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ABSTRACT 

Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry 
and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty 
boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study 
combines a finite element model with a parametric design of the geometry and material characteristics 
affecting the critical buckling stress of box panels to examine their postbuckling response. The finite 
element model enables a broad scope of simulated panels to be examined economically. Results lead 
to a postbuckling model fit to the predictions and a better understanding of how to unify elastic and 
inelastic failure data from actual experiments and form a more general box strength formula. 

Keywords: FEA, postbuckling, box compression strength, paperboard, plates. 

INTRODUCTION 

In accordance with the research objectives 
of the Agenda 2020 program of the American 
Forest & Paper Association, cost-saving com- 
puter-based models of corrugated fiberboard 
and fiberboard boxes are needed to differen- 
tiate among alternative fiber furnishes, en- 
hance innovation in design, reduce costly de- 
structive testing, and provide confirmation of 
acceptable performance. Knowing more about 
the fundamentals of compression strength at- 
tributes will lead to higher product perfor- 
mance, which can either reduce the amount of 
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material needed to obtain necessary perfor- 
mance or allow unique design features so that 
corrugated fiberboard can compete more fa- 
vorably with other materials. 

Conventional box strength formulas (Batel- 
ka and Smith 1993; Hutten and Brodeur 1995; 
McKee et al. 1963; Shick and Chari 1965) do 
not relate universally to all box sizes, styles, 
fabrication, and materials, or to interior com- 
ponents. The assumed failure is by elastic 
buckling wherein box panels can sustain com- 
pression loads at an average failure stress s f 
greater than that predicted by the elastic crit- 
ical stress s cr when bifurcation first occurs. 
The difference between the load carrying ca- 
pacity and this theoretical strength decreases 
as box dimensions, relative to the combined 
board thickness, decrease. If box panels dis- 



Urbanik and Saliklis –BUCKLING PHENOMENA IN CORRUGATED BOXES 323 

play a sinusoidal waviness prior to the maxi- 
mum attainable load, box dimensions would 
generally satisfy the condition s cr < s f < s y, 
called elastic buckling. 

The relationship among s cr, s f, and s y has 
been traditionally applied (Bulson 1969; Ger- 
and 1957) to metals, with s y being the yield 
stress in compression. The same relationship 
prevails if expressed in terms of load per 
width of loading edge instead of stress. This 
enabled the ultimate edge crush strength Pu to 
be substituted for yield strength in applying 
the same relationship to corrugated boxes 
(McKee et al. 1963). Likewise, containerboard 
ultimate stress su was successfully used in an- 
alyzing corrugated fiberboard (Urbanik 1990, 
1996a). Yield stress and ultimate stress were 
used interchangeably in the further analysis of 
boxes (Urbanik 1996b, 1997). The success 
with using ultimate stress or ultimate strength 
for paper and corrugated fiberboard is fortu- 
itous in that a yield stress for such nonlinear 
materials has not been defined. 

Box inserts, partitions, trays, and squatty 
boxes can fail by an inelastic buckling phe- 
nomenon such that sf < sy < scr.  Few box 
compression tests to characterize strength in 
this regime have been reported in the litera- 
ture. However, a review of some historical 
data bases on box compression (Urbanik 
1996b), including subsets of elastic and in- 
elastic buckling, revealed that a combination 
of elastic and inelastic postbuckling theory 
(Bulson 1969) can be universally applied to 
the data, with different constants for each data 
base, provided that nonlinear material char- 
acterization is introduced and that an empirical 
correction is applied to panel stiffness. 

OBJECTIVE AND SCOPE 

The objective of this study is to determine 
if the postbuckling formula advocated in Ur- 
banik (1996b) for combined elastic and in- 
elastic failure is supported by a parametric 
variation of the variables determining scr. In 
the previous study (Urbanik 1996b), the best 
model of box strength was obtained with each 

panel characterized by the following two-part 
formula: 

together with the empirical correction 

(2) 
using an apparent stiffness Sa instead of S in 
the calculation of scr. Two postbuckling con- 
stants, a and h, appear in Eq. (1). A third ma- 
terial postbuckling constant q0 and a fourth 
constant t are embedded implicitly in the cal- 
culation of scr (from scr = c 1s ˆ , per Appendix). 

