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Abstract
Reliability estimates for the resistance distribution of 
wood product properties may be made from test data 
where all specimens are broken (full data sets) or by using 
data sets where information is obtained only from the 
weaker pieces in the distribution (censored data). Whereas 
considerable information exists on property estimation 
from full data sets, much less information is available on 
property estimation using censored data. To assess the 
need for a more rigorous study, a small simulation study 
was conducted to identify potential problems that could 
be associated with censoring effects on property estimates 
from an assumed Weibull distribution for use in reliability-
based standards such as ASTM D 5457. Results suggest 
that reasonable estimates of property percentiles may be 
obtained when the censoring point is above the percentile 
needed. However, censoring also affects the estimate of 
the Weibull shape parameter, and therefore the coefficient 
of variation. This is important because the coefficient of 
variation is used to estimate the data confidence factor and 
the normalization factor also used in determining the data 
resistance factor. The simulation suggests that for a given 
sample size, the estimate of Weibull-shape parameter gets 
better as more of the distribution is included. Further studies 
are recommended to provide guidance on use of censored 
data with both the two- and three-parameter Wiebull 
distributions.

Keywords: Weibull distribution, reliability-based design, 
censored data
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Introduction
In 1984, the American Society of Civil Engineers (ASCE) 
Committee on Wood formed a Task Committee on Load 
and Resistance Factor Design (LRFD) for Engineered Wood 
Construction. The intent was to develop a reliability-based 
approach to safety and to put wood practices in line with 
those being used for concrete and steel. This new LRFD ap-
proach is described in AF&PA/ASCE 16-95 (1996). Calcu-
lation methods for the resistance part of the LRFD approach 
are in ASTM D 5457 (ASTM 2005). This ASTM standard 
applies only to individual wood elements, not to assemblies. 
The two-parameter Weibull distribution is the mandated 
basis of D 5457 calculations. The standard does not use full 
reliability methods but is loosely based on the approach 
presented in Thoft-Christensen and Baker (1982). This de-
sign procedure starts with fitting a two-parameter Weibull 
distribution to either a complete data set or a set of data 
representing the lower tail of the distribution. The fit can be 
made using either maximum likelihood methods or a regres-
sion-based estimation procedure. A distribution percentile 
estimate Rp is calculated from the fitted two-parameter 
Weibull distribution. For many properties, this will be a 5th 
percentile estimate. A coefficient of variation (CV) is calcu-
lated from the fitted shape parameter, α, using the formula

     (1)

From this value and the sample size, a data confidence fac-
tor Ω is calculated from a table in the standard. Generally 
this factor (≤1) goes up as sample size increases and down 
as the CV increases. Finally, a reliability-normalization fac-
tor KR is also calculated from a table in the standard based 
on the CV and the mechanical property being considered. In 
general, this factor reaches its largest value at a CV of 12% 
and decreases as CV rises above 12%. The final LRFD re-
sistance factor is a product of the three values:
     

(2)

The resulting value is used as the upper limit of the 50-year 
maximum load to which the element can be subjected. Fifty-
year maximum loads are based on fitting various distribu-
tions to combinations of dead loads and wind, rain, snow, 
earthquake, and occupancy live loads. These distributions 
are codified in ASCE 7-88 (1990).

Because of the sensitivity of reliability calculations to dis-
tributional form and method of fit, the wood engineering 
community is interested in evaluating the effect of using a 
three- versus a two-parameter Weibull distribution in evalu-
ating the effect of estimation method and the effect of using 
censored data sets versus full data sets. Simulations (such 
as Durrans and others 1998) have been published to address 
some of these issues. Further, the standard states, “Estimates 
of the distribution and its parameters give the most accurate 
reliability estimates when they represent a tail portion of 
the distribution rather than the full distribution” (ASTM 
2005, Appendix X1.1.2). Whereas most strength proper-
ties for lumber are based on lower tail properties, the use 
of the standard is not limited to lower tail properties. Little 
information is currently available in the wood literature on 
the effect of data censoring on property estimates from the 
Weibull distribution. The objective of this study is to inves-
tigate the sensitivity of reference resistance to censoring 
procedures as applied in load and resistance factor design. 

