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PREFACE 
 The Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) computer software 
described in this report is a new capability of the Hydrogeologic-Unit Flow (HUF) Package for 
MODFLOW-2000, the U.S. Geological Survey’s three-dimensional ground-water flow 
parameter-estimation model.  The software is designed to allow the primary axes of horizontal 
anisotropy to be oriented in directions other than along grid axes.  The documentation presented 
here describes the methods used, the required new input file, the changes in how two parameter 
types in the HUF Package are used, and the output related to the new LDVA capability. 

 All code developed by the U.S. Geological Survey for MODFLOW-2000 is available for 
downloading over the Internet from a U.S. Geological Survey software repository.  The 
repository is accessible on the World Wide Web from the U.S. Geological Survey Water 
Resources Information web page at URL  

http://water.usgs.gov/software/ground_water.html

under the label ‘MODFLOW-2000’. 

The performance of the LVDA capability of the HUF Package has been tested in a variety of 
applications.  Future applications, however, might reveal errors that were not detected in the test 
simulations.  Users are requested to notify the U.S. Geological Survey of any errors found in this 
document or the computer program using the email address available on the website mentioned 
above.  Updates might occasionally be made to both this document and to the LVDA capability 
of the HUF Package, and users are encouraged to check the website periodically. 
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MODFLOW-2000, 
THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-

WATER MODEL — 
DOCUMENTATION OF THE MODEL-LAYER VARIABLE-

DIRECTION HORIZONTAL ANISOTROPY (LVDA) 
CAPABILITY OF THE HYDROGEOLOGIC-UNIT FLOW 

(HUF) PACKAGE 
By Evan R. Anderman, Kenneth L. Kipp, Mary C. Hill, Johan Valstar, and 

Roseanna M. Neupauer 

ABSTRACT 
 This report documents the model-layer variable-direction horizontal anisotropy (LVDA) 
capability of the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW-2000.  The LVDA 
capability allows the principal directions of horizontal anisotropy to be different than the model-
grid row and column directions, and for the directions to vary on a cell-by-cell basis within model 
layers.  The HUF Package calculates effective hydraulic properties for model grid cells based on 
hydraulic properties of hydrogeologic units with thicknesses defined independently of the model 
layers. These hydraulic properties include, among other characteristics, hydraulic conductivity 
and a horizontal anisotropy ratio.  Using the LVDA capability, horizontal anisotropy direction is 
defined for model grid cells within which one or more hydrogeologic units may occur. For each 
grid cell, the HUF Package calculates the effective horizontal hydraulic conductivity along the 
primary direction of anisotropy using the hydrogeologic-unit hydraulic conductivities, and 
calculates the effective horizontal hydraulic conductivity along the orthogonal anisotropy 
direction using the effective primary direction hydraulic conductivities and horizontal anisotropy 
ratios. The direction assigned to the model layer effective primary hydraulic conductivity is 
specified using a new data set defined by the LVDA capability, when active, to calculate 
coefficients needed to solve the ground-water flow equation.  Use of the LVDA capability is 
illustrated in four simulation examples, which also serve to verify hydraulic heads, advective-
travel paths, and sensitivities calculated using the LVDA capability. 

 This version of the LVDA capability defines variable-direction horizontal anisotropy 
using model layers, not the hydrogeologic units defined by the HUF Package. This difference 
needs to be taken into account when designing model layers and hydrogeologic units to produce 
simulations that accurately represent a given field problem. This might be a reason, for example, 
to make model layer boundaries coincide with hydrogeologic-unit boundaries in all or part of a 
model grid. 
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INTRODUCTION 
 In models of ground-water systems, depositional, structural, and other conditions can 
result in hydraulic conductivity being different depending on the direction considered. This is 
called hydraulic-conductivity anisotropy.  Correct representation of hydraulic-conductivity 
anisotropy is important for the accurate solution of hydraulic heads, flows, and transport, as 
demonstrated by Henry and others (1998). MODFLOW-2000 (Harbaugh and others, 2000) with 
either the Layer-Property Flow (LPF) Package (Harbaugh and others, 2000, p. 22) or the 
Hydrogeologic-Unit Flow (HUF) Package (Anderman and Hill, 2000) have been limited to grid-
direction anisotropy (fig. 1A). That is, the simulated directions of anisotropy have been limited to 
being oriented along the grid axes. MODFLOW-2000 is more flexible than previous USGS-
produced versions of MODFLOW in that it allows grid-direction horizontal anisotropy to vary 
within a layer by specifying different values of the horizontal grid-direction anisotropy ratio for 
each model grid cell (fig 1A), but the limitation to grid directions remained. To address this 
limitation, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, 
developed the model layer variable direction horizontal anisotropy (LVDA) capability to make 
fully variable-direction horizontal anisotropy within model layers available in MODFLOW-
2000’s HUF Package. 

 Flexibility in the definition of horizontal anisotropy, such as that shown in figure 1B, is 
necessary because of the following. (1) In modeling natural systems, grid axes can not always be 
oriented parallel to major anisotropy directions. For example, major fracture groups in different 
parts of a single flow system may be oriented at angles other than 90 degrees. (2) Considerations 
other than horizontal anisotropy, for example, boundary shape, often are important in grid 
orientation, and flexibility for defining horizontal-anisotropy direction allows those other 
considerations to be better addressed. (3) Significant errors in the magnitude and direction of flow 
can result from inaccurately defined anisotropy direction, and this error can be quantified using 
the Ground-Water Flow and Sensitivity Processes of the new LVDA capability. As shown in this 
work, using the LDVA capability to simulate horizontal anisotropy that is not parallel to grid 
directions results in increased execution times, and this will need to be considered when 
designing a model grid. 

Purpose and Scope 

 The purpose of this report is to document the conceptualization and implementation of 
the LVDA capability of the HUF Package.  After reviewing selected aspects of the methodology 
that are important to users and programmers, some basic concepts are presented and errors that 
can be produced by incorrectly specifying the direction of anisotropy are investigated with an 
analytical solution. Next, the equations used to calculate heads and sensitivities in the new 
capability are derived; main points are presented in the text and details are presented in 
Appendices B and C. Then, the hydraulic heads simulated with the new capability are tested 
using an analytical solution and a numerical solution, and calculated sensitivities are tested using 
a heterogeneous three-dimensional test case. Appendix A describes the new input file required to 
use variable-direction horizontal anisotropy. 
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Methods 

This section briefly discusses several aspects of the methods used in this work that are 
important to users and programmers using the LVDA capability. The issues important to users 
include: (1) variable-direction horizontal anisotropy is defined by model layer rather than 
hydrogeologic unit, (2) definition of the anisotropy direction, and (3) possible solver convergence 
difficulties. An issue important to programmers is the perspective of the MODFLOW coordinate 
system used in this work to develop the relevant equations and its relation to the model grid. 
Finally, the present work is put into perspective relative to selected existing models capable of 
representing variable-direction horizontal anisotropy. 
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Figure 1. Nine cells from a MODFLOW model layer showing (A) grid-direction horizontal 

anisotropy defined for each grid cell, (B) variable-direction horizontal anisotropy defined for 
each grid cell, and (C) definition of the angle, θ, required to define variable-direction 
horizontal anisotropy. The angle is defined clockwise from the positive x direction, and can 
be assigned values between -90 and 90 degrees, inclusive, in the LVDA capability. 
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Issues for Users 
Three issues that are likely to be of concern to users include defining variable direction 

horizontal anisotropy using model layers, defining the anisotropy direction,  and possible solver 
difficulties. 

 
Defining Variable-Direction Horizontal Anisotropy Using Model Layers 

This version of the LVDA capability defines variable-direction horizontal anisotropy 
using model layers, not the hydrogeologic units defined by the HUF Package. This can affect how 
model layers and hydrogeologic units are best designed for given applications. For example, in 
areas where fracturing is thought to produce horizontal anisotropy principally in one 
hydrogeologic unit, more accurate simulations may be attained by making model layer 
boundaries coincide with the top and bottom of that hydrogeologic unit.  

 
Defining Anisotropy Direction 

For each model grid cell, the direction of horizontal anisotropy is defined using an angle 
from the direction of model rows.  Angle values can range from +90 to -90 degrees. The angle is 
measured clockwise from the model-row direction, as shown in figures 1B and 1C. Parameter 
estimation may result in angles that are outside this range; if so, the value is converted to a 
number within this range. For parameters used to define the anisotropy angle, the scaling for 
dimensionless scaled sensitivities does not include multiplication by the parameter value. 

 
Possible Solver Convergence Difficulties 

Allowing the primary axes of horizontal hydraulic conductivity to vary within a model 
requires additional terms to be represented in the hydraulic-conductivity tensor (see equation B-
2a and 2b in Appendix B).  When horizontal anisotropy is aligned with the grid direction, only 
diagonal terms occur in the hydraulic-conductivity tensor; when the direction of horizontal 
anisotropy is not aligned with the grid, off-diagonal terms are required.  This change results in 
more off-diagonal elements being added to the matrix difference equation for ground-water flow, 
which then no longer matches the difference stencil of solvers available in MODFLOW. A matrix 
with the standard stencil is shown in McDonald and Harbaugh (1988, p. 12-3). In this work, 
matrix splitting was employed to maintain the utility of popular solvers for MODFLOW. While 
all tests conducted thus far indicate the matrix splitting works well, good solver performance can 
not be guaranteed through mathematical proof, as discussed in Appendix B. Users therefore need 
to check for signs of solver failure. Solver failure generally is accompanied by lack of solver 
convergence or large global budget errors. 

Issue for Programmers: Coordinate system 
McDonald and Harbaugh (1988, p. 2-4) define a right-hand coordinate system for 

MODFLOW that has the advantage of being coordinated with a grid numbering system that is 
easy for users to understand. Grid row numbers increase from back to front and are indexed by i, 
column numbers increase from left to right and are indexed by j, and layer numbers increase from 
top to bottom and are indexed by k. The y axis points along columns toward increasing row 
numbers, the x axis points along rows toward increasing column numbers, and the z axis points 
downward.  

The difficulty with this user-oriented MODFLOW coordinate system is that j indexes the 
x axis instead of the more common i; i indexes the y axis instead of the more common j, and the z 
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axis points down instead of up. In this report, the MODFLOW convention of j denoting cell 
indexing along the x axis and i denoting cell indexing along the y axis is followed.  However, for 
the two-dimensional (x-y) coordinate grid system needed for this work, graphs with the normal 
orientation of the x-axis pointing to the right and the y axis pointing up are shown. This 
corresponds to looking at a MODFLOW x-y nodal plane from a higher value along the z axis 
than the location of the plane.  In the MODFLOW coordinate system, this means looking up at an 
x-y plane from below in the three-dimensional grid. 