For nonlinear material theory, one input to 
scr is the stress-strain law s = c1 tanh(c2e/c1). 
Few reported experiments provide complete 
data on c1 and c2. In applying a nonlinear 
stress-strain law to the analysis of data with 
partial inputs, it has been found helpful to con- 
sider a constant q0 = c1/su and compute c1 

from the experimental su and an optimum q0 
representing all the data (Urbanik 1990). The 
optimum values of a and h via Eq. (1) then 
become a function of q0, which in turn is a 
function of the accuracy in determining su. 

Thorough experimental replication (Urban- 
ik 1996b) and inclusion of all geometry and 
material variables would be prohibitively ex- 
pensive. Therefore, our approach is a para- 
metric study of the fundamental variables in- 
put to scr combined with finite element anal- 
ysis (FEA) predictions of sf and the applica- 
tion of Eqs. (1) and (2). While it makes some 
sense to terminate the analysis with the FEA 
predictions, having a simpler, yet mechanistic, 
strength formula can provide the basis for ac- 
tual experimental confirmation and practition- 
er use. 

The scope of our parametric design is lim- 
ited to scr as a function of the basic input var- 
iables q0, S, f, v, and c ˆ that comprise the the- 
ory (Johnson and Urbanik 1987) applied to 
simply supported plates subjected to axial 
compression. Other edge conditions, loading 

(1) 
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conditions, materials, and geometry undoubt- 
edly play a role, but their investigation is re- 
served until the relevancy of nonlinear mate- 
rial plate theory can be corroborated. 

An accurate formula for scr was reported as 
most important in the development of a gen- 
eral box compression formula (McKee et al. 
1963). Variables that affect sy can be impor- 
tant but are not investigated here. In addition, 
just as testing procedures are known to affect 
an experimental sf, the magnitude of imper- 
fections and the solution step size are two ex- 
amples of parameters that affect the FEA pre- 
diction of sf. 

An additional limitation to the scope of 
FEA is to consider only isotropic material be- 
havior. This enables an exact characterization 
of the material stress-strain curve in the prin- 
cipal and transverse directions to be used and 
rules out stress-strain approximations as a 
source of error. 

PARAMETRIC DESIGN 

The theory of finite length plates (Urbanik 
1996b), representing box panels and used to 
determine scr, has five fundamental nondimen- 
sional inputs: q0, S, f, v, and c ˆ. A 25 factorial 
design of these variables was generated (Table 
1), with low and high values of each variable 
selected to include the overall scope of box 
panel characterization from data of four stud- 
ies investigated in Urbanik (1996b) along with 
an inelastic regime. The curve of s ˆ (e ˆ), com- 
puted from S, f, v, and c ˆ (Fig. 1), provides a 
measure of the factorial range. Below s ˆ = 0.5, 
the curve is nearly linear, and plates repre- 
sented by the leftmost points (Fig. 1) would 
likely fail by elastic buckling. Above s ˆ = 0.9, 
the represented plates would likely fail by in- 
elastic buckling. 

Isotropic plate properties h, c 2, and su are 
given in Table 2. These properties were deter- 
mined from the anisotropic inputs Pu, Exh, Eyh, 
EIx, and EIy representing the standard 205-g/ 
m2 C-flute corrugated fiberboard in Urbanik 
(2001), with the result that the computed S and 
f of a plate would remain the same for both 

isotropic and anisotropic cases. Additional 
physical properties, c 1, v 1, v 2, G, d, and l, were 
determined from our nondimensional inputs 
(Table 1). Collectively, the properties shown 
in Tables 1 and 2 provide the material and 
geometry inputs for FEA characterization. 

Buckling strength predictions of sf, from the 
FEA model and the best fitting postbuckling 
formula (discussed later) are given in Table 1. 
The FEA predictions are simulations of edge- 
wise compression experiments. Obviously, an 
exact fit to the FEA sf-values (Table 1) could 
be obtained from a 32-parameter factorial for- 
mula. With fewer-parameter formulas, param- 
eters q0 and S were found to be the most sig- 
nificant. Thus, intermediate parametric designs 
with a broader range of q0 and S values were 
generated in Table 3 and additional FEA pre- 
dictions were made. 