Methodology
This paper looks at the effect of censoring data when us-
ing three-parameter maximum likelihood estimates. This is 
relevant for beginning to look at ASTM D 5457, which can 
be interpreted to suggest that sampling lower tail data sets 
might be better for fitting distributions than complete data 
sets. Section 1.1.3 of the standard states, “By permitting tail 
fitting of the data, it [the standard] provides a way of fitting 
data in this important region that is superior to the full-dis-
tribution types.” The standard also states, “For lower tail 
data sets, a minimum of 60 failed observations is required 
for sample sizes of n = 600 or less,” and, “For sample sizes 
greater than 600, a minimum of the lowest 10% of the distri-
bution is required” (ASTM 2005). 

This statement implies that a censored data set can or should 
be used even when a smaller complete data set could be 
tested. Such an assumption is unusual because the amount 
of distribution represented by the censored data has no rela-
tionship to the overlap in load and resistance distributions. 
Using it to calculate a reliable LRFD value associated with a 
property needing a higher percentile than the 5th might lead 
to problems in some cases. The 10% figure apparently was 
chosen to make sure the 5th  percentile is well bracketed. 

 CV
 

α  
–

  
0.92

Rn = (Rp)(Ω)(KR)
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We ran a small simulation to look at the effect of using cen-
sored samples on our ability to estimate percentiles from a 
three-parameter Weibull distribution using maximum likeli-
hood estimates. We simulated data from known Weibull 
distributions using International Mathematical & Statistical 
Library (IMSL) routines and then used maximum likelihood 
estimation for a three-parameter Weibull distribution on the 
bottom 5%, 10%, 15%, … , 90%, 95%, and 100% of the 
data. Sample sizes for the complete data sets were 20, 60, 
100, 200, and 500. For each fit of the data, we estimated a 
5th, 30th, 50th, 70th, and 95th percentile. This was done for 
shape parameters of 2.0, 3.5, and 5.0; a scale parameter of 
1; and a location parameter of 0.5 with 100 replications for 
each combination. These shape parameters cover the range 
of shape parameters found for major species tested in the 
U.S. in-grade program (Table 1) (Green and Evans 1987). 
We calculated the mean standard deviation and mean square 
error for each parameter and percentile. From the present 
study, we hope to get an idea of potential problems if a true 
reliability calculation were done when we look at the mean 
square error of the estimated 30th and 50th percentiles. 
Because the mean square error takes into account both bias 
and variability, it should give us the best feel for when our 
estimates will be close to the true values. 

Results
Distribution Percentile Estimates
Table 2 shows the mean square error for percentile estimates 
for the right-censored three-parameter Weibull distributions 
studied. Trends show that extrapolated estimates for large 
samples can be poorer than estimates based on much smaller 
full distributions. This can be seen in the mean square value 
of our estimate of the 50th percentile, where a full sample 
of 60 specimens is smaller than 60 of 200, 50 of 500, and 75 
of 500. We see that censored data with the censoring point 
above the percentile being estimated may be very good, as is 
shown in the 30th percentile estimates of 60 of 100 or 60 of 
200 compared to 60 of 60. The results imply that the further 
we have to extrapolate, the poorer the estimate 50 of 500 
and 75 of 500 estimates. If we assume that a poor estimate 
of a percentile means a poor estimate of distribution in the 
neighborhood of the percentile, any actual reliability calcu-
lations that involve an extrapolated percentile may be sus-
pect. These observations offer a mixed view of what might 
happen under this ASTM standard. In small samples, it is 
unlikely that we would be extrapolating percentile estimates 
above the censoring point of the data and there should be no 
problem. Also, for many mechanical properties, the percen-
tile of interest might well be a 5th percentile that the bottom 
10% of the data would cover. However in section 6.3.1 of 
the standard, a 5th percentile is only an example. This im-
plies that for large samples and situations where a higher 
percentile is needed, there might be problems with extrapo-
lation. It also implies that other applications than this ASTM 

standard that use censored data from a Weibull distribution 
might have problems if they are extrapolating from data.