Historical Perspective 
Historically, variable-direction anisotropy has been available only in finite-element 

models. For example, considering only three-dimensional finite-element models, FEMWATER 
(Lin and others, 2001), the newest version of SUTRA (Voss and Provost, 2002), and FEHM 
(Dash and others, 2002) allow mutually orthogonal anisotropy directions to be in any orientation, 
WATFLOW/WTC (Molson and Frind, 2002a) and FLOWNET/TRANS (Molson and Frind, 
2002b) allow mutually orthogonal anisotropy directions, but one direction is required to be 
vertical, and PTC (Pinder, 2002) specifies the allowable coordinate directions for anisotropy. The 
capabilities of FEMWATER, SUTRA, and FEHM exceed those of MODFLOW-2000 with HUF 
and its LVDA capability because LVDA is limited to variable direction anisotropy only within 
model layers.   

A method for developing equations for flow under general anisotropy in two dimensions 
has been presented by Edwards and Rogers (1998) for a block-centered finite-difference grid as 
used in MODFLOW.  The Edwards and Rogers (1998) method was implemented for work 
discussed in this report, but only for orthogonal horizontal coordinates of a three-dimensional 
region. Thus, applicability is restricted to variable direction horizontal, orthogonal anisotropy for 
the hydraulic-conductivity tensor. 

Acknowledgments 
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IMPORTANCE OF ANISOTROPY DIRECTION AND 
INTRODUCTION OF SOME BASIC CONCEPTS 

A simple analytical example developed by John L. Wilson (New Mexico Institute for 
Mining and Technology, written commun., 1999) is used to introduce some basic concepts such 
as the relation between the primary axes of horizontal anisotropy and the grid coordinate axes, 
and to illustrate the error in the magnitude and direction of the specific discharge vector when the 
primary axes of horizontal anisotropy are not aligned with the grid coordinate axes. 

To relate the errors illustrated by the simple analytical example to MODFLOW, consider 
that previous MODFLOW capabilities allowed primary axes of horizontal anisotropy to be 
defined parallel to the grid directions only – that is, parallel to the x and y grid directions. 
Hydraulic-conductivity values were specified along rows (in the x direction) and multiplied by 
horizontal anisotropy to obtain hydraulic conductivity along columns (in the y direction).  

To evaluate the error in the magnitude and direction of the simulated flow that occurs 
when the actual primary directions of horizontal anisotropy are not the grid directions, consider 
the problem shown in figure 2. Kmax and Kmin define the principal directions and magnitudes of 
the hydraulic conductivity field. The direction of Kmax is defined by θ, the angle between the x-
coordinate direction and the Kmax direction, measured clockwise from the x axis. In this work, the 
direction of Kmin is always perpendicular to Kmax in the horizontal plane.  The magnitude of Kmax 
is larger than or equal to that of Kmin; the ratio of the magnitudes, Kmin/Kmax, is termed HANI in 
this report because that is the variable name used in MODFLOW-2000.  

The relations between Kxx and Kyy , and Kmax, Kmin and θ, are as follows: 

( θ2cos
22

minmaxminmax KKKK
K xx )−

+
+

=  (1a) 

( θ2cos
22

minmaxminmax KKKK
K yy )−

−
+

=  (1b) 

Previous versions of MODFLOW have not included the additional term, Kxy, calculated as: 

( )θ2sin
2

minmax KKKK yxxy
−

==   (1c) 

In this evaluation, only errors in anisotropy direction that are less than or equal to 45 
degrees need to be considered so that Kxx ≥ Kyy.  If the direction error exceeds 45 degrees, 
previous capabilities of MODFLOW would have allowed the anisotropy factor to be greater than 
1.0, so that the higher hydraulic conductivity value could have been assigned to the y axis instead 
of the x axis.  This relationship is shown in figure 2.  
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Figure 2: Typical actual and approximate representations of horizontal anisotropy for which (A) 
errors in flow directions and magnitudes are considered and (B) the analysis of errors would 
be equivalent if θ were measured from the y-axis instead of the x-axis. The angle θ is 
measured from the positive x-axis direction and clockwise angles are positive. 

 

To evaluate the error in the magnitude and direction of the simulated flow that occurs when 
the actual primary directions of horizontal anisotropy are not the grid directions, consider the 
analytical equivalent of a MODFLOW simulation of a homogeneous ground-water system with a 
hydraulic gradient imposed parallel to the rows of the finite-difference grid. The direction of the 
hydraulic gradient is thus x direction, and the perpendicular horizontal direction along columns is 
the y direction. In this homogeneous problem, the same hydraulic-conductivity value, Kxx, is 
specified everywhere in the system in the x direction, and a different value, Kyy, is specified 
everywhere in the system in the y direction.  

For a two-dimensional domain with the hydraulic gradient in the x direction only, the Darcy 
velocity vector, q (L/T), is  

yxyxxx n
x
hKn

x
hKq

∂
∂

−
∂
∂

−= , (2) 

where, 
 Kxx and Kxy are components of the porous-medium hydraulic conductivity tensor [L/T];  
 h is the fluid hydraulic head [L]; and 
 nx and ny are unit vectors in the x- and y-directions, respectively, where nx points in the x 

direction along rows, and ny points in the y direction along columns. 
 

The first term on the right-hand side of equation 2 is the flow parallel to the gradient 
direction and normal to the finite-difference cell faces crossed in this direction; it is often called 

 

 

7



the normal flow. The second term is the flow perpendicular to the gradient direction and is often 
called the flow tangential to the face. The magnitude of the Darcy velocity, therefore, can depend 
significantly on Kxy , as can its direction. 

If the primary axes of horizontal anisotropy are incorrectly assumed to be aligned with 
the coordinate axes, then Kxy is assumed to equal 0, and the approximation, , to the Darcy 
velocity vector is 

q̂

xxx n
x
hKq

∂
∂

−=ˆ  (3) 

The importance of correctly accounting for anisotropy can be illustrated by evaluating the error in 
the magnitude and direction of the approximation relative to true specific discharge q.   q̂

The error in magnitude, εm, is defined as: 
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and represents the fractional error in the approximated . The percent error is obtained by 
multiplying by 100. 

q̂

The error in direction, εd, is defined as the difference in angle between the true specific 
discharge and the approximation. The angle of the true specific discharge would be between the 
angle of the hydraulic gradient and the angle of the horizontal anisotropy(θ), and can be 
calculated as 
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In the approximation, flow is along the x-axis so the angle of the approximation equals zero. Thus 
the error in direction, εd, equals:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

xx

xy
d K

K1tanε . (5b) 

These error measures, εm and εd, are plotted in figures 3 and 4, respectively, for several different 
anisotropy ratios and different directions (as represented by the angle θ) of horizontal anisotropy.  
The anisotropy ratio is defined as HANI= Kmin/Kmax. Values as small as 0.01 are considered; 
errors for smaller values were very similar to those for 0.01. As discussed previously, the 
maximum angle of deviation between the coordinate axes and principal directions of horizontal 
anisotropy that needs to be considered is 45 degrees, so the results in figures 3 and 4 are shown 
for -45≤θ≤45 degrees.  

 For HANI=1 (isotropic) or θ = 0, there are no errors in either the flow magnitude or the 
flow direction (figs. 3 and 4).  As HANI decreases toward zero and the absolute value of θ  
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increases, the approximate flow magnitude becomes progressively smaller than the true flow 
magnitude (fig. 3), as simulated values differ from true values by as much as about 29 percent. In 
conjunction, the approximate flow direction, which is always parallel to the x direction, deviates 
from the true flow direction, which always tends towards the Kmax direction and is nearly parallel 
to the Kmax direction when HANI=0.01 (fig. 4). The errors are most severe for small HANI and 
for θ substantially different from zero. 

This analysis does not consider the substantial error that can occur because anisotropy 
direction can be difficult to determine from field data.  That error is not, of course, caused by 
limitations of any numerical solution, which is the subject of the present analysis. The LVDA 
capability does, however, provide the ability to quantify the effects of uncertainty in the 
horizontal anisotropy direction and ratio. 

-40

-30

-20

-10

0

10

-45 -30 -15 0 15 30 45
Angle, in degrees

Er
ro

r i
n 

flo
w

 m
ag

ni
tu

de
,.. 

…
..i

n 
pe

rc
en

t

HANI=1
HANI=0.5
HANI=0.2
HANI=0.1
HANI=0.01

 
Figure 3. Error in flow magnitude as a function of horizontal anisotropy ratio (HANI) and angle 

relative to the hydraulic gradient direction. 
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Figure 4. Error in flow direction as a function of horizontal anisotropy ratio (HANI) and angle 

relative to the hydraulic gradient direction. 
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CONCEPTUALIZATION AND IMPLEMENTATION OF MODEL-
LAYER VARIABLE-DIRECTION HORIZONTAL ANISOTROPY 

 

This section of the report briefly describes the LVDA capability and highlights aspects 
important to most users; a full derivation of the equations is presented in Appendix B. The 
development presented here is strongly based on the work of Edwards and Rogers (1998).  

 

Approach 

To develop a block-centered finite-difference approximation to the ground-water flow equation 
for the case of flow in a horizontally anisotropic, heterogeneous porous medium, the directions of 
the principal axes of hydraulic conductivity for each grid cell need to be defined. For variable-
direction horizontal anisotropy, one of the principal axes of the hydraulic-conductivity tensor is 
aligned with the vertical z-coordinate axis, while the other two axes are free to point in any 
mutually orthogonal directions in the horizontal plane. The equations are developed using the 
two-dimensional form of the flow equation in the x-y plane, but the terms derived apply 
unchanged to a three-dimensional equation in which the z axis is perpendicular to the x-y plane.  

The derivation of the equations begins by imposing the following assumptions and 
requirements.  

(1) Hydraulic conductivity is constant within each finite-difference cell but may differ from cell 
to cell. Thus, like the Hydrogeologic-Unit Flow (HUF) Package, the LVDA derivation is 
limited to harmonic averaging to obtain the conductance terms used to link cells within 
model layers. Other averaging options are available in the Layer Property Flow (LPF) 
Package documented by Harbaugh and others (2000, p. 22), but the LPF Package does not 
currently support the LVDA capability.  

(2) Mass needs to be conserved even when the media are highly heterogeneous. Conservation of 
mass is accomplished by imposing the same requirements that MODFLOW with harmonic 
averaging has always satisfied: that normal flow and the hydraulic head be continuous across 
cell boundaries, although the head gradient generally is discontinuous at cell boundaries. 

