*) is of the same asymptotic order as the (N2/n*)O(¾n*/N) term dropped in

equation (5).   An alternative assumption allows the finite population to be relatively

large (Kott 1990a), but still potentially matter: N $ O([n*]3/2).  Under this regime, equation

(5) appropriately drops a (N2/n*)Op(1/n*)  term, but replacing ai
2 by Bi

-2 would effectively

drop a larger, (N2/n*)Op(1/¾n*), term.  
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The model variance of tR is a function of the realized sample and does not

depend at all on the sampling design.  As noted in the previous section, it is Op(N
2/n*)

under the (extended) asymptotic assumptions of equation (3).  In fact, if we are willing

to drop (N2/n*)Op(1/¾n*) terms, the model variance can be approximated by 

E,[(tR ! T)2] .  3S (Fi
2/Bi

2)(1 ! Bi).                                   

The randomization expectation of the model variance of tR is then 

                             Ep{E,[(tR !T)2]} .  3   (Fi
2/Bi)(1 ! Bi).                                        (6)

                                                                   i0U

This quantity can be called the “anticipated variance” of tR; that is, the model variance

anticipated before random sampling .  The term is due to Isaki and Fuller (1982),

although equation (6) goes back considerably further in the literature.  They use it to

mean E,{Ep[(tR ! T)2]},  what that model anticipates the randomization mean squared

error to be.  The expectation operators can be switched, and the two concepts of

anticipated variance coincide, when ,k and ,k
2 are uncorrelated with Ik given xk and zk,

where Fk
2 = f(xk, zk), as we have assumed.  This is weaker than the requirement that the

,i and Ii be independent, as stated in Isaki and Fuller.  Maintaining the latter condition

would rule out designs where Bk % Fk for some  hypothesized Fk
2.   This selection

probability rule minimizes the asymptotic anticipated variance on the right hand side of

equation (6) for a fixed expected sample size, n* = 3U Bi.   Brewer (1963) makes a

similar point.    

        From equation (6), we can also see that the anticipated variance of the

randomization-consistent regression estimator is (asymptotically) a  function of the unit
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selection probabilities but not the joint selection probabilities.  Every design with the

same unit selection probabilities produces a regression estimator with the same

anticipated variance.  If minimizing anticipated variance is the goal, then there is no

penalty from using Poisson sampling nor is there any loss or gain from the choice of ck.  

4.  Simultaneous Variance Estimation

It is a simple matter to estimate the (approximate) model variance of tR

expressed in equation (5):

                                     v =   3 (ai
2 ! ai)ri

2,                   (7)
                                                       i0S

where ri =  yi ! xib, and b = (3S ckBk
-1xk!xk)

-1 3S ckBk
-1xk!yk.  Now ri = ,i ! xi(b ! $) =  ,i ! 

xi(3S ckBk
-1xk!xk)

-1 3S ckBk
-1xk!,k, so E,(ri 

2) = Fi
2 + 2xi(3S ckBk

-1xk!xk)
-1 ciBi

-1xi!Fi
2 +  

xi(3S ckBk
-1xk!xk)

-1 (3S ck
2Fk

2 Bk
-2xk!xk)

-1 (3S ckBk
-1xk!xk)

-1xi!.  It should be noted that v can be

negative ! although it rarely will be ! when some ai < 1.  Brewer (1994) suggests setting

the ck in equation (1) so that the appearance of an ai less than 1 is rare.   

After a little work, we can conclude that v is asymptotically model unbiased when

the population is relatively large, N $ Op([n*]3/2, so  E,[(tR ! T)2] . 3S ai
2Fi

2 ! 3S aiFi
2, and 

                           E,(v) =  3 (ai
2 ! ai)Fi

2 + (N2/n*)Op(1/n*).                                   (8)
                                                  i0S

Observe that the term we are ignoring in equation (8) are smaller than the
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(N2/n*)Op(1/¾n*) term we would have ignored had we replaced ai with Bi
-1.   