FINITE ELEMENT PROCEDURE 

The buckling data used to calibrate the post- 
buckling formula were generated by means of 
the commercially available finite element pro- 
gram ANSYS. The FEA can provide two 
types. of buckling analyses, linear elastic clas- 
sic eigenbuckling or a nonlinear analysis that 
tracks the response until collapse. The latter 
will be referred to as postbuckling analysis. 
Finite element postbuckling analysis can take 
into account material nonlinearities and initial 
geometric imperfections. It is a fully nonlinear 
static analysis with gradually increasing loads, 
which seeks the load level at which the struc- 
ture becomes unstable. 

The nonlinear buckling analysis in the FEA 
differs from traditional static analyses by 
searching for the point where the structure 
reaches its limit or maximum load. This is 
done by constantly incrementing the applied 
loads until the solution begins to diverge. 
Upon finding a final load that prevents equi- 
librium equations from being satisfied, the 
program bisects the final load step increment 
and attempts a new solution at a smaller load. 
In a buckling analysis, each such convergence 
failure is typically accompanied by a “nega- 
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TABLE 1. Factorial design of nondimensional parameters and selected results. 

Selected results 

Eq. Physical properties 
Factorial design FEA Eq. 

c 1a G c d d l e sf (2) scr sf diff. 
q0 S f v c ̂ (MPa) v1 v2

b (MPa) (mm) (mm) (Mpa) S a (Mpa) U (Mm) (%) 

8 0.1 0.25 0.5 1.25 g 10.9 0.5 0.5 255 32.4 130 1.26 0.05 10.6 0.36 1.20 – 4.53 
8 0.1 0.25 0.5 0.75 10.9 0.5 0.5 85 32.4 130 1.23h 0.05 10.0 0.37 1.20 – 2.71 
8 0.1 2 0.5 1.25 10.9 0.5 0.5 255 259 130 1.11 0.14 7.78 0.42 1.18 6.31 
8 0.1 0.25 0 1.25 10.9 0 0 319 32.4 130 1.23 0.05 7.95 0.41 1.19 –3.54 
8 0.1 0.25 0 0.75 10.9 0 0 191 32.4 130 1.23 0.05 7.52 0.43 1.18 –3.57 
8 0.1 2 0.5 0.75 10.9 0.5 0.5 85 259 130 1.07 0.14 6.05 0.47 1.17 9.85 
8 0.1 2 0 1.25 10.9 0 0 319 259 130 1.06 0.14 5.83 0.48 1.17 9.69 
8 0.1 2 0 0.75 10.9 0 0 191 259 130 1.06 0.14 4.54 0.55 1.15 8.46 
1 0.1 0.25 0.5 1.25 1.36 0.5 0.5 255 91.6 366 0.77 0.05 1.32 1.01 0.85 9.39 
1 0.1 0.25 0.5 0.75 1.36 0.5 0.5 85 91.6 366 0.76 0.05 1.25 1.04 0.83 9.70 
1 0.1 2 0.5 1.25 1.36 0.5 0.5 255 733 366 0.65 0.14 0.97 1.18 0.77 17.8 
1 0.1 0.25 0 1.25 1.36 0 0 319 91.6 366 0.72 0.05 0.99 1.17 0.77 7.11 
1 0.1 0.25 0 0.75 1.36 0 0 191 91.6 366 0.72 0.05 0.94 1.20 0.76 5.90 
1 0.1 2 0.5 0.75 1.36 0.5 0.5 85 733 366 0.63 0.14 0.76 1.34 0.71 12.6 
1 0.1 2 0 1.25 1.36 0 0 319 733 366 0.59 0.14 0.73 1.37 0.70 17.7 
1 0.2 2 0 0.75 1.36 0 0 191 733 366 0.59i 0.14 0.57 1.55 0.64 9.86 
8 0.8 0.25 0.5 2.25 10.9 0.5 0.5 255 11.4 45.8 1.31 0.38 84.8 0.13 1.33 1.76 
8 0.8 0.25 0.5 0.75 10.9 0.5 0.5 85 11.4 45.8 1.42 0.38 80.2 0.13 1.33 –6.44 
8 0.8 2 0.5 1.25 10.9 0.5 0.5 255 91.6 45.8 1.27 1.16 62.2 0.15 1.31 3.56 
8 0.8 0.25 0 1.25 10.9 0 0 319 11.4 45.8 1.35 0.38 63.6 0.15 1.31 –2.64 
8 0.8 0.25 0 0.75 10.9 0 0 191 11.4 45.8 1.41 0.38 60.1 0.15 1.31 –7.29 
8 0.8 2 0.5 0.75 10.9 0.5 0.5 85 91.6 45.8 1.25 1.16 48.4 0.17 1.30 3.86 
8 0.8 2 0 1.25 10.9 0 0 319 91.6 45.8 1.26 1.16 46.7 0.17 1.29 2.51 
8 0.8 2 0 0.75 10.9 0 0 191 91.6 45.8 1.26 1.16 36.3 0.19 1.28 1.42 
1 0.8 0.25 0.5 1.25 1.36 0.5 0.5 255 32.4 130 1.24 0.38 10.6 0.36 1.20 –3.00 
1 0.8 0.25 0.5 0.75 1.36 0.5 0.5 85 32.4 130 1.23 0.38 10.0 0.37 1.20 –2.27 
1 0.8 2 0.5 1.25 1.36 0.5 0.5 255 259 130 1.04 1.16 7.78 0.42 1.18 13.6 
1 0.8 0.25 0 1.25 1.36 0 0 319 32.4 130 1.22 0.38 7.95 0.41 1.19 –2.91 
1 0.8 0.25 0 0.75 1.36 0 0 191 32.4 130 1.22 0.38 7.52 0.43 1.18 –3.00 
1 0.8 2 0.5 0.75 1.36 0.5 0.5 85 259 130 1.01 1.16 6.05 0.47 1.17 15.5 
1 0.8 2 0 1.25 1.36 0 0 319 259 130 1.02 1.16 5.83 0.48 1.17 14.9 
1 0.8 2 0 0.75 1.36 0 0 191 259 130 1.30j 1.16 4.54 0.55 1.15 –11.5 
a c1 = suq0. 
b v1 = v2 = v. 