As discussed in the previous section and shown in equation 2, the Kxy terms needed to 
account for variable-direction horizontal anisotropy produce tangential Darcy velocity terms that 

can be substantial. When the hydraulic gradient has 
x
h

∂
∂

 and 
y
h

∂
∂

 terms, the situation is more 

complicated and the generalization of equation 2 is  
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The total Darcy velocity, q, can be divided into the Darcy velocity in the x and y directions as: 

xxyxxxx n
y
hKn

x
hKq

∂
∂

−
∂
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−=  (7a) 

yxyyyyy n
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hKq

∂
∂

−
∂
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−=  (7b) 

Equations 7a and 7b apply at a point on a cell face. Considering a cell face perpendicular 
to the x direction, qx defines a normal Darcy velocity through the cell face and qy defines a 
tangential Darcy velocity parallel to the cell face. Within the normal Darcy velocity, qx, the first 
term on the right-hand side of equation 7a is the normal gradient component, and the second term 
is the tangential gradient component of this normal Darcy velocity. For a cell face perpendicular 
to the y direction, qy defines a normal Darcy velocity through the cell face and qx defines a 
tangential Darcy velocity parallel to the cell face. Within the normal Darcy velocity, qy, the first 
term on the right-hand side of equation 7b is the normal gradient component, and the second term 
is the tangential gradient component of this normal Darcy velocity. 

Across a cell face, the normal Darcy velocity is continuous, but the tangential Darcy 
velocity may be discontinuous because neighboring cells may have different hydraulic properties, 
including anisotropy direction. To approximate the effects of tangential Darcy velocities while 
conserving mass, the normal Darcy velocity is allowed to change in a piecewise fashion along 
each of the four cell boundaries, as illustrated in figure 5. This is accomplished by introducing 
one additional unknown hydraulic head at the center of each of the four cell faces.  The eight 
flows for each cell, shown by the arrows in figure 5, are expressed in terms of only the node 
hydraulic heads by eliminating the hydraulic heads at the cell faces.  The equation for any given 
flow takes the form of the sum of the products of a coefficient times one of the four nearby heads, 
where the coefficients are a function of the transmissivities of the four nearby cells. 

 The LVDA capability needs to produce cell-by-cell flow terms for calculating advective-
transport paths and other types of transport and for other programs such as ZONEBUDGET 
(Harbaugh, 1990). This is accomplished by summing the two velocities through each cell side. 

W(I)

W(IV)

N(III) N(IV)

1 26

8 97

4 35
E(II)

E(III)

S(II) S(I)

 
Figure 5: The flows calculated through the boundaries of each cell using the formulation 

presented in this report, shown for cell 1. Two flows are calculated for each grid-cell 
boundary instead of the single value described by McDonald and Harbaugh (1988, p. 5-3) 
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Definition of Horizontal Anisotropy 

In the LDVA Capability, the horizontal anisotropy direction is defined as the angle from 
a line in the positive x direction (along a row of the finite difference grid) to the major axis of the 
anisotropy ellipse (fig. 1).  The angle is taken as positive in the clockwise direction and can vary 
between -90 and 90 degrees.  The horizontal hydraulic conductivity along the major axis of 
anisotropy, Kmax, and the horizontal anisotropy ratio, HANI, are defined by the user; HANI 
values need to range from 0.0 and 1.0. The horizontal hydraulic conductivity along the minor axis 
of anisotropy is calculated by the program as Kmin=HANI × Kmax. 

Modifying the Equations for Traditional Solvers 

The eight flow equations for each cell are assembled using a conservation-of-mass 
approach into a system of equations to solve the ground-water flow equation for the entire finite-
difference grid.  The resulting system of equations forms a matrix with a 9-point stencil for a two-
dimensional problem or an 11-point stencil for a three-dimensional problem.  These equations can 
not be solved using the solvers presently available for MODFLOW, which require a 5-point 
stencil for a two-dimensional problem and a 7-point stencil for a three-dimensional problem.  
Additionally, as a rule, the coefficient matrix is not diagonally dominant, and can be difficult for 
iterative solvers.  For example, preconditioned conjugate gradient solvers such as PCG2 (Hill, 
1990) and multi-grid solvers such as LMG (Mehl and Hill, 2001) require diagonally dominant 
matrices. 

In addition, the matrix of difference equations no longer satisfies the maximum principle 
that applies when the principal axes of anisotropy are aligned with the coordinate axes.  This 
noncompliance means that the solution for hydraulic head can have interior values that are greater 
or less than any boundary values (for example, local maxima or minima that exceed boundary 
values in magnitude can appear in the interior of the grid).  This type of solution does not 
conform with the original partial-differential equation of flow and implies a deficient finite-
difference approximation.  

In this report these problems are addressed by splitting the equations into an explicit part 
that is multiplied by heads from the previous solver iteration and an implicit part that produces a 
diagonally dominant matrix with a traditional 5-point difference stencil (seven point in three 
dimensions) as in classical MODFLOW difference equations, as suggested by Edwards (1998; 
2000).  Splitting at the inter-cell flow level rather than at the matrix-coefficient level was done for 
consistency.  Each flow equation was split into its normal-gradient component and tangential-
gradient component (eq. 7a and 7b), as discussed in appendix B.  
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The matrix equation for a one-layer problem can be used to describe the matrix splitting, 
and can be expressed as: 

fh =)9(A  (8) 

where 
  is the matrix of finite-difference coefficients, where the superscript (9) indicates 

the number of diagonals in the matrix and would be (5) in the absence of 
variable-direction horizontal anisotropy [L2/T]; 

)9(A

  is the vector of hydraulic heads at the node points [L]; and  h
 f is the vector of volumetric flow rates at each cell [L3/T] (positive is into the 

cell). 

Splitting the matrix guarantees a stable solution only under rather restrictive conditions, as 
discussed in Appendix B.  The tests considered in this work violated the restrictive conditions as 
might be expected in practice, yet the solvers available in MODFLOW-2000 have performed 
well.  There is, however, a possibility that the solvers will not perform well in some 
circumstances.  In these circumstances, the solver may fail to converge or global budget errors are 
likely to be large. 

 

Errors Caused by Model Layers that are Not Horizontal 

The derivation for variable-direction horizontal anisotropy, like the derivation of the 
original discretized equations for MODFLOW, was developed in the context of model layers that 
are horizontal and model layers that are stacked vertically. Often, however, model layers are not 
horizontal for a number of reasons. For example, consider the following situations: 

1. MODFLOW model layer thickness can vary on a cell-by-cell basis which can cause cell 
centers to deviate from being located on a horizontal plane.  

2. A useful way of managing the nonlinearity and resulting solver-convergence problems 
caused by free-surface water-table conditions is to define model grids for which the top is 
located at the level of the approximate water table. Using such a grid, many simulations, 
and particularly many calibrated simulations, can produce reasonably accurate results 
with the top layer specified as confined. Only when large parts of the system experience 
large amounts of dewatering over a time period of interest for the purpose of calibration 
or prediction are the results produced by such a simulation likely to be significantly in 
error. The resulting grid often has the property that the model layers are not horizontal in 
some parts of the grid, while the model layers are still stacked vertically. Thus, the grid 
locally does not possess three mutually orthogonal grid axes. 

3. Tilted hydrogeologic layers may be best represented by a model grid with three mutually 
orthogonal model-grid directions, but the model-grid directions may be tilted so that the 
two model-layer axes fall within the plane of the hydrogeologic layers, while the third 
axis is perpendicular so that it crosses the hydrogeologic layers. In this circumstance, the 
axes are no longer horizontal and vertical but are mutually orthogonal. 

Situations 1 and 2 result in numerical errors that increase as the amount by which the 
directions are not orthogonal increases. The consequences of such errors on simulated heads and 
flows were studied by Henry and others (1998). In their example, a cross-sectional model had a 
no-flow bottom boundary that oscillated such that the system thickness changed by a factor of 
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two with slopes that were often at a 45 degree angle. The simulated hydraulic heads and flows 
were significantly in error. The extremity of this example, however, indicates that the magnitude 
of the errors displayed are rarely encountered in practice. In most practical circumstances, the 
error would be much smaller than in their example, and it is likely that some distortion is 
acceptable.  Careful study of the errors caused by such grid distortions have not, however, been 
conducted for this report. 

Situation 3 would not result in any numerical error, because the grid directions remain 
mutually orthogonal. Care would need to be taken when using such a grid, however, because 
vertical features such as wells could easily be represented inaccurately. 

The experiences supporting much of the above discussion are with isotropic problems. 
Errors for anisotropic problems are expected to be similar, but analysis of anisotropic problems 
for these situations is beyond the scope of this report. 

 

Sensitivities 

The sensitivities of simulated results to the hydraulic-property parameters are obtained 
using the sensitivity-equation method described by Hill and others (2000) for steady-state 
situations in which no layers are convertible.  The sensitivity equation is derived by taking the 
partial derivative of the flow equation with respect to any given parameter.  It is not practical to 
derive the sensitivity-equation sensitivities of the transmissivity coefficients for the anisotropic 
case, and perturbation sensitivities are used instead. The method used is described in Appendix C. 
For problems in which the solver performs well so that the heads are calculated correctly, no 
special difficulties are expected when calculating sensitivities when the LVDA capability is used 
to represent variable-direction horizontal anisotropy. 
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SIMULATION EXAMPLES 
 To test the hydraulic heads simulated using the LVDA capability, two simulation 
examples were used – one analytical and one numerical.  An additional example, modified from 
test case 2 of Harbaugh and others (2000) and Hill and others (2000), is presented to illustrate 
how the LVDA capability might be applied to a model with features common to a complex three-
dimensional ground-water flow model and to test the calculation of sensitivities. 

Tests of Hydraulic Heads and Cell-By-Cell Flows Simulated Using the LVDA 
Capability 

Test of Hydraulic Head Using an Analytical Solution 
 The analytical solution example was suggested by Richard L. Naff (U.S Geological 
Survey, written commun., 2002) and tests the variable-direction horizontal anisotropy derivation 
and implementation.  The hydraulic-conductivity tensor is defined using a primary-direction 
hydraulic conductivity of 1.5 m/d, a horizontal-anisotropy ratio of 1/3, and an angle of 45 
degrees.  The resulting model hydraulic-conductivity tensor is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
01
01

2
1

2
1

K  (9) 

The model area is shown in figure 6. A single-layer model with a constant 50-m thickness 
is represented with a finite-difference grid of 51 rows and 51 columns covering an area 5,100 m 
long in the x direction and 5,100 m long in the y direction.  The boundary conditions imposed are 
constant flow of 1.0 m3/d into the model across the left boundary and out of the model across the 
right boundary, and constant flow of 0.5 m3/d into the model at the top and exiting the model at 
the bottom.  A system with only defined flow boundaries has no unique head solution, so an 
arbitrary head was specified at one cell at the center of the model grid. 

The analytical solution to this problem is a planar head distribution with a non-zero 
gradient in the x direction and a zero gradient in the y direction, regardless of the size of the 
simulated area.  The head distribution calculated using the LVDA capability in MODFLOW-
2000 shown in figure 6B nearly matches the analytical solution, but it is not completely linear and 
is rotated slightly in the counterclockwise direction.  The bias is introduced because the LVDA 
capability needs to be modified to make the nine-point stencil properly handle the absence of 
neighboring cells at no-flow boundaries.  
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Figure 6. (A) Representation of the hydraulic-conductivity ellipse for the steady-state analytical 
solution. HANI is the horizontal anisotropy ratio. (B) Hydraulic-head solution using the 
LVDA capability in MODFLOW-2000. The LVDA capability nearly reproduces the 
analytical hydraulic-head distribution, for which the contours should be parallel and 
vertical. The slight angle of the head contours is caused by the approximate way that the 
LVDA capability accounts for specified-flow boundaries. (C) Hydraulic-head solution 
without the LVDA capability with the same boundary conditions as in (B) and isotropic 
hydraulic conductivity.  This is the solution that is produced using previously existing 
capabilities of MODFLOW. 

