Trends in Agricultural Practices and Water Quality in NW Ohio, 1975-1995: and an Update to 2005 or: Lessons We Thought We'd Learned?

> R. Peter Richards Water Quality Laboratory Heidelberg College Tiffin, Ohio 44883

San Diego, California

USDA-CSREES Water Quality Conference

February 9, 2005

Road Map...

Lake Erie Agricultural Systems for Environmental Quality (LEASEQ) study:

- Study area
- Trends in agricultural land use and practices
- Trends in water quality
- Cause and effect?

Preliminary Update: the last 10 years

LEASEQ team:

David Baker Pete Richards Gerry Matisoff Peter Whiting

Frank Calhoun Lynn Forster Don Eckert Jerry Bigham HCWQL

CWRU

OSU

Ken Krieger Jack Kramer Doug Moog Chris Bonniwell John Stamm **Brian Slater** Joan Nichols Phil Levison Jonathan Rausch

The LEASEQ project was funded by a grant from USDA-CSREES

Background: water quality in Ohio

Burning river

Fixing Lake Erie

- Point source controls for phosphorus
 PLUARG
- Nonpoint management = ag management
- BMPs aimed at sediment and phosphorus:
 - Conservation tillage
 - Buffer strips, riparian corridors, CRP
 - Fertilizer management
 - More recently, CREP
- み pre-TMDL TMDL!

LEASEQ project was a retrospective evaluation of nonpoint programs in the Lake Erie basin and their success

Study Area

Bedrock Geology

GEOLOGIC SYSTEM (million years bef ore present)

Pennsylvanian (320-286) Mississippian (360-320) Devonian (408-360)

Silurian (438-408)

Glacial Geology

Michigan

WISCONSINAN GLACIA TION (14,000 to 24,000 years ago)

Ground moraine

Lake deposits

End moraine

Outwash

Kames and eskers

Trends in Agricultural Land Use

How have land use and farming practices changed in NW Ohio, 1975-1995?

Land use trends - approach

- Mostly county-level data available from state ag statistics, CTIC, etc.
 - Some variables derived by simple "models", e.g. animal counts => manure production => P & N content => assume applied to fields
- Assign county data to watersheds based on percent of county within the watershed

Trends in "farm geography"

Trends in distribution of crops

Trends in yields

Trends in fertilizer and manure ...substantial decrease since about 1980

Trends in conservation tillagesubstantial increase 1990-1995

Trends in phosphorus mass balance ... substantial decrease, but always input>output

Trends in soil fertility ...nearly doubled between 1975 and 1995

Trends in tile drainage ...probably increased in extent and efficiency, but no data available

How has water quality changed? Are these changes a consequence of changes in agricultural land use?

Expectations based on land use trends

- Decreases in fertilizer and manure, increase in conservation tillage suggest decreasing SS, P, increasing N?
- (Suspected) increase in tile drainage suggests increasing N, perhaps decreasing SS and P
- Increase in soil P suggests increasing P losses to surface waters

✤Data to work with (WQL)

- Daily and more frequent samples at stations on Maumee and Sandusky and several tribs
- ...since 1975. Up to 12,000 records per station!

みMethods

- Adjust concentrations for flow, after...
- Removing any trends from flow
- Calculate both as the rough ("residuals") from LOWESS fit
- Analyze trend on flow-corrected, logtransformed concentrations using regression, LOWESS

Are trends in water quality and land use linked?

➢Water quality trends occur in parameters we would expect, based on land use changes **Water quality changes occur at about the same** time as the land use changes >Water quality trends are of appropriate magnitude Other potential causes (e.g. upstream point sources) too small to account for changes Therefore we believe the linkage is cause-andeffect, though details are not well understood

Conclusions

 Water quality trends are toward improved conditions (except nitrate)
 Water quality trends result from intentional changes in use of the land
 A major victory for environmental science and management

For more information...

Journal of Environmental Quality Volume 31/January-February 2002/Number 1 JEVQAA 31(1) 1-368 (2002) 12 papers on the findings of the LEASEQ project can be found in the Journal of Environmental Quality, Vol. 31(1), January - February 2002.

Zoom Forward to 2005: A Preliminary Update

How do trends in the last 10 years compare with trends in the previous 20 years? Also extend analysis to Cuyahoga and Grand

Approach

 LOWESS smooths of flow-adjusted natural-log transformed concentrations
 Color coded to indicate 1975-1995 and 1995-2005

Trends for Maumee and Sandusky (agricultural), Cuyahoga and Grand (less so)

Station Locations

Suspended Sediment

Total Phosphorus

Dissolved Reactive Phosphorus

Nitrate Nitrogen

Total Kjeldahl Nitrogen

Summary

General improvements (except nitrate) during 1975-1995 Backsliding for DRP, TKN since then Continued improvement in Maumee and Sandusky SS (CREP watersheds!) but not in Cuyahoga and Grand Mixed results for TP and NO3

Causes?

Weather? (but we adjusted for flow...)
No-till concentrates nutrients at surface?
Concentrated animal agriculture?
Winter spreading of manures?
Global climate change?

Impacts?

Renewed problems in Lake Erie

- Increased in-lake phosphorus concentrations
- Hypoxia in summer
- Microcystis and other cyanobacteria
- Tributary inputs are probably contributing to these problems

Whatever the cause(s) of increased tributary nutrients, expect demands for renewed diligence!

A Lesson Learned

We were quite happy to attribute improvements in water quality to changes in ag practices, even if the case was a bit tenuous.

Now that some things are getting worse, can we do other than blame ag practices?!

Inferring cause-and-effect from empirical trends is a tricky, and perhaps hazardous, exercise.