e l = 

c G = [(c ̂ – v)/2(1 – v2)]c2. 
d d = fl. 

f Parameter values from Model 7 in Table 4. 
g Design in bold italics is also in Table 3. 
h Run 10. 
i Run 5. 
j Run 7. 

tive pivot,” which means that the attempted 
load equals or exceeds the buckling load. The 
program normally converges to the limiting 
load as the process of bisection and resolution 
continues to the point at which the minimum 
load increment is achieved. The minimum 
load step will directly affect the precision of 
results. For this study, the FEA inputs that pre- 

scribe how iteration shall seek out this final 
buckling load were kept constant. Depending 
on the geometry and material properties, the 
final collapse state of stress may be less or 
greater than the classical eigenbuckling stress. 

Our finite element postbuckling analyses 
used 8-noded isoparametric shell elements. 
Twelve elements per buckled shape (sinusoi- 

(6)f sf 
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TABLE 2. Isotropic properties of standard corrugated fi- 
berboard. 

Property Value 

Normalized buckling strain 

FIG. 1. Variation of normalized buckling stress s ˆ (Eq. 
(A-13)) with normalized buckling strain e ˆ (Eq. (A-2)) for 
inputs from factorial design in Table 1 and nonlinear 
stress-strain law. 

dal half-wave) were used in typical mesh sizes 
(Fig. 2). This mesh size was chosen based on 
mesh refinement exercises. Isotropic material 
characterization enabled input of the exact 
stress-strain curve, s = c1 tanh(c2e/c1). The 
Poisson's ratio varied from 0 to 0.49. At v = 
0, the shear modulus G is one-half the mod- 
ulus of elasticity E. At v = 0.5, the material 
is incompressible. 

Another feature of nonlinear buckling anal- 
ysis is that if the loading on the structure is 
perfectly in-plane (membrane or axial stresses 
only), the out-of-plane deflections necessary 
to initiate buckling will not develop and the 
analysis will fail to predict buckling behavior. 
To initiate some out-of-plane movement re- 
sulting from in-plane compressive loads, a 
small out-of-plane perturbation, such as a 
modest temporary force or a prescribed dis- 
placement, must be applied. The final failure 
load is very sensitive to these parameters. 
Consequently, we kept the initial imperfection 
consistent with the longest dimension of the 
panel to simulate nearly perfect, yet real, pan- 
els. For panels up to 100 mm long, the initial 
imperfection was 1 mm out-of-plane, bowing 
from the edges to the center of the panel. For 
100- to 500-mm panels, the imperfection was 

2 mm. For panels longer than 500 mm on ei- 
ther edge, the imperfection was 3 mm. 