 

Test of Hydraulic Heads Using a Numerical Solution 
The anisotropy capability was tested on an two-dimensional numerical example of a 

circular island with a confined aquifer and a pumping well in the center. The maximum hydraulic 
conductivity is 10 m/day; the horizontal anistropy ratio of the hydraulic conductivity is 0.1. The 
aquifer thickness is 1 m. The pumping rate is 500 m3/day. The diameter of the island is 2000 m 
and the boundary condition at the edge of the island is a prescribed head of +10 m. The cell sizes 
used are 10 m in the x and y directions and the grid has 200 rows and 200 columns. 

This example is simulated in two ways. First, the direction of maximum hydraulic 
conductivity was assumed to be parallel to grid columns and the problem was simulated using 
MODFLOW without the LVDA capability. In this simulation, the Block-Centered Flow (BCF) 
Package of MODFLOW-2000 was used.  Second, the direction of maximum conductivity was 
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defined as 45 degrees and the problem was simulated using the LVDA capability of the 
Hydrogeologic-Unit Flow (HUF) package. 

The resulting heads of both simulations are shown in figure 7. The two hydraulic-head 
distributions are almost identical except for a 45-degree rotation. The drawdown in the center of 
the grid differs only by 4 mm out of a total drawdown of over 14 m. When the LPF or HUF 
packages are used instead of the BCF package in the first simulation, the drawdown is identical. 

 
Figure 7. Hydraulic heads simulated in two ways that theoretically produce identical results 

rotated by 45 degrees. In both situations, the hydraulic head at the circular boundary 1000 m 
from the pumping well is 10 m. (A) Horizontal anisotropy is parallel to the grid directions 
simulated using MODFLOW without the LVDA capability. (B) Horizontal anisotropy at a 45 
degree angle to the grid simulated using MODFLOW  with the LVDA capability.  

Test of Cell-By-Cell Flows Using an Analytical Solution 
 The analytical solution used to test hydraulic heads (fig. 6) is used here to test the 
calculation of cell-by-cell flows. This is accomplished by using the flows to calculate four 
advective-travel paths using the ADV2 Package of MODFLOW-2000 (Anderman and Hill, 
2001). Theoretically the angle of transport should be 26.565 degrees; the simulated angle of the 
paths shown in figure 8 is 26.96 degrees, which is a 1.5% discrepancy. The small discrepancy is 
caused by the same boundary representation problem that affected the hydraulic-head solution, as 
discussed above. 
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Figure 8. Advective-transport paths simulated using the LDVA capability for the problem 

presented in figure 6. The paths are superimposed on the hydraulic-head solution from figure 
6B. 

Illustration and Test of Sensitivities Calculated Using the LVDA Capability 

 The variable-direction horizontal anisotropy capability is demonstrated using a synthetic 
problem derived from test case 2 of Hill and others (2000) that includes features common to a 
complex three-dimensional ground-water flow model.  This complex example is also used to 
perform regression with observations that exactly equal the correct values and that contain 
sufficient information to estimate all parameters. This constitutes a test of the sensitivities 
because the regression can only estimate parameter values correctly if the sensitivities are correct.  
Test case 2 was similarly used to test sensitivities by Hill and others (2000, p. 160). 

The model grid for the complex example (fig. 9) has uniform cell dimensions of 1,500 
meters (m) in both horizontal directions; the thickness of layers 1, 2, and 3 are 500, 750, and 1500 
m, respectively.  Constant-head boundaries comprise parts of the western and eastern boundaries, 
and no flow occurs across the remaining lateral boundaries and the bottom boundary.  Springs are 
represented using either the Drain or General-Head Boundary Packages of McDonald and 
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Harbaugh (1988) and Harbaugh and others (2000).  Wells are simulated at selected nodes and 
have pumpage rates ranging from 100 to 200 m3/d. 
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Figure 9. Model grid, boundary conditions, observation locations, and hydraulic-conductivity 

zones for complex example used to test the calculation of sensitivities. (Modified from Hill 
and others, 2000.) 
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 The hydraulic-conductivity distribution of the system is divided vertically into three 
horizons and horizontally into four zones (fig. 9).  All four zones are present in the middle 
horizon; three are present in each of the top and bottom horizons (fig. 9).  Each horizon represents 
a model layer and is defined in the HUF Package using two equal-thickness hydrogeologic units.  
The hydraulic-conductivity distribution was defined in this manner to test the ability to represent 
model layers with multiple hydrogeologic units.  The hydraulic properties of the model were 
defined using the fourteen parameters listed in table 1. 

The observations (fig. 9) used in the parameter estimation consisted of 44 hydraulic 
heads, 5 drain flows, and 5 general-head boundary flows.  The values were generated by running 
the model with the true parameter values; no random error was added so that the observations 
equal the simulated values. 

 

Table 1.  Labels, descriptions and true and starting values for the parameters for the complex 
example 

[m/d, meters per day; m2/d, square meters per day; --, no units] 

Label Description Units True 
Value 

Initial 
Value 

HK1 Horizontal hydraulic conductivity of zone 1 m/d  1.00  1.3 
HK2 Horizontal hydraulic conductivity of zone 2 m/d  1.00x10-2  1.5x10-2 
HK3 Horizontal hydraulic conductivity of zone 3 m/d  1.00x10-4  1.5x10-4 
HK4 Horizontal hydraulic conductivity of zone 4 m/d  1.00x10-5  1.2x10-5 
     
HANI123 Horizontal anisotropy of zones 1 through 3 --  1.00  1.2 
HANI4 Horizontal anisotropy of zone 4 --  0.10  0.1 
LVDA123 Horizontal-anisotropy direction of zones 1 through 

3 
degrees  0  0.0 

LVDA4 Horizontal-anisotropy direction of zone 4 degrees 45 -55 
     
VANI1234 Vertical anisotropy of hydrogeologic units 1 

through 4 
--  4.0  4.2 

VANI56 Vertical anisotropy of hydrogeologic units 5 and 6 --  1.0  1.2 
     
RCH Areal recharge rate applied to the area shown in 

figure 9 
m/d  3.10x10-4  3.3x10-4 

ETM Maximum evapotranspiration rate applied to area 
shown in figure 9 

m/d  4.00x10-4  4.2x10-4 

GHB Conductance of head-dependent boundaries (“G”) 
shown in figure 9 represented using the General-
Head Boundary Package. 

m2/d  1.00  1.3 

KDR Conductance of the head-dependent boundaries 
(“D”) shown in figure 9 using the Drain Package. 

m2/d  1.00  1.3 

 

To demonstrate how rotating the horizontal anisotropy direction changes the calculated 
hydraulic heads, the model was run twice with different anisotropy directions in zone 4.  The 
hydraulic-conductivity ellipse for zone 4 is shown in fig. 10(A). First, the model was run with the 
horizontal anisotropy in zone 4 aligned with the model grid, and the resulting hydraulic-head 
distribution is shown by the black contour lines in fig. 10(B).  Then, the horizontal anisotropy in 
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zone 4 was rotated 45-degrees clockwise. The resulting hydraulic-head distribution is shown by 
the red contour lines in fig. 10(B).  Values for the remaining parameters were unchanged.  The 
change in hydraulic head between the two runs is shown in figure 10(C). 

The results shown in figure 10(C) indicate that rotating the horizontal anisotropy changes 
the heads the most in layer 3 and progressively less in layers 2 and 1, respectively, as would be 
expected considering the distribution of zone 4, in which the horizontal anisotropy direction was 
changed. The change in horizontal anisotropy direction provides a conduit of high hydraulic 
conductivity and connectivity from the southeast to the northwest of layer 3 where zone 4 is 
predominantly located. The connectivity in the perpendicular direction, which connects the two 
constant-head boundaries, is reduced.  The head in the southern part of layer 3 decreases as much 
as 32.5 m and the head in the northern part of layer 3 increases approximately 142 m.  

Composite scaled sensitivities were calculated for the 14 parameters at the true values 
listed in table 1 (fig. 11).  The direction of horizontal anisotropy in zones 1 through 3, represented 
by the LVDA123 parameter, has a zero sensitivity because the hydraulic conductivity in those 
zones is isotropic. As shown in figures 3 and 4, if the anisotropy ratio were changed, the 
sensitivity to the LVDA123 parameter would increase.  The sensitivities range in value from 0.2 
for the HANI4 parameter to 33.5 for the RCH parameter. Using the rule of thumb suggested by 
Hill (1998, p. 38), the fact that these values span a range of more than two orders of magnitude 
suggests that estimating all the parameter values by regression may be problematic. The range is 
just slightly larger than two orders of magnitude. An attempt to estimate all 14 parameters using 
regression was accomplished successfully using the starting values in table 1. The success of the 
regression constitutes a test of the sensitivities calculated by the LVDA capability and indicates 
that they are calculated correctly. 
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EXPLANATION 
─1500─ Simulated hydraulic-head contour with 
horizontal anisotropy in zone 4 defined parallel to 
the grid directions. 
──── Simulated hydraulic-head contour with 
horizontal anisotropy in zone 4 defined 45 degrees 
from the grid directions. Contour label is the same 
as the label on nearby black line. 
Contour interval ia 100 m. Datum is arbitrary. 
─10─ Line of equal change in hydraulic head. 
Contour interval is 5 meters. Blue indicates 
increased hydraulic head; red indicates decreased 
hydraulic head.  
      Boundary of zone 4. 

45°

K  = 1.0 x 10  m/d
HANI = 0.1

max
-5

x

y

(A)

 

Layer 1 Layer 2 Layer 3

(B)

(C)

 
Figure 10.  (A) Representation of the hydraulic-conductivity ellipse for zone 4; ANIV is the 

horizontal anisotropy ratio. (B) Hydraulic-head distribution with anisotropy in zone 4 defined 
parallel to the grid directions (black lines) and with anisotropy in zone 4 defined 45 degrees 
from the grid directions (red lines).  (C) Change in hydraulic head produced by rotating the 
direction of horizontal anisotropy in zone 4 (outlined by thick black line) from 0 to 45 
degrees. 
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Figure 11.  Composite scaled sensitivities at the true values for parameters listed in table 1. 

Sensitivities for the LVDA parameters shown with cross hatching.  The composite scaled 
sensitivity for LVDA123 is zero because the related horizontal anisotropy ratio equals 1.0. 
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APPENDIX A:   LVDA INPUT AND OUTPUT 
 The LVDA capability is a modification to the existing Hydrogeologic-Unit Flow (HUF) 
Package (Anderman and Hill, 2000). This section describes the new input file needed with the 
LVDA capability and the changes in the HUF Package output files resulting from using the 
LVDA capability. There are no changes in the HUF Package output files if the LVDA capability 
is not used. Although the HUF input file is not changed when using the LVDA capability, the 
definition of two parameter types does change. The new definitions are presented below. 