Coefficient of Variation
Censoring procedures can also affect estimates of the coef-
ficient of variation (CVW) for Weibull distributions. This 
is a more complex problem than the variation in percentile 
estimates because the coefficient of variation is used to cal-
culate the factors Ω and K

R
 (Table 3 and 4).

Table 5 demonstrates how the mean square error of the esti-
mated shape parameter varies with censoring strategies and 
shows that it can be higher than the mean square error ob-
tained with full distributions. For approximately equal num-
bers of broken boards, the mean square error of the shape 
parameter increases as the percentage broken decreases. 
An estimate of the range in CVW may be obtained by tak-
ing the square root of the mean square error. The resulting 
value incorporates bias and standard deviation of the esti-
mate. As such, it can give an idea of how far from the actual 
true-shape parameter an estimate might be. It also ignores 
whether the bias creates a conservative estimate or a non-
conservative estimate of Rn. Plus or minus this value would 
be like plus or minus a standard deviation from the mean 
value, which is a conservative estimate of what might  
occur. The expected ranges in CVW can be quite large  
(Table 6). Because the bias is not 0, the actual range of  
values for CV will be different than this example depending 
on whether the bias is positive or negative. However, this 
range illustrates that the potential bias and variability of the 
maximum likelihood-shape parameter estimate might also 
be of concern. 

For small sample sizes, the MLE of the shape parameter can 
be quite biased. Billmann and others (1972) looked at the 
two-parameter Weibull with either 25% or 50% of the larg-
est observations censored for sample sizes n = 40, 60, 80, 
100, 120. Their results showed that the greater the censor-
ing, the greater the bias. If we define the bias as the mean 
of our estimated shape parameters minus the true shape 
parameter, we see the bias in the estimated shape param-
eters (Table 7). Positive biases represent cases in which we 
overestimated the shape parameter. This would cause us to 
underestimate the coefficient of variability. An error in this 
direction is therefore not conservative. The variability in 
these numbers can also reflect the small sample size in the 
simulation when there is a large variability to results. The 
small number of simulations used for each case should be 
increased in future studies to see if it clarifies the picture. 
When we use all the data, the bias gets smaller as the sample 
size gets larger (Table 8). A similar pattern occurs for the 
mean square error, as should be expected. 

Conclusions
Although this is a very small study and uses a three- instead 
of the two-parameter Weibull, trends in the results indicate 
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that a need exists for a more thorough investigation of the 
effects of censoring on percentile estimates from an as-
sumed Weibull distribution. From the current results, we 
conclude the following:

1. Percentile estimates below the censoring point were esti-
mated fairly well. 

2. It appears that extrapolating to percentiles above the 
censoring point should be avoided. In most cases, ex-
trapolation produced poorer estimates than a much 
smaller sample that had a censoring point above the per-
centile to be estimated. 

3. We need to further evaluate the effect of censoring strat-
egies on property estimates for both the two- and three-
parameter Weibull distributions.

4. The coefficient of variation of the assumed Weibull 
distribution can also be affected by censoring strategies. 
Because the coefficient of variation affects both the data 
confidence and normalization factors, effects of censor-
ing on the resistence factor are more complex than those 
on percentile estimates. Our results suggest that for a 
given sample size, the estimate of the shape parameter 
gets better as more of the distribution is included. 

