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Abstract

A Note on The Distribution of Differences
Between Consecutive Prime Numbers

Lester D. Taylor
University of Arizona

The results reported in this note refer to the distribution of zn =  pn - pn-1 for the first three
million prime numbers (p).  The analyses of the note are almost purely statistical.  The difference
between consecutive prime numbers is treated as a random variable, and empirical frequency
distributions are examined for sets of 5000 consecutive primes through the first three million.  The
results reported are based upon  frequency distributions (59 in total) that are calculated at intervals
of 50,000 primes for π(n) between 95,000 and 3,000,000.  The quantities that are investigated
include the means and standard deviations of the 59 distributions, together with coefficients that are
obtained from exponential functions fitted by least-squares to the “poles” of the underlying density
functions.  The resulting vector of 59 estimated coefficients is then in turn related (via a least-squares
regression equation) to the logarithm of pn.

  Key results of the analyses are as follows:

(1). That the mean of zn increases with the logarithm of pn is clearly
confirmed.

(2). The support for zn increases very slowly through the first three
million primes, as the maximum zn in the “samples” of 5000
consecutive primes that have been analyzed is never found to be
larger than 178.

(3). “Poles” in the distribution of zn are present at values of zn divisible by
six.  These “poles” have an analytical basis, and appear to decline
exponentially.



1 Files for the first 5.8 million prime numbers have been obtained from
http://www.geocities.com/primes_r_us/small/index.html.  Statistical and graphical analyses have
been done in SAS and Excel.

A Note on The Distribution of Differences
Between Consecutive Prime Numbers

Lester D. Taylor
University of Arizona

I.  Introduction

The results reported in this note refer to the distribution of zn =  pn - pn-1 for the first three
million prime numbers (p).  Key results are as follows:

(1). That the mean of zn increases with the logarithm of pn is clearly
confirmed.

(2). The support for zn increases very slowly through the first three
million primes, as the maximum zn in the “samples” of 5000
consecutive primes that have been analyzed is never found to be
larger than 178.

(3). “Poles” in the distribution of zn are present at values of zn divisible by
six.  These “poles” have an analytical basis, and appear to decline
exponentially.

The analyses of the note are almost purely statistical.1  The difference between consecutive
prime numbers is treated as a random variable, and empirical frequency distributions are examined
for sets of 5000 consecutive primes through the first three million.  The results reported are based
upon  frequency distributions (59 in total) that are calculated at intervals of 50,000 primes for π(n)
between 95,000 and 3,000,000.  The quantities that are investigated include the means and standard
deviations of the 59 distributions, together with coefficients that are obtained from exponential
functions fitted by least-squares to the “poles” of the underlying density functions.  The resulting
vector of 59 estimated coefficients is then in turn related (via a least-squares regression equation)
to the logarithm of pn.

The density function in Figure 1, for π(n) between 995,000 and 1,000,000, is typical of the
density functions for all the 59 samples that are analyzed.  The “poles” (noted above) at differences
divisible by six are clearly evident, as is also suggestion of their exponential decline.  The  basic
stability of the distributions is brought home in Figure 2, which superimposes the density functions
for  π(n) between 95 and 100k, 1950 and 1955k, and 2995 and 3000k.  The poles are again evident,
as is their suggested exponential declines.  Note, however, that the distributions become flatter as
π(n) becomes larger; this is reflection, of course, of the fact (to be shown empirically below) that the
mean of zn increases with pn.
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Figure 1

Density Function for zn
995,000 < π(n) � 1,000,000

             
             
             

 

         Figure 2

Density Functions for zn
95,000 < π(n) � 100,000

1,550,000 < π(n) � 1,555,000
2,995,000 < π(n) � 3,000,000
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2 See Ivic (1985, p. 299).