Printing of the LVDA model layer arrays is not supported by the print capability 
represented by item 12 of the HUF Package input file. Printing these arrays requires use of the 
new printing capability for the HUF Package documented by Anderman and Hill (in review).  

LVDA Input Instructions 

 Input for the Model-Layer Variable-Direction Horizontal Anisotropy capability is read 
from the file that has type “LVDA” in the Name file.  Free format is used for reading all values. 
This file defines the horizontal anisotropy direction for each cell of the finite-difference grid. 

FOR EACH SIMULATION 
  0.   [#Text] 

Item 0 is optional -- “#” must be in column 1.  Item 0 can be repeated multiple times. 
  1.   NPLVDA 
  2.   PARNAM   PARTYP   Parval   NCLU 
  3.   Layer    Mltarr   Zonarr   IZ 

Each Item 3 record is called a parameter cluster. Repeat Item 3 NCLU times. 
Repeat Items 2 and 3 for each parameter to be defined (that is, NPLVDA times). 

Explanation of Variables Read by the LVDA Capability 

Text – is a character variable (up to 199 characters) that starts in column 2.  Any characters can 
be included in Text.  The “#” character must be in column 1. Text is printed when the file is 
read. 

NPLVDA – is the number of LVDA parameters. 

PARNAM – is the name of a parameter to be defined.  This name can consist of up to 10 
characters and is not case sensitive. 

PARTYP – is the parameter type to be defined.  For the LVDA capability, the only allowed 
parameter type is: 

LVDA - defines the angle between the grid axis and the principal direction of horizontal 
hydraulic conductivity.  Angle is positive in a clockwise direction with the positive x 
direction being zero.  The angle can vary between –90 and 90 degrees.  Hydraulic 
conductivity along the principal axis (Kmax of figure 2) is defined in the HUF Package 
input file by an HK parameter; the hydraulic conductivity along the minor axis (Kmin of 
figure 2) axis is defined by a HANI parameter in conjunction with the HK parameter. 
Using the LVDA capability, HANI values need to be less than or equal to 1. 
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Parval – is the parameter  value; however, this value can be replaced by a value specified in the 
Sensitivity Process input file, or by a value generated by the Parameter-Estimation Process. 

NCLU – is the number of clusters required to define the parameter.  Each Item-3 record is a 
cluster (variables Layer, Mltarr, Zonarr, and IZ). 

Layer – is the layer to which the direction applies. 

Mltarr – is the name of the multiplier array to be used to define array values that are associated 
with a parameter. The name “NONE” means that there is no multiplier array, and the array 
values will be set equal to Parval. 

Zonarr – is the name of the zone array to be used to define array elements that are associated with 
a parameter.  The name “ALL” means that there is no zone array and that all elements in the 
layer are part of the parameter. 

IZ – is up to 10 zone numbers (separated by spaces) that define the array elements that are 
associated with a parameter.  The first zero or non-numeric value terminates the list.  These 
values are not used if Zonarr is specified as “ALL”. 

Example LVDA Input File 

 The following lines of data illustrate the definition of the LVDA parameter for the three-
dimensional complex example described in the ‘Simulation Examples’ section of this report.  In 
this definition, the parameter value of 45 is applied to zone 4 in layers 1, 2, and 3 using a unique 
zone array for each layer.  
1                        Item 1:  NPLVDA 
LVDA4   LVDA   45.0 3   Item 2:  PARNAM PARTYP PARVAL NCLU 
1       NONE   ZLAY1 4   Item 3:  LAYER MLTARR ZONARR IZ 
2       NONE   ZLAY2 4   Item 3:  LAYER MLTARR ZONARR IZ 
3       NONE   ZLAY3 4   Item 3:  LAYER MLTARR ZONARR IZ 

LVDA Output 

 Output from the LVDA capability is sent to the global listing file.  The allocate routine 
prints out the following output: 

 
 LVDA1 -- MODEL-LAYER VARIABLE-DIRECTION HORIZONTAL ANISOTROPY CAPABILITY, VERSION 2.2.5 
ERA, 11/08/2002 
 INPUT READ FROM UNIT 14 
     2 Named Parameters 
      11664 ELEMENTS IN X ARRAY ARE USED BY LVDA 
          0 ELEMENTS IN IX ARRAY ARE USED BY LVDA 
 

The read and prepare routine prints out the following regarding the definition of the LVDA 
parameter: 

 
 LVDA1 -- LVDA CAPABILITY 
 --------------------------------------------------------------------------- 
 PARAMETER NAME:LVDA4        TYPE:LVDA UNITS:   3 
 The parameter value from the package file is:   45.000     
                UNIT:  1   MULTIPLIER:NONE   ZONE:ZLAY1 
                ZONE VALUES:    4 
                UNIT:  2   MULTIPLIER:NONE   ZONE:ZLAY2 
                ZONE VALUES:    4 
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                UNIT:  3   MULTIPLIER:NONE   ZONE:ZLAY3 
                ZONE VALUES:    4 

New Definition of Two Parameter Types of the HUF Package Input File 

 As mentioned above in the explanation of variable PARTYP, the LVDA parameter uses 
parameter types HK and HANI defined in the HUF Package input.  When the LDVA capability is 
used, HK parameters in the HUF Package input file define hydraulic conductivity along the 
principal axis (Kmax of figure 2); HANI parameters define the ratio used to calculate the hydraulic 
conductivity along the minor axis (Kmin of figure 2) axis as a product of the ratio and the cell 
hydraulic conductivity along the principal axis. Cell values defined by HANI parameters need to 
be less than or equal to 1. 

Execution Time Issues 

 Because of its formulation and implementation, MODFLOW-2000 with the HUF 
Package and the LVDA capability will take longer to run than if the LVDA capability were not 
active.  The increase in execution time will depend on the situation. 

 For the two-dimensional example of figure 6 in the ‘Simulation Examples’ section of this 
report, the model run for the anisotropy parallel to the grid took approximately 9 seconds.  The 
run using the LVDA capability but with the angle set to zero took approximately 13 seconds.  
The run with the angle set to 45 degrees (the most complex the computation can be) took 
approximately 76 seconds.  Everything was run on the same computer with the same starting 
hydraulic heads and the PCG solver (Harbaugh and others, 2000) with a head-change 
convergence criterion of 1.0x10-4 m and a residual convergence criterion of 1.0x10-4 m3/d. 

For the three-dimensional complex example shown in the ‘Simulation Examples’ section 
of this report (fig. 8), the model run for the anisotropy parallel to the grid took approximately 
0.44 seconds.  The run using the LVDA capability but with the angle set to zero took 
approximately 0.62 seconds.  The run with the angle set to 45 degrees, the most complex the 
computation can be, took approximately 1.8 seconds.  All runs were made using the PCG solver 
with a head-change convergence criterion of 1.0x10-6 and a residual convergence criterion of 
1.0x10-8. 

 The relative execution times are shown in figure 11. The LVDA capability will 
substantially increase model execution times and this needs to be accounted for in model design. 
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Figure A- 1.  Execution times for MODFLOW-2000 models run using the HUF Package without 
the LDVA capability and with the LVDA capability using angles of horizontal anisotropy of 
0 and 45 degrees. The solutions without LDVA and with LDVA using an angle of 0 degrees 
are identical and execution times differ because of the extra effort required by the LDVA 
capability. Execution times are reported in seconds and relative to the execution time without 
the LDVA capability. The three-dimensional example is thought to be more representative of 
typical applications. 
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APPENDIX B: MATHEMATICAL DERIVATION FOR SIMULATING 
VARIABLE-DIRECTION HORIZONTAL ANISOTROPY USING 

BLOCK-CENTERED FINITE DIFFERENCES 
This appendix contains the derivation of the equations needed to simulate variable-

direction horizontal anisotropy using a block-centered finite-difference grid. The development 
presented here is based on the work of Edwards and Rogers (1998).  They developed a general 
theory for curvilinear coordinates but present a full set of coefficients for only the homogeneous 
case. In this appendix, the coefficients are developed for the heterogeneous case.  

Ground-Water Flow Equation 

The partial-differential equation for ground-water flow in a saturated medium in a 
Cartesian coordinate system can be expressed as: 

0=−∇⋅∇−
∂
∂ qh

t
hSs K ; (B-1) 

where 
 h is the hydraulic head [L]; 
 K  is the porous-medium hydraulic conductivity tensor [L/T]; 
 Ss  is the specific storage [L-1]; 
 q  is the volumetric source flow per unit volume [L3/T-L3] (inflow is positive); and 
 t  is the time [T]. 

Generally, the hydraulic-conductivity tensor, K, is a symmetric full tensor of rank 3 and has the 
form: 
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⎥
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The values of K can vary spatially, so that each element of the matrix in equation B-2a can be a 
function of the spatial coordinates x, y, and z.  

For the LVDA capability, one principal axis of hydraulic conductivity (the vertical axis) 
is aligned with the z-direction, so that 0== yzxz KK  and equation B-2a becomes: 
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The flow equation is assumed to be parabolic which requires that 

yyxxxy KKK ≤2  (B-2c) 

This requirement is always met given how anisotropy is defined in the LVDA input file and, in 
general, for physically realizable ground-water flow problems. 
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 All z-direction terms remain unchanged in MODFLOW, so that in this appendix only the 
two dimensional (x-y) version of equation B-1 needs to be considered.  By integrating equation 
B-1 over the aquifer thickness, the two-dimensional form is derived as: 

0' =−∇⋅∇−
∂
∂ Qh

t
hS T ; (B-3) 

where 
 T’  is the porous-medium transmissivity tensor [L2/T]; 
 S  is the storage coefficient [-]; and 
 Q is the volumetric source flow per unit area [L3/T-L2] (positive is into the 

region). 

The Block-Centered Finite-Difference Grid and the Continuity Equation 

The classical finite-difference method (for example, Wang and Anderson, 1982) is used 
to discretize equation B-3 in space and time.  Only spatial discretization is of concern in this 
work; time discretization remains the same as described by McDonald and Harbaugh (1988). 

The first step in the spatial discretization is to construct a two-dimensional grid (fig. B-1).  
The x and y coordinate axes are defined to follow the rows and columns of the grid (as shown in 
figure B-1). Creating the grid is equivalent to specifying the locations of the planes that form the 
walls of the finite-difference cells in each coordinate direction.  The intersections of these planes 
form the grid of rectangular cells.  A node point is located in the center of each cell. The grid 
described is called a two-dimensional block- or cell-centered grid.  Each cell is used as a volume, 
called a control volume, over which flow is balanced to give the finite-difference equations.  
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y

 
Figure B-1.  Two-dimensional cell-centered grid in x-y plane. The row indexing convention is the 

same as that used in MODFLOW, when observed from below, with j used to index the x axis 
and i used to index the y axis. 

