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Summary

In empirical settings it is sometimes necessary to estimate a set of densities which are thought to be of
similar structure. In a parametric framework, similarity may be imposed by assuming the densities belong
to the same parametric family. A class of nonparametric methods, inspired by the work of Hjort and Glad
(1995), is developed that offers greater efficiency if the set of densities is similar while seemingly not losing
any if the set of densities are dissimilar. Both theoretical properties and finite sample performance are found
to be promising. The developed estimator is relatively easy to implement, does not require knowledge of the
form or extent of any possible similarities, and may be combined with semiparametric and bias reduction
methods.
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Department of Agricultural and Resource Economics, University of Arizona, PO Box 210023, Tucson, AZ 85721, phone 1-520-
621-6265, fax 1-520-621-6250, e-mail aker@ag.arizona.edu.



1. Introduction

The usual kernel estimate of a single density function can be represented as a convolution of the sample

distribution function with the chosen kernel and thus

f̂(x) =
∫

Kh(x− u)dFn(u) (1)

where h is the bandwidth or smoothing parameter, Kh(u) = 1/hK(u/h), K is the kernel function, and

Fn(u) is the sample distribution function. Throughout, K is assumed to be a square integrable symmetric

probability density function with a finite second moment and compact support. Also, we denote µ2(K) =
∫

u2K(u)du and R(K) =
∫

K(u)2du. Letting f be the unknown density of interest, standard properties for

second order kernels are

Ef̂(x)− f(x) =
∫

K(u)[f(x− hu)− f(x)]du = 1/2h2µ2(K)f ′′(x) + O(h4),

V ar(f̂(x)) = (nh)−1f(x)R(K) + o((nh)−1),
(2)

and thus
MSE(f̂(x)) = (nh)−1f(x)R(K) + 1/4h4(µ2(K))2(f ′′(x))2 + o((nh)−1 + h4),

MISE(f̂) = (nh)−1R(K) + 1/4h4(µ2(K))2R(f ′′(x)) + o((nh)−1 + h4).
(3)

There exist many empirical situations which require density estimates for multiple units which, to

some unknown extent, are similar in structure. For example, suppose Jones et al.(1995) required es-

timates of income densities for each country in Great Britain rather than a single estimate for Great

Britain. This manuscript considers such an alternative data environment, one where there exist realiza-

tions {X11, ..., X1n1 , ..., XQ1, ..., XQnQ} from Q densities f1, ..., fQ which may possibly be similar. Our main

objective is to design a nonparametric estimator that has superior performance, relative to the standard ker-

nel estimator applied separately to the individual samples, when the true densities are identical or similar,

while not losing much if they are dissimilar. In addition, we would prefer not to require knowledge of the

extent or form of similarity as this is rarely known in empirical applications.

If the densities were known to be identical, the logical approach would be to pool the Q samples and

estimate a single density. However, if the densities are not identical, this estimator is inconsistent. The idea

proposed here is to combine a kernel estimate based on the pooled data with a kernel estimate based on the

individual data in much the same fashion as a parametric estimate is combined with a nonparametric estimate

in semiparametric estimation. These combined nonparametric and parametric estimators are designed with

the same goal in mind: to offer superior performance if the underlying parametric assumption is correct

while not losing much if it is incorrect. Hjort and Glad (1995) introduced an estimator which begins with

a parametric estimate and then estimates a nonparametric correction in attempts to reduce bias. If the

parametric start is sufficiently close to the true density, the correction factor function will be less rough,

and thus estimated nonparametrically with less bias. This estimator was shown to have promise in finite
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samples as well as nice asymptotic properties (O(n−1) if the parametric assumption is correct and O(n−4/5)

if it is not). As such, their estimator represents an ideal starting point to develop a combined estimator in

our expanded data environment.

We start with a nonparametric estimate based on the pooled data, denote ĝ(x), and then multiply a

nonparametric estimate of the individual correction function, ri(x) = fi(x)/ĝ(x). The motivation is that

if the densities are identical or similar, the pooled estimate represents a reasonable start from which to

estimate a correction factor function for each individual density. The correction factor function is estimated

by r̂i(x) =
∫

Kh(x− u)/ĝ(u)dF i
ni

(u), thus leading to the proposed estimator

f̃i(x) = ĝ(x)r̂i(x) =
∫

Kh(x− u)
ĝ(x)
ĝ(u)

dF i
ni

(u) (4)

where F i
ni

(u) is the sample distribution function corresponding to density fi.