3 See Havil (2000, p. 31).

II.  An Important Analytical Result

The “music of the primes” has beguiled mathematicians since ancient times, indeed, so much
so that proper proof of the Prime Number Theorem (in the form of the Riemann Hypothesis)
continues to be viewed, as has been the case for more than 100 years, as the single most important
unsolved problem in mathematics.  However, while the literature related to the behavior of π(n) is
large, this is not the case for the distribution of the difference between consecutive primes.  In fact,
the only analytical results concerning zn that I have been to find in the literature are (1) that the mean
of zn increases according to the logarithm of pn and (2) that zn tends to infinity as O(pn

1/2lnpn).2

“Poles” on the distribution of zn at values of  zn divisible by 6 appears not to have been noticed.  This
result will now be shown to have an analytical basis.

To begin with, we note that, excepting 2, all primes are necessarily odd, which in turn means
that zn must necessarily be even.  However, since  numbers ending in 5 are obviously divisible by
5, the only prime number that can end in 5 is 5 itself, which is to say that prime numbers (after 5)
cannot end in 5.  The key to the result turns on the fact that primes must necessarily be of the form
6n ± 1 (for n = 0, 1, 2, ...).3  From this, it follows that values of pn of the form 6n avoid numbers
ending in 5 with greater frequency than differences of the form jn, for j = 1, ..., 5.  The argument
underlying this conclusion is as follows:

(1). The ways to get a zn equal to 2, and avoid a number ending in 5, are
for pn to be equal to 6n + 1 and for pn-1 to be equal to 6n - 1 for 6n
ending in 0, 2, or 8.

(2). The ways to get a zn equal to 4, and avoid a number ending in 5, are
for pn to be equal to 6(n + 1) - 1 and pn-1 to be equal to 6n + 1 for 6n
ending in 2,6, or 8.

(3). The ways to get a zn equal to 6, and avoid a number ending in 5, are
for pn to be equal to 6(n + 1) - 1 and for pn-1 to be equal to 6n  - 1 for
6n ending in 2, 4, or 8, or alternatively for pn to be equal to 6(n + 1)
+ 1 and pn-1 to be equal to 6n + 1 for 6n ending in 0, 2, or 6.

(4). Finally, the ways to get a zn equal to 8, and avoid a number ending in
5, are for pn to be equal to 6(n + 1) + 1 and pn-1 to be equal to 6n - 1
for 6n ending in 0, 2, or 4.

If values of 6n ending in 0, 2, 4, 6, and 8 are assumed to be equally likely, then from (1) - (4)
we see that (in relative terms) there are three “chances” each of avoiding numbers ending in 5 for
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4 Estimated standard errors for the regression coefficients are given in parentheses.

5 Hypotheses (using t-tests) that the intercept and slope coefficient are individually equal
to 0 and 1, respectively, are clearly not rejected.  However, this is not the case for the composite
hypothesis (using an F-test) that the parameters are jointly equally to these values.  The
calculated F-statistic under this hypothesis is 5.397, which corresponds to a p-value ( for 2 and
57 degrees of freedom) of about 0.995.

6 Since the “observations” being analyzed have a meaningful natural ordering with n, the
Durbin-Watson statistic (which is commonly used in testing for serial dependence in time-series
data) can be employed as an indicator of a “mis-specified” functional form.  The sample Durbin-
Watson coefficient of 1.84 provides no evidence that this is the case.   

zn divisible by 2, 4, or 8, but six “chances” for zn divisible by 6.  This establishes the result for the
first “pole” on the density function for zn (i.e, for zn equal to 2, 4, 6, or 8).

For the second “pole”, that is, for zn equal to 10, 12, or 14, reasoning paralleling (1) - (4) will
show that there will again be three “chances” each for a zn equal to 10 or 14 avoiding a number
ending in 5, but once again six “chances” that a zn of 12 will do so.  The same can be shown to hold
for the third “pole” (i.e., a zn of 18 vis-a-vis zn’s of 16 or 20), and so on and so forth for subsequent
“poles”.

III.  Statistical Results

Table 1 presents means, variances, and standard deviations of zn for the 59 “samples” of 5000
primes that have been analyzed in the study.  The (natural) logarithm of the mean pn for each sample
is included as well.  Although the relationships are not monotonic, the means, variances, and
standard deviations of zn are all seen to be upward-trending functions of n.  However, the thing that
most stands out in this table is a virtual equality of the mean zn’s of the samples with the natural
logarithm of the corresponding mean pn’s.