 

McDonald and Harbaugh (1988) derived the discretized ground-water flow equations by 
simply applying Darcy’s Law to the control volumes, but proper accounting of variable-direction 
anisotropy requires integral equations over the cell. The more complicated-looking equations 
required by the LVDA capability achieve volumetric conservation of water or conservation of 
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mass, just as McDonald and Harbaugh (1988) did using Darcy’s Law in that the flow through 
each side of each finite-difference cell needs to come from or go to the neighboring cell. 

Using the integral approach, the finite-difference flow equation is derived by integrating 
equation B-3 over the two-dimensional control volumes (cell areas). The resulting area integrals 
of flow are transformed into line integrals of flow perpendicular to the cell boundaries using the 
Gauss theorem in a plane, which is expressed as  

mm dshdSh
pm

nT'T' ˆ)()( ⋅∇=∇⋅∇ ∫∫
Ω∂Ω

 (B-4) 

where 
  is the surface area of cell m [L2]; mΩ
  is the boundary line of cell m [L]; pΩ∂

  is the differential surface area of cell m [L2], mdS
  is the differential boundary line of cell m [L]; and mds
  is the outward unit normal to the boundary line of cell m [-]. n̂
The heterogeneous transmissivity is represented by a piecewise constant function over each 
control volume. The hydraulic head distribution within the cell is approximated using several 
piecewise linear functions over each control volume.  

Computational Coordinates 

The line integral on the right-hand side of equation B-4 can be evaluated with more 
manageable algebraic expressions if the Cartesian coordinate system that defines the physical 
situation is mapped to local computational coordinates such that the rectangular grid cells are 
transformed into unit squares.  For the equations presented here, this allows the dx’s and dy’s to 
be omitted from the lengthy equations. In more generally deformable grids, converting to local 
unit-square grid coordinates is more important and, therefore, used in the development by 
Edwards and Rogers (1998). Here, we use the transformation to take advantage of the 
simplification of the equations and to coordinate with the development by Edwards and Rogers 
(1998). 

Local computational coordinates are developed by mapping control volumes that are 
rectangular in the x-y plane to a unit square in the ξ -η  plane. The mapping is defined by the 
relations )(ξxx = and )(ηyy = where the relations, using vector notation, are: 

⎥
⎦

⎤
⎢
⎣

⎡
+−
+−

=⎥
⎦

⎤
⎢
⎣

⎡

21

21

)1(
)1(

yy
xx

y
x

ηη
ξξ

 (B-5) 

 

where x1,y1; x1,y2; x2,y1; and x2,y2 are the coordinates of the corners of the rectangular cell in the 
x-y plane [L]. Figure B-2 shows the mapping with cell dimensions.  
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Figure B-2. A two-dimensional cell in the x-y plane mapped into a unit square cell in the ξ -η  

plane. For convenient referencing in the text, the four sides of the unit square are labeled 
N (north), S (south), E (east), and W (west). ∆ci is the cell dimension along the y axis, 
which is parallel to the columns of the grid; ∆rj is the cell dimension along the x axis, 
which is parallel to the rows of the grid. 

 

 With this mapping, equation B-4 can be expressed as in equation B-6. The letters, E, W, 
N and S identify the cell sides shown in figure B-2: 
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  N    S   

 

where hξ and hη are head gradients in the two directions and Taa, Tab, and Tbb are elements of the 
transmissivity tensor of the unit square. Here, the subscripts a and b are used on the transmissivity 
coefficients to coordinate with the notation of Edwards and Rogers (1998), but these subscripts 
could be replaced by ξ and η, respectively.  Each integral in equation B-6 defines the flow across 
one cell face. The terms associated with transmissivities Taa and Tbb are the flow terms caused by 
the normal gradient of hydraulic head across (that is, perpendicular to) the cell faces. The terms 
associated with Tab are the flows caused by the gradients along (that is, parallel or tangential to) 
the cell faces and the horizontal anisotropy, which produces flow across the cell face because of 
the Tab term. (also discussed in connection with eq. 6) 

The transmissivity tensor T in the ξ -η  coordinate system relates to the transmissivity 
tensor T’ in the x-y system as:  
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where  
  is the cell width of row i [L], ic∆
  is the cell width of column j [L], jr∆
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and 
  is the transmissivity along the major axis of the anisotropy ellipse [L2/T], 

kijmajT
,,

′

  is the transmissivity along the minor axis of the anisotropy ellipse [L2/T], 

defined as , 
kij

T
,,min′

kijmaj HANIT
kij ,,,,

′

   is the horizontal anisotropy ratio [-], kijHANI ,,

 θ j,i,k is the angle between the principal axis of anisotropy and the model grid, where 
clockwise is a positive angle, values can range from -90 to 90 degrees, and   

θ j,i,k is defined as , ∑ kijll m ,,θ

 lθ  is the value of the variable-direction horizontal anisotropy parameter l, and 

  is the multiplication factor for the variable-direction horizontal anisotropy 

parameter l. 
kijlm ,,

Defining kij ,,θ  as  allows the angle to be defined using additive parameters, as 

described by Harbaugh and others (2000, p. 16-19). The option of defining θ j,i,k using additive 
parameters is available because nearly all parameters defined in MODFLOW-2000 are additive. It 
is not expected that this option will be used in many applications. 

∑ kijll m ,,θ

Finite-Difference Equations for Flow 

 Each integral in equation B-6 defines the flow across one cell face. To form the mass 
conservation equations for the entire finite-difference grid, equation B-6 needs to be further 
developed. This is done first by evaluating flow in one dimension and focusing on some basic 
ideas and the terms with gradients that are normal to the cell faces. The one-dimensional analysis 
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also yields the harmonic mean conductance terms developed by McDonald and Harbaugh (1988). 
After the one-dimension discussion, flow in two dimensions is discussed. 

Flow Equations in One Dimension 
The one-dimensional classical cell-centered approximation to the flow through a cell 

boundary in terms of the nodal hydraulic heads can be used to present some ideas and concepts 
needed in the formulation for the general anisotropic two-dimensional case discussed in this 
report. From figure B-3, the flow per unit width through the cell boundary at j+1/2 is given by 

)(
)(

12
1

12/1
2/1

+

++
+ ∆+∆

−
−=

jj

jjj
j rr

hhT
F  (B-8) 

where 
 F j+1/ 2 is the flow per unit width through the cell boundary at j+1/2 [L3/T-L], and 

  is the length of cell j and (jr∆ )( 12
1

+∆+∆ jj rr ) is the distance between nodes j and 
j+1 [L]. 

Figure B-3 also shows the piecewise linear variation for hydraulic head. 

Here, transmissivity, T, is piecewise constant over a cell, the flow and the hydraulic heads 
are continuous across the cell boundary, and the gradient of the head is discontinuous across the 
cell boundary. By introducing an intermediate unknown head, at the cell face, an equation for 
flow continuity can be written for the flow per unit width as 

fh
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hhT
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hhT

 (B-9) 

Equation B-9 can be solved for the intermediate hydraulic head at the cell face yielding 
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111

//
//

++

+++

∆+∆

∆+∆
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jjjj

jjjjjj
f rTrT

rThrTh
h  (B-10) 

 

h

x j j+1/2 j+1
∆rj ∆rj+1

Figure B-3.  One-dimensional cells with piecewise linear hydraulic-head variation. 

Substituting equation B-10 into the left-hand side of equation B-9 and equating with 
2

1+j
F , then 

comparing with equation B-8 gives the classical finite-difference approximation for the flow per 
unit width at the cell face: 
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Using the terminology of McDonald and Harbaugh (1988), the fraction on the right-hand side of 
equation B-11 is the conductance per unit width of the cell, and equals the harmonic mean of the 
transmissivity of the two cells connected at 2

1+j . 

To prepare for two-dimensional equations, note that part of the mapping defined in 
equation B-5 can be used to map a chain of one-dimensional cells into a chain of cells of unit 
length. The piecewise linear basis functions can be used to define a continuous variation in 
hydraulic head as: 

1;)(2)1(2 2
1

2
1 ≤≤−+−= ξξξ fj hhh    in cell j; (B-12.1) 

2
1

1 0;2)21( ≤≤+−= + ξξξ jf hhh         in cell j+1. (B-12.2) 
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Figure B-4.  Piecewise-linear basis functions. Global finite-difference nodes j and j+1 are shown 
with f, the location of the finite-difference cell boundary. Local coordinates which range from 
0 to 1 for each cell also are shown  

 

In figure B-4, the basis functions from equation B-12.1 are drawn for cell j and the basis 
functions from equation B-12.2 are drawn for cell j+1.  The basis function multiplying hj in 
equation B-12.1 varies from 1 at node j to 0 at cell boundary f in figure B-4, the basis function 
multiplying hf in equation B12-1 varies from 0 at node j to 1 at cell boundary f in figure B-4, and 
so on. Figure B-4, therefore, shows the basis functions covering the region accounted for by one 
of the conductance terms of the type shown in equation B-11. Basis functions could be avoided 
when considering flow in one dimension, but are important when considering flow in two 
dimensions. 

 

Flow Equations in Two Dimensions 
 In two dimensions the role of the piecewise linear basis functions in one dimension for 
hydraulic head is played by linear triangular basis functions, and the areas of coverage are shown 
in figure B-5. The areas of coverage possess piecewise constant spatial gradients. After 
introducing one additional hydraulic head unknown at each face of each cell, local triangular 
basis functions are used over each quarter of a cell with a piecewise linear hydraulic head. Figure 
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B-5 shows a cell and its eight neighbors in the unit-square ξ -η  coordinate system with the active 
support triangles for the hydraulic head shown as shaded. For notational convenience, the local 
nine-cell numbering scheme shown in figure B-5 is used in the following equations. The global 
(j,i) indexing can be restored at the end of the equation development. 

A typical triangle from cell 1 with corner labels and adjoining triangles is shown in figure 
B-6. Representation of hydraulic head h and the unit-square cell coordinates ξ and η using the 
piecewise linear basis functions over the shaded triangle in cell 1 are given by 

WS vhuhhvuh ++−−= 1)1(  (B-13.1) 

S

WS

uxxu
vxuxxvu

+−=
++−−=

1

1

)1(
)1(ξ

 (B-13.2) 

W

WS

vyyv
vyuyyvu

+−=
++−−=

1

1

)1(
)1(η

 (B-13.3) 

where 
 ηξ ,  are the coordinates in the unit-square cell system mapping; 
  are the local area coordinates for the shaded triangle in cell 1 in figure B-6.  vu,

The subscripts define locations shown in figure B-6. Local coordinate u increases linearly from 0 
at the cell center to 1 at cell boundary S; v increases linearly from 0 at the cell center to 1 at cell 
boundary W. The local area coordinate system used here is from Norrie and De Vries (1973, p. 
86). This is the fourth and final coordinate system used in this report; all the coordinate systems 
are listed in Table 2. 