To more realistically simulate experimental 
laboratory results, the postbuckling analysis 
imposed a downward displacement at the top 
of the panel, which simulated the head move- 
ment of a testing machine. The bottom of the 
panel was not allowed to translate vertically. 
All edges were pinned (i.e., allowed to rotate) 
and remained straight (i.e., did not displace 
transverse to the panel). As the top of the pan- 
el was forced downward, the panel bulged out- 
ward into a number of half-sine waves. Stress- 
es increased throughout the analysis, until con- 
vergence could no longer be achieved. Maxi- 
mum out-of-plane displacement was recorded 
throughout the analysis, as was the final num- 
ber of half-sine waves. The total force along 
the loaded edge was recorded throughout the 
analysis. Typical results for applied and out- 
of-plane displacement are shown for run 5 (sf 

> scr) and run 10 (sf < scr) in Fig. 3. For run 
5, the maximum average stress was approxi- 
mately 586 kPa, as reported in Table 1, even 
though the panel had not yet collapsed. Final 
collapse occurred shortly afterwards, at 520 
kPa. 

RESULTS 

The FEA determinations of sf are summa- 
rized in Table 1 for the factorial designs and 
in Table 3 for the intermediate designs. Vari- 
ous forms of Eq. (1) using either a linear ma- 
terial law or a nonlinear law to compute scr 

were fit to the data. Note that the second line 
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TABLE 3. Intermediate designs of nondimensional parameters and selected results. 

Selected results 

Physical properties 
Intermediate design FEA Eq. 

c 1a G c d d l e sf (2) scr sf diff. 
q0 S f v c ˆ (MPn) v v 2b (MPa) (mm) (mm) (MPa Sa (MPa) U (MPa) (%) 

1 0.145 2 0 0.75 1.36 0 0 
1 0.012 2 0 0.75 1.36 0 0 
1 0.008 2 0 0.75 1.36 0 0 
1 0.004 2 0 0.75 1.36 0 0 
2 0.042 2 0 0.75 2.72 0 0 
2 0.020 2 0 0.75 2.72 0 0 
2 0.006 2 0 0.75 2.72 0 0 
2 0.005 2 0 0.75 2.72 0 0 
4 0.042 0.25 0.5 1.25 5.45 0.5 0.5 
4 0.020 0.25 0.5 1.25 5.45 0.5 0.5 
4 0.006 0.25 0.5 1.25 5.45 0.5 0.5 
4 0.005 0.25 0.5 1.25 5.45 0.5 0.5 
8 0.145 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.012 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.008 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.004 0.25 0.5 1.25 10.9 0.5 0.5 
1 0.1 2 0 0.75 1.36 0 
1 0.4 2 0 0.75 1.36 0 0 
1 0.5 2 0 0.75 1.36 0 0 
1 0.8 2 0 0.75 1.36 0 0 
2 0.2 2 0 0.75 2.72 0 0 
2 0.3 2 0 0.75 2.72 0 0 
2 0.6 2 0 0.75 2.72 0 0 
2 0.7 2 0 0.75 2.72 0 0 
4 0.2 0.25 0.5 1.25 5.45 0.5 0.5 
4 0.3 0.25 0.5 1.25 5.45 0.5 0.5 
4 0.6 025 0.5 1.25 5.45 0.5 0.5 
4 0.7 0.25 0.5 1.25 5.45 0.5 0.5 
8 0.1 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.4 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.5 0.25 0.5 1.25 10.9 0.5 0.5 
8 0.8 0.25 0.5 1.25 10.9 0.5 0.5 

191 
191 
191 
191 
191 
191 
191 
191 
255 
255 
255 
255 
25 5 
255 
255 
25 5 
191 
191 
191 
191 
191 
191 
191 
191 
255 
255 
255 
255 
255 
255 
255 
255 

609 304 0.76 0.210 0.82 1.29 0.73 –4.91 
2,094 1047 0.35 0.018 0.07 4.43 0.33 –5.97 
2,555 1278 0.29 0.012 0.05 5.40 0.29 –0.50 
3,885 1942 0.21 0.005 0.02 8.22 0.22 3.48 