5. Further study is needed to evaluate the effect of data 
censoring on estimation of the shape parameter and 
estimated coefficient of variation for both the two- and 
three-parameter Weibull distributions.
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Table 1. Shape parameter for nominal 2 by 4 lumber at 12% 
moisture content (Green and Evans 1987)a

MOR   UTS  UCS 
Grade

Species 
group 2P 3P 2P 3P 2P 3P

Sel. Str. Douglas Fir–Larch 4.69 4.18 3.06 2.40 5.77 3.18 
 Hem–Fir 4.42 3.82 3.33 2.24 5.41 2.16 
 Southern Pine 4.47 3.77 3.29 2.58 5.84 5.12 
No. 2 Douglas Fir–Larch 2.89 2.37 2.15 1.54 4.10 2.75 
 Hem–Fir 2.74 2.00 2.48 1.85 4.46 2.41 
 Southern Pine 2.61 2.09 2.12 1.32 3.94 2.12 
a Two- (2P) and three-parameter (3P) Weibull-shape parameter ( ) for modulus of rupture 
(MOR), ultimate tensile stress parallel to the grain (UTS), and ultimate compression stress 
parallel to the grain (UCS) of Select Structural (Sel. Str.) and No. 2 grade dimension 
lumber. 

Table 2. Mean square errors of estimated 30th and 50th percentiles from 
right-censored three-parameter Weibull distributions 

Shape 2.0 Shape 3.5 Shape 5.0 Specimens 
broken (no.)

Specimens 
broken (%) 30th 50th 30th 50th 30th 50th 

60 0f 60 100 0.0557 0.0613 0.0423 0.0404 0.0300 0.0272
60 of 100 60 0.0510 0.0547 0.0409 0.0382 0.0303 0.0280
60 of 200 30 0.0342 0.0742 0.0262 0.0473 0.0220 0.0386
75 of 500 15 0.0569 0.1032 0.0402 0.0879 0.0332 0.0678
50 of 500 10 0.1032 0.2524 0.0779 0.1600 0.0573 0.1189

Table 3. Data confidence factor  on R0.05 for two-parameter Weibull 
distribution with 75% confidence a (table 1 of ASTM D 5454-04a, 2005) 

Sample size, n
CVW 30 40 50 60 100 200 500 1000 2000 5000 
0.10 0.95 0.95 0.96 0.96 0.97 0.98 0.99 0.99 0.99 1.00 
0.15 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.99 0.99 
0.2 0.89 0.91 0.92 0.93 0.94 0.96 0.98 0.98 0.99 0.99 
0.25 0.87 0.88 0.90 0.91 0.93 0.95 0.97 0.98 0.98 0.99 
0.30 0.84 0.86 0.88 0.89 0.92 0.94 0.96 0.97 0.98 0.99 
0.35 0.81 0.84 0.86 0.87 0.90 0.93 0.96 0.97 0.98 0.99 
0.40 0.79 0.81 0.84 0.85 0.89 0.92 0.95 0.96 0.97 0.98 
0.45 0.76 0.79 0.82 0.85 0.87 0.91 0.94 0.96 0.97 0.98 
0.50 0.73 0.77 0.80 0.81 0.86 0.90 0.94 0.95 0.97 0.98 
a Interpolation is permitted. For CVW values below 0.10, the values for 0.10 shall be used. 
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Table 4. Fifth-percentile-based reliability normalization factors, KR
(table 3 of ASTM D 5454–04a, 2005) 

KR

CVW
(%)

Compression 
and bending Bending

Tension
parallel

Shear 
(2.1 basis)

Shear 
(SCL,

3.15 basis)