The strength of the relationship between zn and ln pn is evidenced in the following least-
squares regression of the mean of zn on ln pn:4

 (1)          mean zn      =         0.0984     +     0.9939 ln pn           R2 = 0.9798.
                                                      (0.3175)          (0.0181)

The intercept in this equation is seen (statistically) to be close to 0, while the coefficient on ln pn is
seen to be even closer to 1.5  The R2 of 0.98 obviously attests to a tight fit, and the residuals from the
equation, as depicted in Figure 3, appear appropriately random.6   That the mean of zn increases in
line with the logarithm of pn as n becomes large, in short, seems a solid conclusion.
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Table 1

Means, Variances, and Standard Deviations of zn
For 59 Samples of 5000 Prime Numbers

Primes (k)       LnP   Mean zn     Var. zn    S. D. zn

      95-100 14.05024 14.0880 136.0307 11.6632
    145-150 14.49834 14.4053 133.3435 11.5474
    195-200 14.81340 14.8320 150.2110 12.2561
    245-250 15.05650 15.2000 159.0578 12.6118
    295-300 15.25485 15.1882 149.6730 12.2341
    345-350 15.42185 15.3932 164.0076 12.8065
    395-400 15.56656 15.6996 166.7867 12.9146
    450-455 15.70570 15.7107 170.8636 13.0715
    500-505 15.81816 15.7780 177.6985 13.3304
    550-555 15.92000 15.8200 173.1624 13.1591
    600-605 16.01276 16.1056 174.6522 13.2156
    650-655 16.09827 16.1768 183.7479 13.5554
    700-705 16.17746 16.1460 177.2122 13.3121
    750-755 16.25107 16.1668 176.9006 13.3004
    800-805 16.31986 16.2640 184.3686 13.5782
    850-855 16.38455 16.6124 185.5610 13.6221
    900-905 16.44559 16.2372 178.4534 13.3586
    950-955 16.50329 16.3569 182.4793 13.5085
1000-1005 16.55806 16.2565 186.2879 13.6487
1050-1055 16.61011 16.8100 195.8434 13.9944
1100-1005 16.65967 16.8888 203.5194 14.2660
1150-1155 16.70695 16.7684 204.7605 14.3095
1200-1205 16.75238 16.8888 203.5194 14.2660
1250-1255 16.79597 16.7554 190.2803 13.7942
1300-1305 16.83778 16.7235 196.9492 14.0339
1350-1355 16.87799 16.8596 201.2554 14.1865
1400-1405 16.91676 17.1356 203.5197 14.2660
1450-1455 16.95412 16.9776 217.7899 14.7577
1500-1505 16.99028 16.9220 197.6167 14.0576
1550-1555 17.02516 17.0244 201.1063 14.1812
1600-1605 17.05908 17.0918 203.7161 14.2729
1650-1655 17.09182 17.0562 204.2321 14.2910
1700-1705 17.12362 17.1529 203.1243 14.2522
1750-1755 17.15449 17.0879 201.8768 14.2083
1800-1805 17.18448 17.2202 211.5615 14.5452
1850-1855 17.21367 16.8780 202.7705 14.2397
1900-1905 17.24195 17.2479 201.7115 14.2025
1950-1955 17.26968 17.1495 216.8600 14.7262
1995-2000 17.29397 17.1793 196.2782 14.0099
2045-2050 17.32030 17.0874 201.2404 14.1859
2095-2100 17.34603 17.4334 216.3384 14.7084
2145-2150 17.37122 17.5112 226.4886 15.0495
2195-2200 17.39575 17.5652 224.1084 14.9703
2245-2250 17.41973 17.3696 214.5455 14.6474
2295-2300 17.44316 17.3572 213.1882 14.6010
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2345-2350 17.46607 17.4636 206.9737 14.3866
2395-2400 17.48845 17.4664 225.2959 15.0099
2445-2450 17.51044 17.4228 216.2821 14.7065
2495-2500 17.53196 17.3880 208.2722 14.4316
2545-2550 17.55313 17.7120 228.4204 15.1136
2595-2600 17.57381 17.8068 233.8729 15.2929
2645-2650 17.59415 17.6072 221.2797 14.8755
2695-2700 17.61406 17.6176 227.4317 15.0808
2745-2750 17.63354 17.6964 236.3292 15.3730
2795-2800 17.65275 17.6968 232.7254 15.2553
2845-2850 17.67159 17.5440 213.5602 14.6137
2895-2900 17.69017 17.7456 217.2307 14.7387
2945-2950 17.70840 17.6896 221.8107 14.8933
2995-3000 17.72624 17.6396 218.0727 14.7673

