Heat Load Calculation

Factors to be considered in determining refrigeration required for a cold-storage plant. Examples are simplified to illustrate steps necessary to calculate heat load of a refrigerated storage area during cooling and normal storage operation. More information on load calculations can be found in ASHRAE (1981), Bartsch and Blanpied (1984), Patchen (1971) and Ryall and Lipton (1979). The information presented here is adapted from pages 14 to 16 of the previous USDA Agriculture Handbook Number 66 (Hardenberg et al., 1986). Examples are shown in metric units for pears in storage at $-1.1^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{F}\right)$. To convert respiration rate of fruits and vegetables expressed in $\mathrm{mg} \mathrm{CO}_{2} \mathrm{~kg}^{-1}$ h^{-1} to heat production in kJ, multiply $\mathrm{mg} \mathrm{CO}_{2} \mathrm{~kg}^{-1} \mathrm{~h}^{-1}$ by 61 to get kcal tonne ${ }^{-1}$ day $^{-1}(1 \mathrm{kcal}=4,186 \mathrm{~kJ})$.

Conditions

Example

Storage size
Outside surface area (including floor)
Inside dimensions
Volume
Insulation

Ambient conditions at harvest
Fruit temperature
Storage capacity
Bin weight
Loading weight and time
Cooling rate
Air changes from door openings during cooling
Air changes from door openings during storage
Specific heat
$15 \times 15 \times 4.5 \mathrm{~m}$
$720 \mathrm{~m}^{2}$
$14.7 \times 14.7 \times 4.2$ m
$908 \mathrm{~m}^{3}$
7.6 cm of polyurethane with a conductivity value $(\mathrm{k})=$
1.3 kJ per m^{2} per cm thickness per ${ }^{\circ} \mathrm{C}$

Coefficient of transmission $(\mathrm{U})=1.1 \mathrm{~kJ}$ per h per m^{2} per ${ }^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$ and $50 \% \mathrm{RH}$
At harvest, $21{ }^{\circ} \mathrm{C}$; In storage, $-1.1^{\circ} \mathrm{C}$
600 bins at 500 kg fruit per bin $=300,000 \mathrm{~kg}$ of fruit
63.5 kg ; total weight of bins $=38,100 \mathrm{~kg}$

200 bins ($100,000 \mathrm{~kg}$ fruit per day); 3 days to fill
$1^{\text {st }}$ day, 21 to $4.5{ }^{\circ} \mathrm{C} ; 2^{\text {nd }}$ day, 4.5 to $-1.1^{\circ} \mathrm{C}$
Six per day
1.8 per day

Pears, 0.86 ; Wood bins, 0.5
Heat load to lower air from 30 to $-1.1^{\circ} \mathrm{C}(50 \% \mathrm{RH})$
74.5 kJ per m ${ }^{3}$

Heat load to lower air from 7.2 to to $-1.1^{\circ} \mathrm{C}(70 \% \mathrm{RH})$
Miscellaneous heat loads
15.3 kJ per m ${ }^{3}$

Lights, 2,400 W per h (3.6 kJ per W)
Fans at $3,112 \mathrm{~kJ}$ per HP
Electric forklifts, $36,920 \mathrm{~kJ}$ each for 8 h
Workers, $1,000 \mathrm{~kJ}$ per h for each person

A. Load during cooling and filling storage: temperature difference (TD) from $30{ }^{\circ} \mathrm{C}$ to $-1.1^{\circ} \mathrm{C}=31.1^{\circ} \mathrm{C}$, assuming $31.1^{\circ} \mathrm{C}$ TD on all surfaces:

1. Building-transmission load: area $\left(720 \mathrm{~m}^{2}\right) \times \mathrm{U}(1.1 \mathrm{~kJ}) \times \mathrm{TD}\left(31.1^{\circ} \mathrm{C}\right) \times \mathrm{h}(24)=$
2. Air-change load from door openings: volume $\left(908 \mathrm{~m}^{3}\right) \times$ heat load $(74.5 \mathrm{~kJ}) \times$ air changes $(6)=$

405,876
3. Product cooling (field heat removal) -

First day
Fruit weight $(100,000 \mathrm{~kg}) \times$ specific heat $(0.86) \times \mathrm{TD}\left(21\right.$ to $\left.4.5^{\circ} \mathrm{C}\right) \times \mathrm{kJ}$ factor $(4.186)=5,939,934$
Bin weight $(12,700 \mathrm{~kg}) \times$ specific heat $(0.5) \times \mathrm{TD}\left(21\right.$ to $\left.4.5^{\circ} \mathrm{C}\right) \times \mathrm{kJ}$ factor $(4.186)=$
438,588
Second day
Fruit weight $(100,000 \mathrm{~kg}) \times$ specific heat $(0.86) \times \mathrm{TD}\left(4.5\right.$ to $\left.-1.1^{\circ} \mathrm{C}\right) \mathrm{xkJ}$ factor $(4.186)=2,015,977$
Bin weight $(12,700 \mathrm{~kg}) \times$ specific heat $(0.5) \times \mathrm{TD}\left(4.5\right.$ to $\left.-1.1^{\circ} \mathrm{C}\right) \mathrm{x} \mathrm{kJ}$ factor $(4.186)=$
148,854
4. Heat of respiration during cooling (vital heat) -