798 399 0.81 0.061 0.48 1.69 0.61 –24.6 
1,146 573 0.49 0.030 0.23 2.42 0.48 –1.92 
2,126 1063 0.35 0.009 0.07 4.49 0.32 –8.93 
2,439 1219 0.26 0.007 0.05 5.16 0.29 11.6 

70.6 282 0.92 0.020 2.23 0.78 1.00 8.93 
101 405 0.79 0.010 1.08 1.12 0.79 0.03 
188 751 0.55 0.003 0.31 2.08 0.53 –2.60 
216 862 0.48 0.002 0.24 2.39 0.49 0.44 

26.9 108 1.14 0.069 15.4 0.30 1.23 7.79 
92.5 370 0.94 0.006 1.30 1.02 0.84 –10.2 

113 452 0.82 0.004 0.87 1.25 0.74 –9.68 
172 687 0.64 0.002 0.38 1.90 0.56 –11.5 
733 366 0.59 0.145 0.57 1.55 0.64 9.86 
366 183 1.07 0.579 2.27 0.77 1.01 –5.98 
328 164 1.15 0.723 2.84 0.69 1.09 –5.81 
259 130 1.30 1.157 4.54 0.55 1.15 –11.5 
366 183 1.21 0.289 2.27 0.77 1.01 –16.9 
299 150 1.27 0.434 3.40 0.63 1.14 –10.4 
212 106 1.31 0.868 6.81 0.45 1.18 –10.3 
196 98 1.34 0.013 7.94 0.41 1.19 –11.6 
32.4 130 1.12 0.096 10.6 0.36 1.20 6.96 
26.4 106 1.14 0.143 15.9 0.29 1.23 7.84 
18.7 75 1.30 0.287 31.8 0.21 1.27 –1.97 
17.3 69 1.30 0,334 37.1 0.19 1.28 –1.49 
32.4 130 1.26 0.048 10.6 0.36 1.20 –4.53 
16.2 65 1.30 0.191 42.4 0.18 1.29 –0.88 
14.5 58 1.30 0.239 53.0 0.16 1.30 0.07 
11.4 46 1.31 0.382 84.8 0.13 1.33 1.76 

of Eq. (1) is the same as the first line when h 
= 0. An even more general form of Eq. (1) is 
obtained by making the substitutions scr = sc1 

and sy = su = c1/q0 to get 

(3) 
and prescribing a and h as a function of U. 
An algorithm for determining s ˆ from inputs S, 
f, v, and c ̂ is given in the Appendix. If S a is 
then substituted for S according to Eq. (2), q0 

becomes an additional input and it is helpful 
to write sf as 

(4) 
to express s ˆ as an apparent stress s ˆ a. 

Working with nondimensional s ˆ instead of 
scr via Eq. (3) also provides a way to inves- 
tigate a linear stress-strain law. In accordance 
with Johnson and Urbanik's (1987) theory, 
implementing the linear stress-strain law puts 
s ˆ into the form s ˆ = CS (from Eq. A-3), which 
leads to 

(5) 
If we then substitute Sa from Eq. (2) again, we 
get 

This interesting solution of buckling in terms 
of C while retaining c1 and q0, as inputs pro- 

(6) 

(6)f sf 

Eq. 



328 WOOD AND FIBER SCIENCE, JULY 2003, V. 35(3) 

FIG. 2. Buckling plate subjected to uniform displace- 
ment along top edge with all edges simply supported and 
restrained from z -direction translation. Actual analysis 
used 12 elements per half-wave. 

duces a sort of hybrid stress-strain theory. Al- 
though the prediction of sf incorporates a lin- 
ear material law, parameters c1 and q0 appear 
in the formula and enable nonlinear stress- 
strain curves to be input. This is analogous to 
a tangent modulus theory where some remote 

FIG. 3. Variation of out-of-plane displacement 
(squares) with average edge stress corresponding to ap- 
plied downward displacement (circles) and determined by 
FEA algorithm in nonlinear buckling analysis of runs 5 
and 10 in Table 1. Note two displacement scales. 

slope along a nonlinear stress-strain curve 
gets treated as the initial modulus in a linear 
theory. 