We can likewise show that v is an asymptotically unbiased estimator for the

randomization mean squared error of tR under Poisson sampling.  In this context,

however, we are willing to drop Op(N
2/[n*]3/2) terms.   The equalities  

                                    ri  =   ei ! xi(b ! B) =  ei ! O p(1/¾n*)                                          (9)

  

ultimately imply that  v =  3S (ai
2 ! ai)ri

2  =   3S (Bi
-2 ! Bi

 -1 )ei
2 +  Op(N

2/[n*]3/2).  From this,

we conclude

 

Ep(v) =  3 (Bi
-1 ! 1)ei

2 +  (N2/n*)Op(1/¾n*).                                                         (10)
                       i0U

We call v the simultaneous variance estimator because it simultaneously estimates the

model variance and randomization mean squared error of tR.  The relative model bias of

v (as an estimator of E,[(tR ! T)2]  .  3S ai
2Fi

2 ! 3S aiFi
2) is Op(1/n*) when the population

is relatively large; see equation (8).  Its relative randomization bias (as an estimator of 

Ep[(tR ! T)2] . 3U (Bi
-1 ! 1)ei 

2 is  O(1/¾n*); see equation (10).   Empirical analyses like

that in Wu and Deng (1983) have showed that this emphasis on the making the model

bias small, which is the core of the randomization-assisted model-based paradigm, can

lead to superior coverage estimates. 
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5.  Adjusting for Small-sample Bias

It is a tempting to scale v in equation (7) by  n/(n ! Q) to account for the fact that

rk 
2, a squared residual from a Q-variate regression,  is a slightly biased estimator for

Fk
2.  Since the factor, n/(n ! Q), is asymptotically unity, the scaling does not affect the

randomization-based properties of v.

A more principled approach than the above ad-hoc adjustment of v would be to

replace the ri
2

  with model unbiased estimators for the components of  F2 = (F1 
2,..., Fn 

2)!,

namely, r(2) = M-1( r1 
2, ..., rn 

2)!,  where the i,kth element of then n x n matrix M is  

mik = [*ik ! xi(3S cjBj
-1xj!xj)

-1ckBk
-1xk]

2, and *ik = 1 when i = k, 0 otherwise.  See Chew

(1970).   Calculating  r(2)  involves inverting an n x n matrix.  Kott and Brewer (2001)

show how r(2) can be calculated by inverting a Q(Q+1)/2 x Q(Q+1)/2 matrix instead.   

Replacing the  ri 
2 by the components of r(2) does not affect the randomization

consistency of tR because M is asymptotically the identity matrix.   

A simpler alternative relies on assuming that Fk
 2 % sk

2 for some known 

s2 = ( s1 
2, ..., sn 

2)!. One replaces each ri 
2 in v with the model-unbiased estimator: 

                           riA 
2 =  ri 

2 si 
2 / E(ri 

2 * F2 = s2)

                                 =  ri 
2 si 

2 / 3  mik sk 
2.                                                                 (11)

                                                   k0S

This can produce an exactly model-unbiased variance estimator, call it vA,  when the

assumption sk 
2 % Fk

 2 ! called “the working model” ! is correct, but not generally.  Still, it

has the same desirable asymptotic model and randomization-based properties as v
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when equation (3.5) is assumed to apply to the sk as well as the Fk (recall that M is

asymptotically the identity matrix).

A second alternative can be found in Kott (1990b).  It replaces v with 

vB = v E,[(tR ! T)2 * F2 = s2] / E, (v * F2 = s2)                                                       (12) 

Like v, vB is an asymptotically unbiased estimator for the randomization mean squared

error to tR under our assumptions.  It is exactly model unbiased under the working

model.  

  As we will see in the next section, vB generalizes most easily among the bias-

adjusted alternatives.  Unfortunately, its implementation will often be messy in practice

(especially when N < O(n2))

6. Other Sampling Designs

In practice, of course, there are many other sampling designs than the Poisson. 

We will focus first on other single-stage element-sampling designs and then move on to

multi-stage designs. 

It is not hard to show that t and tR remain randomization consistent under the

assumptions in equation (3) when Bik # BiBk for i �k.  This property is shared by most

element-sampling designs with one notable except ! systematic sampling.   We will

restrict attention to designs where  Bik # BiBk when i �k for the remainder of the
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discussion of element sampling. 

The desirable model-based properties of tR and v likewise are unchanged when

we move from Poisson sampling to an alternative design with Bik # BiBk.   The model

unbiasedness of tR does not depend of the design at all.  We do invoke a

randomization-based property when asserting that the relative model bias of v is

Op(1/n*) for a relatively large population.   That property is unchanged in the expanded

context under examination here.

Unfortunately, v is no longer necessarily asymptotically randomization-unbiased

as an estimator for the randomization mean squared error of tR.  In some situations, it

makes sense to replace v with 

      v* =  v  +     3               [(Bik ! BiBk)/Bik](ri /Bi)(rk /Bk),       (13)
                  i,k0S (i�k) 

which is similar to Särndal, Swensson, and Wretman’s weighted residual variance 

estimator (1989): vSSW = 3 i,k0S [(Bik ! BiBk)/Bik](airi akrk). 