The motivation behind the proposed estimator follows from Hjort and Glad (1995): reduce the global

curvature of the underlying function being estimated thereby reducing bias. The correction factor function

will have less global curvature if the start is sufficiently close to the unknown density. Unlike the combined

parametric and nonparametric estimator, our start is nonparametric which begs the question: where do

any possible efficiency gains come from? In contrast to Hjort and Glad’s (1995) estimator, our approach

makes use of extraneous data in the estimation of the initial start density. As a result, the total curvature

that is being estimated with the individual sample may be reduced, yielding a lower bias. Interestingly, the

proposed estimator resembles the higher order bias estimator of Jones et al. (1995)

f̄(x) = f̂(x)r̂(x) =
1
h

∫
K

(
x− u

h

)
f̂(x)

f̂(Xi)
dFn(u), (5)

where f̂(x) is the nonparametric kernel pilot estimate. The estimator proposed here is different in that the

pooled estimate, ĝ(x), replaces the pilot estimate. Note that the Jones et al. (1995) estimator, the Hjort

and Glad (1995) estimator, and the proposed estimator reduce to the standard kernel estimate when the

pilot or start is the uniform density over the support.

Simulations indicate the proposed estimator performs better than the standard kernel estimator even if

the densities are quite dissimilar. Therefore, the pooled estimate, ĝ(x), need not provide a close approxima-

tion to the individual densities. This is a testament to Hjort and Glad (1995)’s idea that the standard kernel

estimate, which corresponds to a start with the uniform distribution over the support, is a conservative start

for most densities and can be improved upon.

2.0 Nonparametric Estimation from a Nonparametric Start

Let ĝ(x) be the nonparametric estimate based on the pooled sample data. That is,

ĝ(x) =
∫

Khp(x− u)dFN (u), (6)
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with properties

Eĝ(x)− g(x) = 1/2h2
pµ2(K)g′′(x) + O(h4

p), and

V ar(ĝ(x)) = (Nhp)−1g(x)R(K) + o((Nhp)−1),
(7)

where FN (u) is the sample distribution function based on all sample data and hp is the smoothing parameter.

Recall, the proposed estimator is

f̃i(x) = ĝ(x)r̂i(x) =
∫

Kh(x− u) ĝ(x)
ĝ(u)dF i

ni
(u),

= n−1
i

∑ni

j=1 Kh(x−Xij)
ĝ(x)

ĝ(Xij)
.

(8)

For notational simplicity we drop subscript i hereafter. Using a second-order Taylor expansion yields

ĝ(x)
ĝ(Xj)

.= g(x)
g(Xj)

+ ĝ(x)−g(x)
g(Xj)

− g(x)(ĝ(Xj)−g(Xj))
g(Xj)2

−
2(ĝ(x)−g(x))(ĝ(Xj)−g(Xj))

g(Xj)2
− 2g(x)(ĝ(Xj)−g(Xj))

2

g(Xj)3

(9)

and thus
f̃(x) .= 1/n

∑n
j=1 Kh(x−Xj)

g(x)
g(Xj)

+ Bn + Cn

= f̌ + Bn + Cn

(10)

where f̌ is the nonparametric estimate from the fixed start, g(x),

Bn = 1/n

n∑

j=1

Kh(x−Xj)
(

ĝ(x)− g(x)
g(Xj)

− g(x)(ĝ(Xj)− g(Xj))
g(Xj)2

)
, (11)

and

Cn = 1/n

n∑

j=1

Kh(x−Xj)
(
−2(ĝ(x)− g(x))(ĝ(Xj)− g(Xj))

g(Xj)2
− 2g(x)(ĝ(Xj)− g(Xj))2

g(Xj)3

)
. (12)

For g to exist we require that ni/
∑

ni → ρi∀i = 1, ..., Q. If f = fi = fj ∀ i, j, then g = f . Conversely, if

fi 6= fj for some i, j then g represents a mixture density generated by f1, ..., fQ. For notational simplicity,

we assume that the sample sizes are equal.

Proposition 1. Let ĝ(x) be a nonparametric estimate based on the pooled sample (N =
∑Q

i=1 ni) with

smoothing parameter hp → 0 and Nhp →∞. Then as nh →∞ and h → 0

Ef̃(x) = f(x) + 1/2h2µ2

(
f
g

)′′
(x) + o(h2),

V arf̃(x) = (nh)−1R(k)f(x)+

2(Nhp)−1
[∫ (

K2(u)−K(u)(K ∗K)(u)
)
du

]
f(y)

+(Nhp)−1
[∫

(K(u)−K ∗K(u))2 du
]
f(y) + o((nh)−1).

