

## Maintenance Guide for Florida **Micro-Irrigation Systems**

(Download this document at http://edis.ifas.ufl.edu/SS436) Thomas Obreza, University of Florida



#### SITUATION

- Converting from high-volume irrigation to micro-irrigation conserves and protects water resources.
- · Water and fertilizer can still be wasted if a micro-irrigation system is not maintained properly.

#### OBJECTIVE

· Improve the performance of Florida microirrigation systems.

#### METHODS

- Determine current state of knowledge.
- Measure micro-irrigation system performance in grower's fields.
- Survey irrigation water properties.
- · Experiment with line-cleaning and scalepreventing chemicals.
- · Compile irrigation maintenance guide.
- · Educate irrigation mangers.

#### PARTNERSHIPS

Florida Dept. of Agriculture and Consumer Services and the South West Florida Water Management District provided funding to the University of FAS.



#### RESULTS

- Research identified causes of poor irrigation system performance.
- · Lab and field evaluation identified several effective line maintenance chemicals.
- A 34-page maintenance guide was produced.
- Three irrigation maintenance seminars were held to distribute and explain use of the guide.

- What is "routine maintenance?" Backwashing and cleaning
  - Acidifying (if necessary). Cleaning or replacing
- · Evaluating and monitoring system northing everten

**CHAPTER 1: INTRODUCTION** 

Your local USDA-NRCS Mobile Irrigation Laboratory can.....

• Checking for leaks.

plugged emitters.

• Periodic line flushing .

filters.

• Chlorinating.

- Identify problems and suggest solutions
- Provide guidance on irrigation system selection and installation.
- Help with irrigation management planni

#### **CHAPTER 3: TESTING THE WATER SOURCE**

| A PERMANANA AND PERMANANA | Factor                             | Р |
|---------------------------|------------------------------------|---|
| ALL AND AND A             |                                    |   |
|                           | Suspended solids <sup>1</sup>      |   |
| N GANDY YOLL W            | pH                                 |   |
| IN NOWASSING Y            | Tot. dissolved solids <sup>1</sup> |   |
| A CONTRACTOR OF           | Iron <sup>1</sup>                  |   |
| A TANKAL STATE            | Manganese <sup>1</sup>             |   |
|                           | Calcium <sup>1</sup>               |   |
|                           | Alkalinity as CaCO <sub>3</sub> 1  |   |
| 2 1 PAVAN N SI NN         | Hydrogen sulfide <sup>1</sup>      |   |
|                           | Bacteria (#/mL)                    |   |

| Factor                            | Plugging hazard based on concentration |                 |          |
|-----------------------------------|----------------------------------------|-----------------|----------|
|                                   | Slight                                 | Moderate        | Severe   |
| Suspended solids <sup>1</sup>     | < 50                                   | 50 - 100        | > 100    |
| pН                                | < 7.0                                  | 7.0 - 7.5       | > 7.5    |
| Tot. dissolved solids 1           | < 500                                  | 500 - 2000      | > 2000   |
| Iron <sup>1</sup>                 | < 0.1                                  | 0.1 – 1.5       | > 1.5    |
| Manganese <sup>1</sup>            | < 0.1                                  | 0.1 – 1.5       | > 1.5    |
| Calcium <sup>1</sup>              | < 40                                   | 40 - 80         | > 80     |
| Alkalinity as CaCO <sub>3</sub> 1 | < 150                                  | 150 - 300       | > 300    |
| Hydrogen sulfide <sup>1</sup>     | < 0.2                                  | 0.2 - 2.0       | > 2.0    |
| Bacteria (#/mL)                   | < 10,000                               | 10,000 - 50,000 | > 50,000 |

r parts per million (pr

#### **CHAPTER 4: ROUTINE MAINTENANCE**

- Pump Power unit
- Water filters Line flushing
- Automatic valves
- Field pipe, tubing, and emitters
- Pressure gauges and flow meters
- · Chemical injection equipment

# **CHAPTER 5: WATER TREATMENT**

- · Prevent biological growths (chlorine).
- Prevent precipitation reactions.
- · Dissolve scale deposited on inside surfaces of tubing and emitters.



#### **CHAPTER 6: REMEDIAL MAINTENANCE**

A "specialized" attempt to unclog emitters

- Must identify plugging material.
- Chemically reclaiming plugged emitters should be considered a "last resort."



Possible chemicals include sulfu acid, citric acid, and Na hydrosu

### CHAPTER 7: IRON, MANGANESE, AND SULFUR

· Iron scale is the most difficult problem to remedy.



#### **CHAPTER 8: SUMMARY**

- · Preventative maintenance is the key.
- · Regularly flushing the system is critical.
- · Plugged systems require cleaning or replacing emitters and purging.
- · Water treatment involves chlorine, acid, or inhibitors.
- Check effectiveness of chemical treatment with monitoring







- Physical, chemical, and biological criteria for plugging potential of micro-irrigation water sources