This variance/mean-squared-error estimator, v*, can be shown to retain the

model and randomization-based properties of v under Poisson sampling when the

summation in equation (13) has only O(n*) “cross” terms in the summation.  This

restriction assures that substituting for the model error term, ,k, and its randomization

analogue, ek, by rk repeatedly in the summation does not add appreciable bias (for

example, the summation is at most O(1) under the model, while v itself is O(N2 /n*)).   

An unfortunately property of v* is that it can be negative for some samples under

certain design even when equation (13) has only O(n*) cross terms.

 Nothing is lost or gained in terms of the asymptotic properties of v* by replacing
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some of all of the Bi in equation (13) by 1/ai.   One potential gain is convenience.

Under stratified simple random sampling, if all ai $1, then equation (13) can be replaced

by 

                  H
v!   =  v  +   3       3                [(Bik ! BiBk)/Bik](ri /Bi)(rk /Bk)
                h=1 i,k0Sh (i�k) 

      =  v  +   3      3           [(1 ! nh /Nh)/(nh !1)](Nh /nh)
2 rirk  

                  H
     =  v  +   3   {   [  3   (1 ! nh /Nh)

½ (Nh /nh)ri]
 2  !  3  (1 ! nh /Nh)

 (Nh /nh)
2ri

 2 } / (nh !1) 
                              i0Sh                                        i0Sh

     .  v  +   3   {   [  3   (1 ! ai 
-1)½ airi]

 2  !  3  (1 !ai 
-1) ai

2ri
 2 } / (nh !1) 

                              i0Sh                             i0Sh

          H
     =   3    (nh /[nh ! 1]) {  3  (ai 

2 ! ai)ri 
2 ! [  3 (ai 

2 ! ai)
½ ri]

2/nh},                            (14)   
        h=1                        i0Sh                      i0Sh                       

where Sh is the sample within stratum h, and nh /Nh the sampling fraction (selection

probability) in that stratum.  Notice that by making repeated use of the asymptotic

equality, Nh /nh . ai
  for i0Sh (but only O(n) times), we are assured that v! is nonnegative

whenever it exist. 

The weighted residual variance estimator, vSSW, effectively replaces each ak
2 ! ak

in equation (14) with ak
2(1 !Bk).  Särndal et al’s treatment of asymptotics is looser than

ours, but essentially they assume N $O(n2) rather than N $O(n3/2) when deriving the

model-based properties of vSSW.  Moreover, assuming Fi
 2 = xih for some h is no help.

Unlike v!, however, vSSW exists when some ai <1.     

If finite population correction can be ignored (i.e., when all Nh >> nh and almost

all ai >> 1), then equation (14) can be approximately by  
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                    H
v** = 3   (nh /[nh ! 1]) {  3 (ai ri )

2 ! (  3 airi)
2 /n}.                         (15)

                  h=1                      i0Sh              i0Sh 
                      
This same variance equation we can use in practice for many stratified designs with

unequal selection probabilities within each strata when all Bk << 1.  The key is that 

Bik /BiBk needs to be (nh ! 1)/nh  +  O(n*/N) for all unequal i and k in stratum h. 

Small-sample-bias adjustment can be applied using the method in either

equation (11) or (12).   The fully model-unbiased method, however, is no longer viable. 

It is of some interest to note that v** in equation (15), since it ignores finite

population correction, expresses the model variance of tR as estimator for 3U xk$.  

In a multistage design, a cluster of elements called a primary sampling unit

(PSU) is first selected without replacement, then probability samples of elements are

selected independently within each PSU.    We will not formally address with-

replacement sampling, either real of fictitious, here.  

Let nI denote the number of PSU’s in the sample, and nj the number of elements

subsampled in each PSU.  If nj is bounded for all j as n* grows arbitrarily large (so that

O(nI) = O(n*)) , it is a simple matter to show that all tR remains randomization consistent

as long as BIjg < BIjBIg when j � g, where BIj is the selection probability of PSU j and BIjg is

the joint selection probability of PSU’s j and g. 

It is common to estimate the variance of tR with the multistage analogue of

equation (15): 

                      H
v**  =  3   (nIh /[nIh ! 1]){  3   (  3   ai ri )

2 !( 3      3    ai ri )
2},      (16)

                    h=1                  j0S1h  i0Shj            j0S1h i0Shj 
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where h denotes a stratum of PSU’s, nIh the number of sampled PSU’s in stratum h, S1h

the set of sampled PSU’s in h, and Shj the set of subsampled elements from PSU hj. 