First day

Average temperature of 13 EC ; respiration rate of $12,206 \mathrm{~kJ}$ per tonne per 24 h ;
Tonne of fruit $(100) \times$ rate $(12,206)=$
1,220,600

Second day

Average temperature of 1.7 EC ; respiration rate of $1,741 \mathrm{~kJ}$ per tonne per 24 h ; Tonne of fruit $(100) \times$ rate $(1,741)=$
Maximum heat accumulated in storage before cooling completed: Total fruit weight of $300,000 \mathrm{~kg}-2$ day loading weight of $200,000 \mathrm{~kg}=100,000 \mathrm{~kg}$ (100 tonnes); respiration rate at $-1.1^{\circ} \mathrm{C}$ is 812 kJ per tonne per 24 h ; tonne of fruit $(100) \times$ respiration rate $(812)=$
5. Miscellaneous heat loads:
Lights - W $(2,400) \times \mathrm{kJ}$ per $\mathrm{W}(3.6) \times \mathrm{h}(8)=\quad 69,120$
Fans - HP (3) x kJ per HP $(3,112) \times \mathrm{h}(24)=\quad 224,064$
Forklifts $-2 \times 36,920 \mathrm{~kJ}$ per forklift for $8 \mathrm{~h}=\quad 73,840$
Labor - workers (2) x kJ per h $(1,000) \times \mathrm{xh}(8) \quad 16,000$

Total heat load during cooling:

1. Building transmission 519,149
2. Air change 405,876
3. Product cooling 8,543,353
4. Production respiration 1,475,900
5. Miscellaneous 383,024

Subtotal	$11,399,302$
Add 10% to be cautious	$1,139,930$
Total required refrigeration	$12,539,232$

Assuming that refrigeration equipment operates 18 h per day: $12,539,232 \div 18 \mathrm{~h}=696,624 \mathrm{~kJ}$ per h . Since a tonne of refrigeration absorbs $12,660 \mathrm{~kJ}$ per $24 \mathrm{~h}: 696,624 \div 12,660=55$ tons of peak refrigeration capacity is required.

B. Load during normal storage operation (average outside ambient conditions, 7.2 EC at $70 \% \mathrm{RH}$; storage temperature, $-1.1 \mathrm{EC} ; \mathbf{T D}=7.2 \mathrm{E}$ to $-1.1 \mathrm{EC}=8.3 \mathrm{EC}$.)

kJ per 24 h

1. Building-transmission load: area $\left(720 \mathrm{~m}^{2}\right) \times \mathrm{U}(1.1 \mathrm{~kJ}) \times \mathrm{TD}\left(8.3^{\circ} \mathrm{C}\right) \times \mathrm{h}(24)=$

157,766
2. Air-change load from door openings: volume $\left(908 \mathrm{~m}^{3}\right) \times$ heat load $(15.3 \mathrm{~kJ}) \times$ air changes $(1.8)=$

25,006
Product load (respiration, no cooling):
3. Respiration rate at $-1.1^{\circ} \mathrm{C}$ is 812 kJ per tonne per 24 h ; tonne of fruit $(300) \times$ rate $(812)=243,600$
4. Miscellaneous head loads:

Lights - W $(2,400) \times \mathrm{kJ}$ per $\mathrm{W}(3.6) \times \mathrm{h}(4)=\quad 34,560$
Fans - HP (3) x kJ per HP $(3,112) \times \mathrm{h}(24)=\quad 224,064$
Labor - people (1) x kJ per h(1,000) x h (4) = 4,000
Total load during storage:

1. Building transmission 157,766
2. Air change 25,006
3. Product load (respiration) 243,600
4. Miscellaneous 262,624

Subtotal	688,996
Add 10% to be cautious	68,899
Total required refrigeration	757,895

Assuming refrigeration equipment operates 18 h per day: $757,895 \div$ by $18 \mathrm{~h}=42,105 \mathrm{~kJ}$ per h and $42,105 \div 12,660$ $=3.3$ tonnes of refrigeration capacity is needed during normal storage.

Literature Cited:

ASHRAE. 1981. American Society of Heating, Refrigerating and Air Conditioning Engineers Handbook 1982 Applications. ASHRAE, Atlanta GA.
Bartsch, J.A. and G.D. Blanpied. 1984. Refrigeration and controlled atmosphere storage for horticultural crops. Northeast Region Agricultural Engineer Service, Cornell Univ., NRAES No. 22, 42 p.
Hardenburg, R.E., A.E. Watada and C.Y. Wang. 1986. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks, USDA-ARS Agric. Hndbk. No. 66, pp. 14-16.
Patchen, G.O. 1971. Storage for apples and pears. USDA Mkt. Res. Rpt. No. 924, 51 p.
Ryall, A.L. and W.J. Lipton. 1979. Vegetables and melons. In: Handling, transportation and storage of fruits and vegetables. Vol. 1, $2^{\text {nd }}$ ed., AVI Pub. Co., Westport CT, 610 p.