Hydraulic head is continuous over each triangle in figure B-5 or B-6 and also continuous 
at the common vertices. Using the N, S, E, and W notation of figure B-6, local gradients of 
potential can be determined using equation B-13.1. For example, for the shaded triangle of cell 1 
in figure B-13.1: 

)(2 1hhh S −=ξ  (B-14.1) 

)(2 1hhh W −=η  (B-14.2) 

where hξ and h η are gradients of head in the ξ and η directions, and h S, h 1, and h W are the heads 
at locations 1, S, and W in figure B-6. The 2 occurs in equations B-14 because the length between 
h 1 and either h S or h W is ½ of the unit square. Introduction of the hydraulic heads at the cell faces 
enables flow across the cell faces (normal flow) and the hydraulic head at the cell faces to be 
point-wise continuous. The normal flow is continuous, but the tangential flow may be 
discontinuous across a cell face. 
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1 26

8 97

4 35

h,b

x,a  
Figure B-5.  Unit-square grid with areas covered by piecewise linear triangular basis functions 

shaded gray. 

W

N

E

S1 2

I

4 3

W(I)

S(I)

h,b

x,a  

Figure B-6.  Areas covered by the triangular basis functions associated with the j+½ and i+½ 
faces of cell 1. For convenient referencing in the text, the four added nodes on the sides 
of the finite-difference cells are labeled N (north), S (south), E (east), and W (west). The I 
at the top of the figure identifies this set of four cells as cell 1 of figure B-5 plus 
bordering cells 2, 3, and 4. 
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Table 2. Coordinate system notation used in this report 
Shape of cells Rectangle Unit square 

Global coordinates xy  

Local spatial coordinates (range from 0 to 1 from one side of the cell 
to the other). The two sets are equivalent, but the ab set is retained to 
conform with the notation of Edwards and Rogers (1998). 

 ab, ξη 

Local area coordinates (range from 0 to 1 from the cell center to the 
sides of the cell) 

 uv 

 

Flow Continuity for the General Anisotropic Tensor 

Figure B-5 shows the nine cells that control triangular basis-function support for a 
representative interior cell in the transformed domain of a uniform square grid. To impose normal 
flow continuity while accounting for tangential flows, eight flows are defined for the central cell 
and are shown in figure B-7. These flows are formulated by taking four subsets with four cells 
each of the nine cells of figure B-5. Figure B-8 shows all four subsets of four cells with each 
location of the additional hydraulic heads denoted by an X; a set of four cells with the triangular 
areas of defined basis functions is shown in figure B-6.  Each subset of cells actually has four 
additional hydraulic head locations on the cell boundaries, but only the locations pertaining to 
cell 1 appear in figure B-8. 

The four cell-face hydraulic heads for cell 1 are introduced at the locations denoted 
N,S,E,W in figures B-6 and B-8. They are located on each cell face at the midpoint. Other 
locations are possible (Edwards and Rogers, 1998), but will not be considered for this 
development. The location chosen has the advantage of producing a symmetrical A matrix in 
equations 8 and B-25. The locations shown also have the advantage of producing the standard 5-
point difference equations in the case of a diagonal hydraulic-conductivity tensor, which results if 
the principal axes of anisotropy are aligned with the coordinate axes. 
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W(IV)

N(III) N(IV)

1 26

8 97

4 35
E(II)

E(III)

S(II) S(I)

h,b

x,a  
  

Figure B-7. Control volume quadrant flows. 
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6 1

II

5 4

S(II)

W(IV)

8 9

IV

1 2
N(IV)

E(III)

7 8

III

6 1
N(III)

 

Figure B-8.  Four subsets of the nine-cell grid associated with cell 1.  Locations of additional 
hydraulic heads are marked by ×‘s. Subset I was also shown in figure B-6 
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When continuity of normal flow is imposed across the four cell faces, and using the four 
points (N,S,E,W) at which the hydraulic head is specified as continuous, the flow continuity 
conditions for figure B-6 written as functions of unit length of cell boundary are given by 

W(I):   (B-15.1) 21 |)(|)( SabaaSabaa hThThThT ηξηξ +−=+−

S(I):   (B-15.2) 43 |)(|)( NabaaNabaa hThThThT ηξηξ +−=+−

E(I):   (B-15.3) 32 |)(|)( EbbabEbbab hThThThT ηξηξ +−=+−

N(I):   (B-15.4) 41 |)(|)( WbbabWbbab hThThThT ηξηξ +−=+−

Substituting from equation B-14 and similar ones (not shown) for the other cells and noting that 
the cell width for the unit square is 1 yields the following equations for cell subset I of figure B-8, 
which also is shown in figure B-6. 
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4
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1
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WbbNabWbbSab hhThhThhThhT −+−−=−+−−  (B-16.4) 

Similar equations can be written for the other three subsets of four cells of figure B-8. Each set of 
four equations can be solved simultaneously for the four introduced hydraulic heads at the cell 
faces. The solution for equation set B-16 is given by 
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Flow Terms in the Finite-Difference Equation 

As shown in figure B-7, there are eight cell-face contributions to the flow for control-
volume cell 1.  To form the finite-difference approximation to equation B-1, the following terms 
need to be represented in the x-y plane. 
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 (B-18.4) 

where  terms represent the flow rate at the cell boundary, and d is N,S,E, or W and n is 
I,II,III, or IV. The subscripts N,S,E,W refer to figure B-7, and the quadrant numbers I,II,III,IV 
refer to the four positions of the sub-sets of the nine-cell grid shown in figure B-8.  The flow 
components on the right-hand sides of equations B-18 can be approximated by difference 
equations involving the nodal hydraulic heads and the additional hydraulic heads at the cell faces. 
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The factors of 2 in equations like B-14 are canceled by the cell-boundary length associated with 
each F term of equations B-18 being exactly ½.  The eight flows in equations B-19 can be 
expressed in terms of only the cell (node) hydraulic heads by eliminating the potentials at the cell 
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faces using equation B-17 for quadrant I and similar equations obtained by permuting the indices 
of cell numbers for quadrants II through IV.  Then 
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where the coefficients can be expressed generally as , and d is N,S,E, or W, m 
is 1,2,3, or 4, and each of the ni are integer values between 1 and 9. Equations for the 

 coefficients are: 
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Obtaining the Final Coefficients 

The finite-difference approximation for the second term of equation B-3 is obtained from 
equations B-18.1 to B-18.4 with substitution of equations B-20.1 to B-20.8 and equations B-21.1 
to B-24.9 for the coefficients. Finally, the local node numbering scheme in figure B-7 needs to be 
converted to the set of j, i indices as shown in figure B-9. 

For inactive cells adjacent to a boundary of the region, the appropriate transmissivities, 
, , and  will be zero. The conductances for cell faces forming external boundaries will 

automatically be computed to be zero, giving the natural boundary condition of no flow across 
the boundaries of the region.  However, some terms in equations B- 21.1 through B- 24.9 can 
become quotients of zero over zero, and this becomes more likely when two or more cells have 
zero conductances.  Taking the limits of these quotients algebraically as the conductance per unit 
width goes to zero will give the correct terms, but evaluating all possible combinations is tedious.  
Instead, for numerical evaluation, very small non-zero transmissivities are used at the cells 
outside the region.  It is this approximation that leads to the error shown in figure 6B. More 
rigorous treatment is possible but is not included in this version of the LVDA capability. 

m
aaT m

bbT m
abT

 

 

49



The conductance per unit cell width for the z-direction remains the harmonic mean 
expressions as before because the principal axis of vertical anisotropy continues to be aligned 
with the z-coordinate axis.  In the case of the principal axes of anisotropy being aligned with the 
x,y coordinate directions, the formulation presented also reduces to the harmonic mean 
conductance expressions. 
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4 35
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j-1,i-1
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Figure B-9.  Finite-difference grid showing local numbering and global indices used for the 

derivation of variable-direction horizontal anisotropy. 

Final Matrix Equation 

The eight flow terms shown in figure B-7 are expressed in terms of only the node 
hydraulic heads by eliminating the added heads at the cell faces. This was accomplished by 
enforcing normal flow continuity and resulted in equations B-20 with the coefficients of 
equations B-21 through B-24.  Using these results, a finite-difference matrix equation can be 
constructed to approximate the steady-state form of the ground-water flow equation in two 
dimensions (B-3). The resulting form of the matrix equation is 

fh =)9(A  (B-25) 

where 
  is the matrix of finite-difference coefficients [L2/T]; )9(A
 h is the vector of hydraulic head at the node points [L]; and  
 f is the vector of volumetric source flow-rate at each cell [L3/T] (positive is into 

the region). 

Equation B-25 is the same as equation 8. 

The superscript on the A matrix indicates that each difference equation contains up to 
nine non-zero coefficients forming a matrix with terms on the diagonal and eight off-diagonals; 
whereas only four off-diagonals are needed when horizontal anisotropy is parallel to the grid 
directions. For a three-dimensional system, terms occur on two additional off-diagonals, but these 
are not affected by horizontal anisotropy and are not discussed in this report. 
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Diagonal Dominance 
 The property of diagonal dominance, in which for each row of the matrix the absolute 
value of the diagonal term is greater than the sum of the absolute values of the off-diagonals, is 
important to solving matrix equations (Golub and van Loan, 1996, p. 120). Matrices that are not 
diagonally dominant are very difficult to solve. Edwards (1998) has shown conditional diagonal 
dominance for a uniform (homogeneous) anisotropic conductance tensor.  In particular, diagonal 
dominance is ensured for the A(9) matrix constructed by locating the points of pressure continuity 
at the midpoints of each cell face as was done in this report if the following condition is satisfied. 

|| abbbaa TTT ==  (B-26) 

Equation B-26 describes rather restrictive conditions.  The Mohr’s circle diagram (Bear, 1972 p. 
142), shows that the angle between the principal axes of the conductivity tensor and the 
coordinate system must be 45 degrees and the hydraulic conductivity in the direction of the minor 
principal axis must be zero.  Thus, the matrix for the full set of difference equations will almost 
never be diagonally dominant. 

Operator Splitting 
 Solving  matrix equations such as equation B-25 generally occupies most of the 
execution time of most ground-water simulations.  Matrix A(9) of equation B-25 is especially 
difficult for iterative solvers, because it is not diagonally dominant. In addition, equation B-25 
does not satisfy a maximum principle, as discussed in the ‘Modifying the equations for traditional 
solvers’ section of this report. To obtain a set of equations that can be more easily solved, 
operator splitting (matrix splitting) can be very useful and has the advantage of possessing a 
maximum principle. 