Figure 3

Scatter Diagram of Residuals from Equation (1)

Let us
now turn our attention to the apparent exponential decline in the “poles” on the density functions of
zn at values of zn that are divisible by 6.    However, lest it be thought that such a decline (as with the
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7 Only the first 8 poles are analyzed because probability masses on zn greater than 48 are
less than 0.01.  While it seems reasonable to suppose that the poles at values zn divisible by 6
will eventually stabilize, π(n) of many millions (or even billions) may be required.
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existence of the poles themselves) might be analytical, the  graph in Figure 4 for π(n) between
650,000 and 655,000 shows that this is not the case, for the pole for  zn equal to 30 on this density
function is higher even than the pole corresponding to zn equal to 24.  Such “anomalies” are not
uncommon, especially in the poles after the fourth, (that is for zn’s of 24).  Accordingly, possible
exponential decline in the poles can only be seen as a statistical phenomenon.  

Figure 4

Density Function for zn
650,000 < π(n) � 655,000

In investigating statistically  whether the decline may in fact be exponential, functions of the form,

(2) lnP(z) =    α   +    βz ,

have been fitted by least-squares to the first 8 poles (i.e., for z = 6, 12, 18, 24, 30, 36, 42, 48) for each
of the 59 probability density functions that have been estimated.7  The resulting estimates of β,
associated t-statistics, and R2's for the 59 equations are tabulated in Table 2.
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Table 2

Estimated Exponential Functions 

Primes (k)         β    t-ratio        R2

      95-100  -0.08505   -32.28 0.9943   
    150-155  -0.08077 -19.24 0.9840   
    200-205  -0.07986 -19.03 0.9837   
    250-255  -0.07559 -30.70 0.9937   
    300-305  -0.07595 -15.89 0.9768   
    350-355  -0.07179 -20.24 0.9856   
    395-400  -0.07251 -12.51 0.9631   
    450-455  -0.07003 -13.76 0.9693   
    500-505  -0.06967 -18.20 0.9822   
    550-555  -0.07179 -15.36 0.9752   
    600-605  -0.07175 -13.81 0.9695   
    650-655  -0.07235 -13.07 0.9661   
    700-705  -0.07075 -16.42 0.9782   
    750-755  -0.06820 -21.77 0.9854   
    800-805  -0.07006 -20.52 0.9859   
    850-855  -0.06758 -15.16 0.9746   
    900-905  -0.06712 -20.00 0.9852   
    950-955  -0.07121 -19.64 0.9847   
1000-1005  -0.06561 -17.73 0.9813   
1050-1055  -0.06449 -14.69 0.9729   
1100-1005  -0.06533 -15.24 0.9748   
1150-1155  -0.06533 -15.24 0.9706   
1200-1205  -0.06784 -12.05 0.9603   
1250-1255  -0.06741 -28.06 0.9924   
1300-1305  -0.06457 -14.20 0.9711   
1350-1355  -0.06330 -45.18 0.9971   
1400-1405  -0.06520 -16.74 0.9790   
1450-1455  -0.06818 -16.51 0.9785   
1500-1505  -0.06439 -16.97 0.9762   
1550-1555  -0.06609 -16.88 0.9794   
1600-1605  -0.06432 -20.49 0.9859   
1650-1655  -0.06287 -16.96 0.9796   
1700-1705  -0.06954 -15.40 0.9753   
1750-1755  -0.06609 -16.41 0.9782   
1800-1805  -0.06706 -29.66 0.9932   
1850-1855  -0.06722 -20.70 0.9862   
1900-1905  -0.06440 -16.95 0.9795   
1950-1955  -0.06549 -16.17 0.9776   
1995-2000  -0.06259 -14.54 0.9724   
2045-2050  -0.06680 -15.96 0.9770   
2095-2100  -0.06059 -24.21 0.9899   
2145-2150  -0.06296 -25.81 0.9911   
2195-2200  -0.06494 -12.83 0.9649   
2245-2250  -0.06194 -16.92 0.9795   
2295-2300  -0.06356 -20.11 0.9829   
2345-2350  -0.06145 -13.68 0.9689   
2395-2400  -0.06588 -13.69 0.9690   
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Primes (k)         β    t-ratio        R2