Shear 
(I-Joist,

2.37 basis)
10 1.303 1.248 1.326 1.414 0.943 1.253 
11 1.307 1.252 1.330 1.419 0.946 1.257 
12 1.308 1.253 1.331 1.420 0.947 1.258 
13 1.306 1.251 1.329 1.418 0.945 1.256 
14 1.299 1.244 1.322 1.410 0.940 1.249 
15 1.289 1.235 1.312 1.400 0.933 1.240 
16 1.279 1.225 1.302 1.388 0.926 1.230 
17 1.265 1.212 1.288 1.374 0.916 1.217 
18 1.252 1.199 1.274 1.359 0.906 1.204 
19 1.237 1.185 1.259 1.343 0.895 1.190 
20 1.219 1.168 1.241 1.324 0.882 1.173 
21 1.204 1.153 1.225 1.307 0.871 1.158 
22 1.186 1.136 1.207 1.287 0.858 1.141 
23 1.169 1.120 1.190 1.269 0.846 1.125 
24 1.152 1.104 1.173 1.251 0.834 1.109 
25 1.135 1.087 1.155 1.232 0.821 1.092 
26 1.118 1.071 1.138 1.214 0.809 1.076 
27 1.105 1.059 1.125 1.200 0.800 1.063 
28 1.084 1.038 1.103 1.176 0.784 1.042 
29 1.066 1.021 1.085 1.157 0.771 1.025 
30 1.049 1.005 1.068 1.139 0.759 1.009 

Table 5. Mean square errors for estimated 
shape parameters from right-censored three-
parameter Weibull distributions 

True shape parameter Specimens 
broken (no.) 

Specimens 
broken (%) 2.0 3.5 5.0 

60 of 60 100 0.3506 0.8678 1.6425
60 of 100 60 0.4142 1.3292 1.6852
60 of 200 30 0.4431 1.4163 2.4448
75 of 500 15 0.5029 1.7580 2.5467
50 of 500 10 0.6066 2.2284 3.0601
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Table 6. Effect of censoring on the variation in the 
shape parameter for the three-parameter Weibull 
distribution. 

Range of shape 
parameter a

Coefficient of 
variation b

True shape
parameter

Specimens 
broken Low High Low High

2.0 60 of 60 1.41 2.59 0.42 0.73 
 60 of 100 1.36 2.64 0.41 0.78 
 60 of 200 1.33 2.67 0.41 0.77 
 75 of 500 1.29 2.71 0.40 0.79 
 50 of 500 1.22 2.78 0.39 0.83 
3.5 60 of 60 2.57 4.43 0.25 0.42 
 60 of 100 2.35 4.65 0.24 0.46 
 60 of 200 2.31 4.69 0.24 0.46 
 75 of 500 2.17 4.83 0.24 0.49 
 50 of 500 2.01 4.99 0.23 0.53 
5.0 60 of 60 3.72 6.28 0.18 0.30 
 60 of 100 3.70 6.30 0.18 0.30 
 60 of 200 3.44 6.56 0.18 0.32 
 75 of 500 3.40 6.60 0.18 0.32 
 50 of 500 3.25 6.75 0.17 0.34 
a + one square root of the mean square error.  
b CV – 0.92; for  = 2.0, CV = 0.53; for  = 3.5, CV = 0.32; and for  

 = 5.0, CV = 0.23.

Table 7. Bias for estimated shape 
parameters from right-censored three-
parameter Weibull distributions 

True shape parameter Specimens 
broken (no.) 2.0    3.5 5.0 
60 of 60 – 0.1040    – 0.1105 – 0.2319
60 of 100 – 0.1484 0.1027 – 0.5682
60 of 200 – 0.0488 – 0.0102 0.1988
75 of 500 – 0.1034 0.4053 0.4205
50 of 500 – 0.634 0.3144 0.1759

Table 8. Bias for estimated shape parameters 
from complete samples from three-parameter 
Weibull distributions 

True shape parameter Specimens 
broken (no.) 2.0    2.0 2.0 
20 of 20 – 0.2864 – 0.2451 – 0.8857
60 of 60 – 0.1040 – 0.1105 – 0.2319
100 of 100 – 0.0617 0.0821 – 0.1492
200 of 200 – 0.0374 – 0.390 – 0.0451
500 of 500 – 0.0189 0.0087 0.0154




