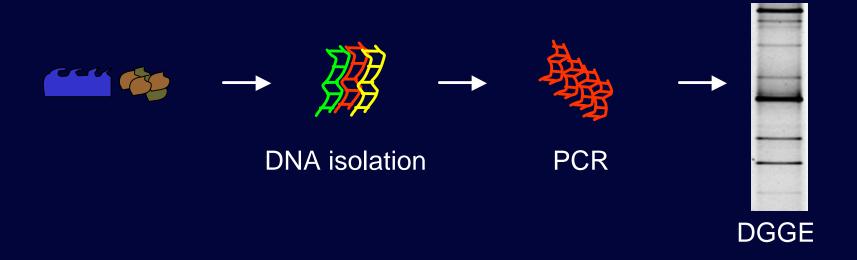
DGGE-based assessment of structural differences in environmental *Escherichia coli* communities

Von Sigler

Department of Earth, Ecological and Environmental Sciences University of Toledo


Methodology to study E. coli host origins and ecology

• Library-dependent

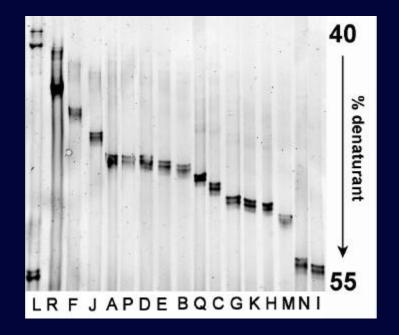
- Match phenotypic or genotypic patterns in bacteria occurring in libraries generated from polluted sites with those from known sources.
 - Match source isolates to sink isolates
 - Resource-consuming
- Library-independent
 - Detection of genetic sequences in DNA isolated directly from environmental bacterial populations.
 - No library necessary
 - Qualitative

Can the best attributes of both classes of methodology be harnessed in one tool?

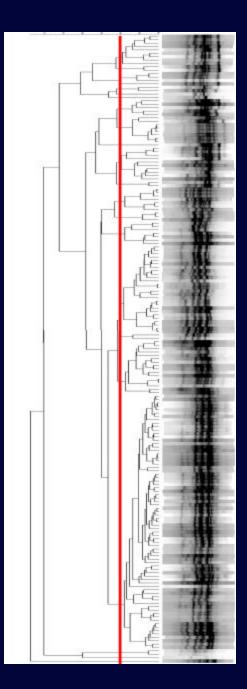
Denaturing gradient gel electrophoresis (DGGE)

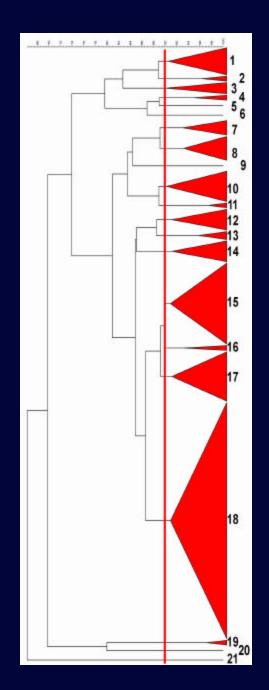
• Fingerprints can be used to rapidly match sink communities to those sources most likely contributing to the pollution.

Research Objectives


- Test the ability of DGGE to rapidly distinguish mixed *E. coli* communities of differing composition.
- Apply DGGE to determine the role of sediments in *E. coli* transport throughout Maumee Bay (OH).

Experimental outline: E. coli library


- Maumee Bay State Park (OH)
 - Water and sediment
- 184 confirmed *E. coli*
 - Modified m-TEC
 - EMB agar
 - 16S rRNA PCR


- Determine the number of distinct *E. coli* phylotypes detected by DGGE.
 - PCR-amplify the *uidA* gene from each *E. coli* isolate.
 - *uidA* exhibits sequence polymorphism (Farnleitner et al., 2000).
- DGGE of each isolate resulted in detection of 18 unique phylotypes.

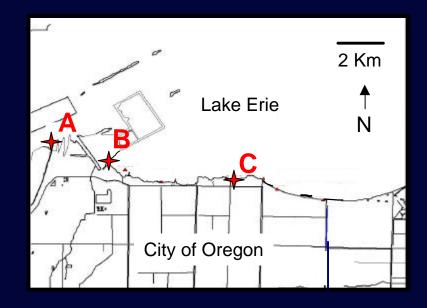
- BOX-PCR performed on each *E. coli* isolate.
 - Fingerprints were compared to determine phylotype similarity.
 - Clusters that formed above 90% similarity were collapsed to yield phylotype number.

- BOX-PCR identified 21 *E. coli* phylotypes.
 - Compare with 18 phylotypes detected by DGGE of *uidA* from isolates.
 - What about mixed communities?

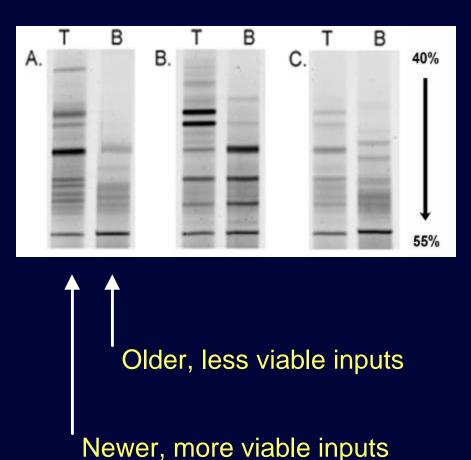
Experimental outline: lab-scale analysis

- Four artificial communities were constructed from DNA isolated from random *E. coli*.
 - PCR of uidA
 - DGGE

Similarity (Pearson correlation)	


Therefore, DGGE of *uidA*:

- Resolution is similar to BOX-PCR at the isolate level.
- Useful to differentiate mixed communities.


Application: E. coli transport

- Determine the role of sediments in *E. coli* transport throughout Maumee Bay (OH).
 - Suspended sediments transport *E. coli* communities to new locations throughout the bay.

- Isolate DNA
 - Trapped sediment
 - Bottom sediment
- PCR-DGGE of uidA
- *E. coli* communities in trapped sediments are different than those in bottom sediments.
 - Supports sedimentmediated transport
 - Trapped sediments appear to harbor a greater number of *E. coli* phylotypes.

Further studies and applications

• Screen other *E. coli* gene targets

- Develop DGGE as a screening tool
 - Couple sink *E. coli* populations with those from the most likely sources.
- Facilitation of ecological studies
 - Fate and survival of E. coli
 - Genetic markers to identify species-specific *E. coli* strains

Acknowledgements

- Lauren Keinath
- Pam Struffolino
- Malak Esseli
- Jim Brower

NSF-REU Summer Fellow (MSU) Graduate Student Graduate Student Park Manager (MBSP)