8 This time, the quantities in parentheses are t-ratios.

2445-2450  -0.06782 -14.47 0.9721   
2495-2500  -0.06174 -17.98 0.9818   
2545-2550  -0.06300 -16.11 0.9774   
2595-2600  -0.06210 -20.63 0.9861   
2645-2650  -0.06209 -21.78 0.9875   
2695-2700  -0.06086 -19.72 0.9848   
2745-2750  -0.06559 -20.14 0.9854   
2795-2800  -0.06076 -20.79 0.9863   
2845-2850  -0.06036 -23.64 0.9894   
2895-2900  -0.05967 -17.46 0.9807   
2945-2950  -0.06541 -16.32 0.9780   
2995-3000  -0.06154 -16.36 0.9781   

Despite the fewness of degrees of freedom, the equations seem to fit the “observations” well.
R2's, typically of the order of 0.98, are never less than 0.96, while t-ratios for the estimated
exponential parameter (β) are generally of the order of -16 to -18.  The estimated exponential
parameters themselves decline (in absolute value), more or less continually with π(n), from a value
of -0.0851 for π(n) between 95,000 and 100,000 to -0.0615 for π(n) between 2,995,000 and
3,000,000. 

In view of the known close relationships between π(n) and the mean of zn and the logarithm
of pn, it is natural to enquire into whether there might also be a relationship between the estimated
exponential parameters in Table 2 and ln pn.  A plot of the two quantities is given in Figure 5.  Two
results are visible in the plot.  The first is a “heteroscedasticity” in the estimated exponential
parameters, in that the  “variance” of the estimated parameters (viewed as a random variable) quite
clearly increases with the value of  ln pn, while the second result is a subtle (yet unmistakable) hint
that the relationship between the exponential parameters and ln pn is non-linear.  In view of the latter,
a plausible next step (but still keeping with logarithms) is to seek out the  relationship between the
estimated exponential parameters and the logarithm of the logarithm of pn.  The plot of these
quantities is given in Figure 6.  Although “heteroscedasticity” continues to be in evidence, a much
more linear relationship is now apparent.

We turn now to a least-squares regression analysis of the relationships in Figures 5 and 6, in
which the estimated exponential parameters from column 2 of Table 2 are regressed on ln pn and
ln(ln pn).  The resulting equations are as follows:8

(3) y     =     -0.1588     +     0.00548  ln pn R2 = 0.8406
                                                  (-29.93)             (17.34)

(4) y     =     - 0.3180    +     0.0891 ln(ln pn) R2 = 0.8472 ,
                                                   (-22.51)          (17.78)
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Figure 5

Relationship Between Estimated Exponential Parameters in Table 2
And The Logarithm of Corresponding Mean pn

Figure 6

Relationship Between Estimated Exponential Parameters in Table 2
And The Logarithm of The Logarithm of Corresponding Mean pn
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9 The use of 1/ln pn and 1/ln(ln pn) as weights follows straightforwardly from  the
“scatter” in the estimated exponential parameters pictured in Figures 5 and 6.  On the other hand,
since the exponential parameters are themselves measured with error, the square root of the
absolute value of their associated t-ratios seems an appropriate additional weight as well.  

where y denotes the vector of values for the estimated exponential parameters from column 2 of
Table 2.  As is expected, the coefficients on the logarithmic functions of pn are seen to be positive,
with corresponding p-values that are all less than 0.0001.