A summary of the models obtained from 
Eqs. (3) to (6) is given in Table 4. For com- 
parison, Model 1 is simply the McKee formula 
from McKee et al. (1963) rearranged into Eq. 
(5) with constants a and h taken from Urbanik 
(1997). The average error magnitude and the 
correlation coefficient reported (Table 4) are 

TABLE 4. Parameter values of 13 models fit to FEA data. 

U < U b U > U b Ave. 
|error| Error 

Law Model t a1 h1 U ba a2 h2 (%) r 2 ratiob 

McKee 1 0 – – – 0.394 0.254 26.2 0.638 17.1 
Linear Eq. (5) 2 0 – – – 0.551 0.175 15.8 0.700 5.3 

3 0 0.808 0 1 0.808 0.382 16.8 0.707 4.8 
4 0 0.750 0.060 0.621 0.609 0.280 9.7 0.856 2.4 

Hybrid Eq. (6) 5 0.559 – – – 0.555 0.202 14.9 0.754 4.1 
6 0.716 0.832 0 1 0.832 0.447 13.6 0.806 3.3 
7 0.533 0.798 0.049 0.647 0.628 0.325 7.1 0.936 1.0 

Nonlinear Eq. (3) 8 0 – – – 0.636 0.250 15.6 0.699 4.8 
9 0 0.826 0 1 0.826 0.357 16.1 0.747 4.4 

10 0 0.737 0.119 1.000 0.737 0.349 12.3 0.810 3.1 
Nonlinear Eq. (4) 11 0.410 – – – 0.636 0.264 14.8 0.720 4.4 

12 0.760 0.778 0 1 0.778 0.416 13.3 0.851 3.3 
13 0.620 0.809 0.073 0.922 0.766 0.407 9.4 0.883 1.8 

a U b = exp[0.5 ln(a1/a2)/(h1 - h2)]. 
Normalized relative to lowest sum of errors squared determined on logarithmic scale 
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FIG. 4. Variation of stress ratio sf/sy with universal 
slenderness U for data in Tables 1 and 3. Bilinear line is 
fit of best-fitting Model 7 from Table 4. Here and in Fig- 
ures 5 and 6, the data include levels of S (0.1,0.8) and q0 

(1, 8) along with intermediate design points (Int. pts.). 

FIG. 5. Variation of stress ratio sf/scr with ratio scr/ 
sy for data in Tables 1 and 3. Bilinear line is fit of best- 
fitting Model 7 from Table 4. 

izing the separation between elastic and in- 
between the FEA sf values (Tables 1 and 3) elastic data. This is observable in Table 4 by 
and the postbuckling model of sf. Only the sf comparing Models 3 and 4 and Models 9 and 
predictions from postbuckling Model 7 are re- 10. For each case of elastic or elastic-inelastic 
ported in Tables l and 3. model, the average error magnitude was fur- 

Various criteria can be used to compare the ther reduced by substituting Sa for S and de- 
fit of each postbuckling model with FEA pre- termining an optimum t, and corroborates 
dictions. The average error magnitude of with actual experiments (Urbanik 1996b). This 
26.2% for Model 1 (Table 4) was reduced to 
15.8% for Model 2 by optimizing the a and h 
values in Eq. (5) to match the FEA predic- 
tions. The differences in a and h between 
Model 1 and Model 2 are a measure of how 
our derived physical properties and the FEA 
characterization compare to the real box pan- 
els in actual experiments (McKee et al. 1963). 

The average error magnitude was reduced 
as expected per our parametric design with a 
combined elastic-inelastic postbuckling mod- 
el. This is observable in Table 4 by comparing 
Models 2 and 3, Models 5 and 6, Models 8 
and 9, and Models 11 and 12. Elastic failure 
occurs among the data when U > U b, and in- 
elastic failures occur when U < U b, with U b 

considered a breakpoint among the U data. 
The case when U b = 1 and inelastic h = 0 is 
the same as Eq. (1). 

The elastic-inelastic models were made 
more accurate by optimizing U b and general- 

is observable in Table 4 by comparing Models 
5, 6, and 7 with Models 2, 3, and 4, respec- 
tively, and Models 11, 12, and 13 with Models 
8, 9, and 10, respectively. 