 An operator splitting of the finite-difference equations is developed such that a matrix 
involving only the 5-point stencil of cells needs to be solved to obtain the hydraulic head field. 
Splitting at the matrix and cell-flow level will be discussed; results showed that consistent 
splitting requires splitting at the cell-flow level.  Some properties concerning operator splitting 
error, iteration stability and convergence, and matrix diagonal dominance will be presented.  The 
operator splitting used in this report is adapted from Edwards (1998, 2000), who developed a 
general theory for consistent flow representation for anisotropic conductivity for finite-element 
and finite-difference methods on several types of grids and for a family of control-volume 
integration algorithms.  He also described an operator splitting algorithm and its properties.  In 
this report, only the Edwards (1998, 2000) methods that are relevant to the cell-centered finite-
difference method are presented and the representative equations of Edwards (1998, 2000) are 
expanded to include the whole set of flow equations needed for a 2-dimensional cell-centered 
grid. 

 The A matrix of equation B-25 can be split into a pentadiagonal matrix and a residual 
matrix 

)59()5()9( −+= AAA  (B-27) 
where  
  is the pentadiagonal matrix; )5(A
  is the residual matrix. )59( −A
The residual matrix may have 4 or 9 diagonals depending on the splitting performed. 
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Splitting at the Matrix Level 

 There are many ways to split the A(9) matrix.  One way is a matrix level splitting that 
keeps all the matrix elements that multiply , and of fig. B-9 in the A(5) matrix and 
put all the matrix elements that multiply  and  into the A(9-5) matrix.  However, this 
splitting gives an A(5) matrix which is not guaranteed to be diagonally dominant, because the 
cross derivative terms both add to and subtract from the diagonal of the matrix.  Furthermore, the 
computed flow rates are not conservative across the cell faces unless iteration to convergence is 
done, thus what are called outer iterations in the PCG2 and LMG solvers are needed (Hill, 1990; 
Mehl and Hill, 2001).  Finally, the velocity field calculated from the hydraulic head solution with 
this splitting will have a discretization error of order one if the transmissivity field is not uniform.  
To avoid these limitations, operator splitting at the flow level needs to be considered. 

6421 ,,, hhhh 8h
,,, 753 hhh 9h

 
Splitting at the Flow Level 

 A consistent splitting is done at the flow level by splitting each flow in equation B-20.1 
to B-20.8 into a normal-gradient component and a tangential-gradient component.  Thus, for 
example, for the flow rate of equation B-20.1 

)59(
)(

)5(
)()(

−+= ISISIS FFF  (B-28) 

The other 7 flow rates are treated similarly.  The normal-gradient component comprises those 
flows that arise from the terms with Taa and Tbb in equation B-6 and the tangential-gradient 
component comprises those flows that arise from terms with Tab.  This consistent operator 
splitting retains both local conservation of fluid and a divergence-free velocity field on a cell-by-
cell basis. 

 Assembling the split flows into equation B-28 yields the form of equation B-27 for an 
operator splitting at the matrix level.  The resulting A(9-5) cross-flow matrix has 9 diagonals, while 
the A(5) matrix is diagonally dominant. 

 Although it is possible in principle to derive analytical equations for the elements of   A(9-

5), it is difficult to start with equations B-20.1 through B-20.8 and separate the normal-gradient 
flows from the tangential-gradient flows.  The terms in equations B-20.1to B-20.8 contain ratios 
of polynomials in  and  that do not separate easily.  A more productive approach is 
to use the definition of equation B-28 and specify the normal-gradient components based on the 
classical 5-point differencing scheme for ground-water flow.  Then the tangential-gradient 
components are calculated as the difference between the total components and the normal-
gradient components.  Thus, it is not necessary to derive explicit equations for the tangential-
gradient terms. 
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The Split Flow Components 

 The normal-gradient flow components are written as 
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where  and  are given by equation B-7. aaT bbT

 Then the tangential-gradient flow components are given by  
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The full  terms, with D=N,S,E, or W and n=I,II,III, or IV, are given by equations B-20.1 
through B-20.8. 

)(nDF

 Equations B-30.1 through B-30.8 and equations B-29.1 through B-29.8 define the 
operator splitting at the flow level.  The A matrix equations can be assembled from these terms 
after converting the local cell numbers into global grid indices following figure B-9. 
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Solving the Finite-Difference Equations 

 After operator splitting has been done and the finite-difference equations have been 
assembled for steady state or transient flow, solution can proceed with or without iteration. 

Semi-Implicit without Iteration 
 The first approach is applicable to a transient flow equation with no nonlinearities such as 
water-table conditions or nonlinear head-dependent boundaries. Looking only at the flow balance 
terms and ignoring the storage terms, operator splitting suggests a semi-implicit form of equation 
B-25 as 

nn hfh )59(1)5( −+ −= AA  (B-31) 

where n and  indicate the time levels.  Equation B-31 defines a non-iterative semi-implicit 
approximation to equation B-25 for h.  The solutions for h are obtained at each discrete time level 
without iteration. 

1+n

 It can be shown that the operator splitting gives rise to a splitting truncation error of order 
 for the full anisotropic conductivity tensor (Edwards, 2000).  This error can be reduced by 

iteration using the procedure described in the following section, or kept under control by 
restriction of the time-step length.  Generally, MODFLOW models are nonlinear in some manner 
and require iteration; the method represented by equation B-31 would be rarely used and is not 
provided as an option in the LDVA capability. 

t∆

Semi-Implicit with Iteration 
 The second approach is applicable to either a steady-state or transient flow equation.  
Equations B-25 and B-27 are combined and written in the form of an iteration cycle as  

γγ hfh )59(1)5( −+ −= AA  (B-32) 

where 
 γ  is the iteration counter. 

The iterations are equivalent to outer iterations of MODFLOW’s PCG or LMG solvers. 

 The solution for h from equation B-32 is free of the error due to operator splitting 
mentioned above.  However, it is not clear that this iteration is unconditionally stable, as 
discussed below. 

Stability 
 The semi-implicit algorithms with and without iteration obtained by operator splitting are 
stable provided that the spectral radius is less than one.  Stability is expected if A(9) is diagonally 
dominant.  Unfortunately, the full difference-equation matrix is only conditionally diagonally 
dominant with rather restrictive conditions, as discussed above.  Numerical experimentation will 
likely be necessary to determine the robustness of a solution algorithm for h based on equations 
B-31 or B-32. 
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APPENDIX C: SENSITIVITIES 
Using the operator splitting presented in Appendix B, the modified ground-water flow 

equation used by the LVDA capability ca be expressed as: 

( )591)5( fffhn −−=+A  (C-1) 
where 
  is the pentadiagonal coefficient matrix [L2/T], )5(A
  is a vector of hydraulic heads [L], nh
 n  is the solver-iteration counter, 
 f is the forcing function vector [L3/T], 
 f 9 is a vector of flows calculated as A9 h [L3/T], and 
 f 5  is a vector of flows calculated as A5 h [L3/T]. 

Equations for sensitivities are derived by taking the derivative of equation C-1 with 
respect to a general parameter  and applying the chain rule (see any basic calculus text) yields: lb
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The A(5) matrix is calculated as discussed in appendix B. The first term on the right-hand side is 
already calculated as described by Hill and others (2000, p. 69). Evaluation of the other three 
terms is described below. 

The f 9 Term 

 Figure B-7 shows that accounting for flow through the boundaries of a finite-difference 
cell requires involves calculating eight flow components: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) kjikjikjikji

kjikjikjikji

IWIIEIVWIIIE

IVNISIIINIISkji

FFFF

FFFFf

,,,,,,,,

,,,,,,,,

9
,,

−−+

+−−+=
 (C-3) 

Taking the derivative of C-3 with respect to parameter bl produces: 
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The first term on the right-hand side of equation C-4 was defined by equation B-20.3. 
Rearranging slightly produces: 
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Taking the derivative with respect to bl and applying the chain rule yields: 
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Similar equations can be derived for the other 7 flows.  The equations require evaluation of 
derivatives of Taa, Tab and Tbb terms, which are defined using equation B-7. Taking the derivative 
and applying the chain rule yields: 
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The derivatives on the right-hand side of equation C-7 to C-9 are non-zero only for 
parameters defining horizontal hydraulic conductivity (Khl), horizontal anisotropy (HANIl), and 
the angle of anisotropy (θl.). 
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The complexity of the equations for aS1, aS2, and so on in equation C-6, indicates that 
their derivatives cannot be calculated analytically without considerable effort.  Therefore, 
perturbation sensitivities are calculated for these terms by perturbing parameter values, 
calculating the change in the coefficient, and dividing by the change in the parameter value.  In 
the current version of the LDVA capability, a fixed perturbation step size of 10 percent is used, 
except that when the angle is zero, a step size of 15 degrees is used.  While the equations for the 
coefficients are nonlinear with respect to the parameter values, this approach worked well in the 
simulation examples presented in this report.  

The f 5 Term 

 Next, focusing on f 5, equation B-29 can be rearranged to yield: 
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Taking the derivative of equation C-14 yields: 
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To derive the sensitivity of the conductance terms in C-17, consider the following steps.  Basic 
calculus yields: 
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For  u and v are defined as: kjiCRL ,,

162 TaaTaau =  (C-19) 
16 TaaTaav +=  (C-20) 

Taking the derivative of equation C-19 with respect to  yields: lb
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and taking the derivative of equation C-20 with respect to  yields: lb
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The Final Term 

 The A(5) matrix is composed of the conductance terms that are shown in equations C-15, 
and the generalized derivative of each term is calculated using equations C-18 through C-22. The 
resulting matrix is then multiplied by the hydraulic heads already calculated for time step n+1. 
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APPENDIX D: CALCULATION OF HORIZONTAL CELL-FACE 
VELOCITIES AND SENSITIVITIES 

 Horizontal cell-face velocities are used by the Advective-Transport Observations 
(ADV2) Package (Anderman and Hill, 2001). These velocities change as the direction of 
horizontal anisotropy changes, as discussed in this appendix.  

Horizontal Cell-Face Velocities 

 The velocity on the left x-face of cell i,j,k is defined as the flow rate through the cell face 
divided by the effective area of flow: 
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where 
  is the velocity on face i,j-½,k [L/T], 

kjixv
,2/1, −

  is the cell-face flow rate [L3/T], 
kjixQ

,2/1, −

  is the cell width of row i [L], ic∆
  is the effective porosity of cell i,j,k, and kjin ,,

  is the saturated thickness of unconfined cell i,j,k or thickness of confined cell 

i,j,k [L]. 
kjil ,,

The cell-face velocities are calculated using an average saturated thickness, instead of the single-
cell saturated thickness used in MODPATH, because the original method produces discontinuities 
in velocity, and thus in sensitivity, at cell boundaries.  For the LVDA Capability, the flow for a 
given cell face is calculated as the sum of the two flows calculated using equation B-20.   

Horizontal Cell-Face Velocity Sensitivity 

 The sensitivity of the horizontal cell-face velocities are obtained by taking the derivative 
of equation D-1 with respect to a general parameter, yielding 
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which depends on the sensitivity of the flow and of the saturated thickness.  Sensitivities of the 
flows are calculated using equation C-6 in subroutine SSEN1HUF2VDF9.   
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