The estimator in equation (16) is asymptotically randomization unbiased for the

randomization mean squared error of tR when BIjg /(BIjBIg) !(nIh ! 1)/nIh is ignorably small 

It is easy to see that it is also asymptotically model unbiased for the model variance of

tR as an estimator for 3U xk$.  

We can generalize the error structure of the model.  Instead of requiring E(,i,k)

to be zero when i �k, we now require only that this correlation be bounded when i and k

are from the sample PSU.  When i and k are from different PSU’s, E(,i,k) is again

assumed to be zero. 

The new error structure allows elements within the same PSU to be correlated in

complex patterns, which need not be specified.  Correlations can differ across PSU’s

and even within PSU’s when there are additional levels of clustering (e.g., individuals

within households, households within blocks, and blocks with PSU’s).    Observe that

under this more general error structure both E,(v**) and E,[(tR ! 3U xk$)2] are

(asymptotically in the case of the former) equal to 3 E, [(3i0S(hj) ai,i)
2], where the first

summation is over all the PSU’s in the first-stage sample (and S(hj) = Shj).   Thus, v**

retains its model-based properties under the more general error structure. 

The method in equation (12) can be applied in an attempt to remove the small-

sample model bias of v**.    This assumes, however, that all the E(,i,k) = 0 for i�k.. 

Alternatively, we can replace  F2 = s2 with a more complex assumption about the error

structure of the ,k.   As before, if this working model is correct up to a scalar, the
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variance estimator is model unbiased.  Otherwise its relative bias is O(1/n*).

The real world is not asymptotic.  The expected element sample size may be

large in practice, but with multistage sampling, nI will be less so.  Kott (1994) discusses

how to calculate the relative model variance of v** under ideal conditions; that is to say,

when we the ,k are normally distributed with E(,i,k) % sik for a hypothesized set of sik

(note: sik = 0 when i and k are from different PSU’s).   

If v** had a chi-squared distribution, its degrees of freedom would be related to

its relative variance:  F = 2/relvar(v**).  With this in mind, Kott proposes the following

Satterthwaite-like calculation for the effective degrees of freedom of v**: 

                               H        
                          ( 3    3    vhj)

2    
                            h=1 j0S1h      

F =    ))))))))))))))))))))))))))))))) ,                                                           (17) 
             H         

             3   { 3    vhj
2 +  3         vhjvhg /(nh-1)2}    

          h=1   j0S1h         g�j0S1h

where vhj = E, [(3i0S(hj) ai,i*E(,i,k) = sik)
2].    The idea is that one should construct a

confidence interval for tR assuming the pivotal, tR /¾v**, has Student’s t distribution with

F degrees of freedom.  Kott shows that attempting to estimate F from the sample

without assumptions about the structure of the ,k is not advisable.   

The same computation of F could be applied if v** were bias-adjusted using the

method in equation (12).   Bell and McCaffrey (2001) have pointed out that the

determination of F above ignores the distinction between ,k and rk.   They offer a

theoretically superior alternative, which, unfortunately requires v** to have an

unstratified form: 
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                      H
v**  =  3     3   (  3   ai ri )

2.
                    h=1  j0S1h  i0Shj       

They also propose different methods of removing the model bias of v** from those

discussed here.    These methods likewise require a working model about the

variance/covariance matrix for the ,k.

7.  Concluding Remarks

We have attempted here to commit to paper an idea this author has long 

espoused in public; namely, that the dominant model-assisted (randomization-based)

survey-sampling paradigm, although fruitful in many ways, should be supplanted by a  

randomization-assisted model-based one.   That is because inference should be based

on the sample actually observed rather than averaged over all potential samples.  

Randomization-based methods provide some protection against inevitable model

failure, but that protection relies on invoking the powers of asymptotic properties in a

finite world.    

Many have been unwilling to use asymptotic statistics at all in the service of

survey sampling.  This is because the principal goal of survey sampling is the

estimation of finite population parameters.   The real issue, however, is not whether the

population can be viewed as large, but whether the sample can.   It is precisely

because samples are often very large in survey sampling, that the apparently exclusive

use of randomization methods dominated its practice for so long.  
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Notice that the modifier “apparently” in the last sentence.   Model were always

there, lurking in the background of strictly randomization-based survey sampling,

helping practitioners choose among estimation strategies.  The model-assisted

paradigm took models out of the shadows and awarded them a formal place in survey

theory and practice.  Still, real inference was deemed to be related to the randomization

distribution of an estimator, not its model distribution.