In view of the “heteroscedasticity” displayed in Figures 5 and 6, statistical efficiency can be
improved if the equations are estimated by “weighted” (i.e., generalized) least squares, rather than
ordinary least squares. Weighted least-squares equations have  been accordingly been estimated
using as weights the square root of the products of 1/ln pn and 1/ln(ln pn) with the absolute value of
the t-ratios of the estimated exponential parameters as weights.9  The estimated equations are as
follows:

(5) y     =     -0.1607     +     0.00560 ln pn                    R2 = 0.8581
                                                 (-31.83)             (18.57)

(6) y     =     -0.3217     +     0.0904 ln(ln pn)         R2 = 0.8613 .
                                                  (-23.76)           (18.81)

Although the estimated coefficients in these equations are virtually the same as the ones in equations
(3) and (4), there is a noticeable improvement in fit and estimation efficiency, particularly in the
model with ln(ln pn) as the “independent” variable.

Alll of the results to this point has been with respect to “samples” drawn from the first 3
million prime numbers.  In closing this section, I would like to finish with the density functions in
Figure 7 for π(n) between 5000 and 10,000 and for π(n) between 5,795,000 and 5,800,000.  The
graphs, I think, pretty much speak for themselves.
 

IV.  Conclusions

Upon seeing the density functions depicted in Figures 1 and 2, the reaction of an
econometrician colleague was, “This is the crazy!”  This was my reaction at first exposure as well,
for it was not until after I saw the poles in f(zn) at values of zn divisible by 6 that I came to understand
why such values are privileged -- namely, because they avoid, with greater probability, odd integers
ending in 5.  This combined statistical/analytical result seems quite clearly to be the most important
finding of the investigation.

A second consequential finding, it seems to me, is the rather strong statistical evidence [Table
2, equation (6)] that the poles decline exponentially, but with a parameter that increases (more or
less) with the log-log of pn.  If an exponential decline in poles should turn out to be an asymptotic
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10 However, in view of the “heteroscedasticity” evidenced in Figures 5 and 6, it is best to
be cautious at this point regarding any conclusion that this is in fact the case. “Well-defined” in
this context is meant in the sense that the exponential parameter can [from equation (6)] be
estimated as -0.3217 + 0.0904 ln(ln pn).
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Figure 7

Density Functions for zn
5000 < π(n) � 10000

5,795,000 < π(n) � 5,800,000

result, then one ought to be able to conclude that the “true” distribution of zn, whatever it might be,
is bounded by a well-defined exponential distribution.10 A third finding -- although it is more a
confirmation -- is of the critically close relationships between prime numbers and the logarithmic
function.  While such relationships concerning pn and π(n) have been at the basis of analytical
number theory since Gauss, the present investigation confirms (on a statistical basis) the relationship
between the mean differences between consecutive primes and ln pn, but also proffers, perhaps for
the first time, the suggestion that there may be an equally close relationship between the distribution
of these differences and ln pn.

A final result of interest, and one that has not previous been noted, refers to the proportion
of the total probability of zn that is accounted for by zn’s that are divisible by 6.  From the discussion
in Section II, with prime numbers having to be of the form 6n ± 1, there 15 possible ways of getting
a difference between odd integers that avoid an integer ending in 5, and of these 6 are associated with
a difference of 6.  In view of this, and under the assumption that all 15 possibilities are equally likely,
then the proportion of the probability of the difference between consecutive primes being divisible
by 6 should be 0.4.  For π(n) between 2,995,000 and 3,000,000, the empirical probability (for the
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first 8 poles) is 0.448, while for π(n) between 5795,000 and 5,800,000, the corresponding value is
0.418, suggesting the asymptotic value may indeed be 0.4.
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