In the analysis of actual experiments (Ur- 
banik 1996b), nonlinear material theory fit 
data better than did linear material theory, but 
with the elastic-inelastic model restricted to 
the form of Eq. (1). Our results of Model 9 
compared with Model 3 (Table 4) are consis- 
tent. However, for our FEA data, the hybrid 
material law, not previously considered, ap- 
pears best. This can be observed in Table 4 by 
comparing Models 5 and 7 with Models 11 
and 13, respectively. Note that for the hybrid 
law to be used, the material must still be char- 
acterized as nonlinear and Sa must be substi- 
tuted for S. 

Figures 4, 5, and 6 are plots of the best- 
fitting Model 7 (Table 4) with an average error 
magnitude of 7.1%. Figure 4 is a representa- 
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FIG. 6. Comparison of of values in Tables 1 and 3 with 
FEA determinations. 

tion of the generated data as utilized in Bulson 
(1969) and Urbanik (1996b). Plates represent- 
ed by points with U > U b = 0.647 fail by 
elastic buckling. Plates with U < U b fail by 
inelastic buckling. As mentioned previously, 
few experiments have addressed the important 
variables in inelastic failure. The transition be- 
tween elastic and inelastic buckling around U b 

(Fig. 4) is even less understood. 
A rearrangement of Eq. (6) gives rise to the 

apparent stiffness given by 

FIG. 7. Variation of apparent stiffness S a with S. Points 
are determinations of S a from Eq. (7) at two levels of f. 
Lines are predictions according to Eq. (2). 

FIG. 8. Solution of ŝ from specified S, f, v, and c ˆ and 
a linear or a nonlinear material law. Letter-number labels 
(A-6, A-7, etc.) refer to equation numbers in Table 5. 

(7) 

Figure 7 shows how predictions of Sa given by 
Eq. (2) compare with the exact determinations 
by Eq. (7), with a and h inputs from Model 
7, and provides a good validation of why such 
a correction for an apparent stiffness succeed- 
ed with actual experiments (Urbanik 1996b). 

CONCLUSIONS 

The postbuckling of plates with nonlinear 
material and subjected to axial compression 
was analyzed with a finite element model. Var- 
ious models were fit to the finite element pre- 
dictions to determine a simplified form of a 
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TABLE 5. Equations referred to by letter-number labels in Fig. 8. 

Eq. Form Reference 

more general strength formula applicable to 
the panels of corrugated containers. An em- 
pirical correction for plate stiffness as a func- 
tion of an effective plate aspect ratio input to 
an elastic-inelastic postbuckling model with 
an empirically optimized division between 
elastic and inelastic failures gave the best re- 
sults. The postbuckling model corroborates 
experimental data, and results extend the 
strength predictability of panels of boxes with 
geometry beyond the range available from ac- 
tual experiments. 

NOMENCLATURE 
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APPENDIX 

Nonlinear Stress-Strain Law 

Previous research (Urbanik 1996b) considered the 
buckling strain of a finite length plate with fixed x. An 
algorithm for finding the root of Eq. (3.2') from Urbanik 

REFERENCES 

and based on fixed point iteration was proposed. For the 
current study, an algorithm for more general values x and 
based on Newton’s method is given by 

Linear Stress-Strain Law 

In accordance with linear material analysis (Johnson 
and Urbanik 1987), the linear stress-strain law s = c2 e ̂   or 
s ˆ = e ̂, agrees with Eq. (0.1) of Johnson and Urbanik 
(1987) for small strains. For a small strain 

(1992) 
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so that Eq. (2.13') of Urbanik (1992), the linear buckling 
stress is 

where 
(A-3) 

For simple support b ˆ = p/2 and the solution of Eq. (3.2') 
of Urbanik (1992) for a value of x that minimizes e ˆ when 
plate length is infinite gives x = p/2. Hence, in this case 

(A-5) 

Please note that Eqs. (3.5') and (5.3.1') were given in- 
correctly in Urbanik (1992). With finite values of plate 
length, values of C1 and C2 corresponding to m1 and m2 

need to be examined. 

Algorithm 
An algorithm for determining the nondimensional buck- 

ling stress of a simply supported plate with compression 
in the direction of its length and having either a linear or 
a nonlinear material characterization is given in Fig. 8. 
Referenced equations are given in Table 5. After comput- 
ing s ˆ, the critical stress is s cr = c1 s ˆ. 

(A-4) 