In the model-assisted paradigm, one chooses among randomization-consistent

estimation strategies by hypothesizing a reasonable and practical model, restricting

attention to model-unbiased estimators, and selecting that strategy with the minimum

model-expected randomization mean squared error.  

We have argued that this selection routine makes even more sense under a

randomization-expected model-based paradigm.  Moreover, the weight-residual

variance estimator from Särndal, Swensson, and Wretman (1989) actually does a

better job estimating model variance than randomization mean squared error, yet  that

is the variance/mean squared error estimator given in  Särndal et al.’s 1992 text book

on model-assisted methods.  

By paying closer attention to the asymptotics, we improved a bit on their variance

estimator in the text, concentrating first on those situations where finite population

correction matter and then on cases where the sample itself is not very large.     As the

population and then the sample because less large, it was necessary to make more

assumptions about the error structure of the model.  This may be regrettable, but

relying instead on randomization-based properties, which are asymptotic in nature, 

makes little sense.  Indeed, as we have seen, models can help us ferret out just when



21

the sample may be too small to assert the asymptotic normality of the pivotal 

(tR /¾v* or tR /¾v** when finite population correction is ignorable), a common and often

unjustified practice.

There is an alternative way of conceptualizing randomization-assisted model-

based survey sampling from the way it has been done here.  In the alternative, the

linear model in equation (4) holds for any element of the population, but not necessarily

the sample.  That is because ,k may be correlated with the sample-inclusion indicator, 

Ik.  That is to say, the sampling design may be informative, or equivalently, non-

ignorable.  This approach is intriguing when estimating model parameters using sample

data.  See, for example, Pfeffermann and Schverkov (1999).   It is less attractive when

estimating finite-population totals like T.  For one thing, it forces the statistician to

accept the truth of his (her) model.  For another, determining the model variance of an

estimator conditioned on a realized sample is difficult when the design is informative.  

One usually is forced to determine the model expectation of the randomization mean

squared error instead.    

A referee questioned whether the approach taken here is really model based

since it allows the possibility of total model failure, in which case the approach becomes

entirely randomization based.  A true model-based approach, in this contrary view,

protects against model failure by imbedding a parsimonious model within a more

general one.   That was done here when estimating the model variance of t.  

Invoking randomization-based inference to protect against total model failure is

reasonable because, 1, T is a finite-population parameter that can be defined in a

completely model-free manner, and, 2, in survey sampling we often have the luxury of
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large samples.   As a result, the usual focus of statistics on parsimonious models and

Type 1 error (rejecting a model that is true) can often be redirected at robust models

and Type 2 error (accepting a model that is false).   Randomization-based methods

appear to free us from assuming much of a model at all, although assuming variables

satisfy equation (3) can be viewed as a model of sorts.  Unfortunately, as has been

noted, the relevant randomization-based properties are asymptotic, while samples are

always finite. 

There are many topics we have not had the space to address here.   Kott and

Bailey (2000) discuss a method for drawing a multipurpose sample under the

randomization-assisted model-based paradigm.   Kott (1998) shows that the jackknife

and balance-repeated-replication variance estimators share the asymptotic model-

based properties of the weighted-residual variance estimator when finite population

correction can be ignored.   

We have not discussed techniques for handling the impact of nonresponse and

measurement error, two areas where the use of model-based methods is already widely

accepted.    Another area where model-based methods are widely used is in small-

domain estimation.  This is because sample sizes can be too small for randomization-

based theory  to have much virtue.   There, the incorporation of randomization-based

principles is problematic.    On the one hand, for the small domains sampling weights

are, at best, a nuisance.  On the other, when small domains are aggregated together,

the result is based on a large enough sample for randomization-based principles to

offer some protection against model failure.   Although not described that way, the

approach to small-domain estimation in You and Rao  (2001) is consistent with the
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randomization-assisted model-based paradigm.   

Breidt and Opsomer (2000) have developed a promising randomization-

consistent local-polynomial-regression estimator.  Their variance estimator, however,

does not have the desirable asymptotic model-based property discussed here.  That

failing should be corrected.  Kott (2003) offers an attempt.  Finally, model-assisted

papers on strategies using multi-phase sampling are appearing in the literature with

increasing frequency (see, for example, Hidiroglou and Särndal, 1998) .  Just how to

handle such designs  from a randomiation-assisted viewpoint needs to be addressed.   
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