A Multi-Disciplinary Approach to Watershed Water Quality Education

Sanjay Shukla Tom Obreza Mark Clark Chuck Jacoby Chris Wilson

Topics

- 1. Situation
- 2. Rationale
- 3. Action
- 4. Outcomes
- 5. Impacts

Situation: Florida's expanding population

- 700 new residents arrive each day.
- Rural-to-urban land conversion - 130,000 ac/yr in the next 20 years.
- Agricultural production will remain strong.
- Need to protect water supply and quality, including natural systems and wetlands.

Situation:

Water resources

Water quality

- Sandy soils
- High water tables
- Nutrient/agrichemical use
- Sensitive ecosystems (e.g. Everglades)

Water supply

- 25% projected shortage by 2020 (South FL)
 - Finite groundwater aquifers
- Limited capacity to store rainfall

Rationale: The need for multi-disciplinary education

Although upland activities impact the coastal environment, extension programming has not traditionally been integrated.

Rationale

- Changes at the urban/ag interface present new challenges to water resource management and water quality protection.
- Each land use has its own characteristic effect on surface and groundwater quality.

The watershed concept

□ What is a watershed?

The specific land area that drains water into a river system or other body of water.

Political boundaries 🖉 🖉 🖉 Natural boundaries

Everglades Restoration Program: > 10 counties

Why do we need to talk about watersheds?

- Human activities and natural processes affect water quantity and quality within natural boundaries.
- Quality of life can be measured by watershed health, which in turn reflects land use activities.
 - * The watershed concept is important when planning for growth.*

Action: 2001 Brainstorming session The "Watershed Education Team" conducts multi-disciplinary watershed in-service training for a wide variety of Florida's county agents.

Ag & Biological Sanjay Shukla Engineering

Soil 🕹 Water Science

Soil & Water Scien

Chris Wilson Soil & Water Science

Nutrient Management Wetlands & Aquatic System

Water Resources

Coastal Ecosystems

Environmental Toxicology

Action: Annual watershed in-service training

- □ 2002: Managing water quality at the agriculture-urban interface.
- 2003: Watershed management: Reducing non-point source pollution.
- 2004: TMDLs and Florida LAKEWATCH volunteer monitoring.

Format: Full day indoors, half day outdoors

Indoor topics

- Watershed terminology
- Hydrology
- Chemical transport
- Impacts of land use on runoff and leaching
- Basic water chemistry
- Impacts of chemicals on aquatic environments
- Non-point source pollution
- Water quality monitoring
- Total Maximum Daily Loads

Water Quality Regulations, Management, & Control Guest presenters

Outdoor field tours Journey from uplands to coast

What kind of agents attended?

Program area	2002 (17 agents)	2003 (16 agents)	2004 (15 agents)
	% of attendees		
Agriculture	24	31	7
Sea Grant	29	6	20
Urban	23	44	53
Natural Resources	18	19	20
4-H	6	0	0

Outcomes: Reasons for attending

Application to county programs (40%)

□ Watershed issues in county (25%)

Regulatory issues (TMDL) (20%)

Outcomes: Estimates of knowledge gain by participants

Outcomes: Pre/Post tests

2003

Self Evaluation (1-5) Some (2-4) 75% A lot (5) 25%

Subject test 30% increase in correct answers 2004

Subject test

Pre-test 45% correct

Post-test 64% correct

Outcomes: learning environment

Impacts: Local use of training

□ Increase understanding of:

- Water quality
- Runoff effects on surface water quality
- Non-point source pollution
- Nitrogen and phosphorus loads

Explain:

- Best Management Practices
- Value of aquatic plants in nutrient removal
- Pond management
- Establish lake management plans
- Enhance citizen stewardship
- Increase volunteer monitoring at the county level
- Encourage residents to sample neighborhood stormwater ponds
- Present workshops on water quality and Total Maximum Daily Loads
- Train volunteers
- Train citizens interested in water quality protection

IFAS EXTENSION