(13)

Note that the leading terms are identical to both the nonparametric estimate from a fixed start as well as the

Hjort and Glad (1995) estimator. Also note, hp, the smoothing parameter from the start estimate, does not

enter the leading terms in either the bias or variance. In fact, the additional terms to the bias are O(Nhp)−1.
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Recall, f̃(x) = f̌(x)+Bn+Cn. The expectation of the first part, f̌(x) is f(x)+1/2g(x)h2µ2

(
f
g

)′′
(x)+O(h4).

Using the fact that E(ĥ(Xj)) = E(E(ĥ(Xj)|Xj)), the expectation of the first term of Bn can be shown to

be 1/2h2
pµ2g

′′(x) f(x)
g(x) , ignoring terms of O(h4

p). Similarly the expectation of the second term of Bn is also

1/2h2
pµ2g

′′(x) f(x)
g(x) again ignoring terms of O(h4

p). Therefore, E(Bn) = 0. Finding the expectation of Cn is

somewhat more difficult but both parts of Cn are O((Nhp)−1). The first part is (Nhp)−1g(x)−2
∫

K(u)K ∗
K(u)du because cov(ĝ(x), ĝ(Xj)) = (Nhp)−1K ∗K

(
x−Xj

hp

)
. The second part is (Nhp)−1g(x)−1R(K) which

is driven by the var(ĝ(x)). Note, hp enters the bias only through these terms. The derivations for the variance

of f̃ are more arduous and thus not detailed here. However, given the proposed estimators’ resemblance to

Jones et al. (1995), it is not surprising that the variance is identical except that in the latter two terms the

divisor is Nhp as opposed to nh. Consistency of our estimator requires that h → 0, hp → 0, nh → ∞, and

Nhp →∞, the traditional requirements for the standard kernel estimator.

Given proposition 1, the AMISE (ignoring terms O(h4), O(h4
p), o((nh)−1), and o(Nhp)−1) may be found

AMISE(f̃) = 1/4h4R(g(f/g)′′) + (nh)−1R(K)+

2(Nhp)−1
[∫ (

K2(u)−K(u)(K ∗K)(u)
)
du

]

+(Nhp)−1
[∫

(K(u)−K ∗K(u))2 du
]
.

(14)

Subtracting the AMISE of the standard kernel (1/4h4µ2
2R(f ′′) + (nh)−1R(K)) from the AMISE(f̃) yields

1/4h4(R(g(f/g)′′)−R(f ′′)) + 2(Nhp)−1
[∫ (

K2(u)−K(u)(K ∗K)(u)
)
du

]

+(Nhp)−1
[∫

(K(u)−K ∗K(u))2 du
]
.

(15)

Note that the latter two terms are O(nhp)−1 but divided by Q, the number of experimental units, and

thus may be small relative to the other term for large Q. Therefore, R(g(f/g)′′)− R(f ′′) roughly defines a

nonparametric neighborhood around g where the AMISE of f̃ is smaller than the standard kernel estimator

for large Q. This neighborhood is the same neighborhood that Hjort and Glad (1995) found when using a

parametric start.

Proposition 2. If the true densities are identical, then f̃ behaves like the Jones et al. (1995) estimator

in that the bias is O(h4) if hp = ch.

Following the derivations outlined in the appendix of Jones et al. (1995) for the proposed estimator yields a

bias of −1/4h2
ph

2
(

f ′′

f

)′′
(x)f(x)−1µ2

2. Assuming hp = ch, the bias is O(h4). Note however, if the densities

f1, ..., fQ are identical then our ĝ(x) → fi(x) = f(x). Contrary to what Jones et al. (1995) state, it is not

necessary for the two smoothing parameters to be equated, although no other solution is sensible in their

case. In our case, it is sensible to have hp = ch, given the different number of realizations for the individual

and pooled estimators. Although this is a nice theoretical result, it does not convert into setting h ∼ n−1/9,
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and thus we forgo the MISE of our estimate being O(n−8/9). In practice, if it was known that the underlying

densities were identical, using the Jones et al. (1995) estimator with the pooled data would be more efficient.

Thus, although our estimator is O(h4) when the densities are identical, in practice, the smoothing parameter

needs to be chosen as if the densities are not identical.

2.1 Smoothing Parameter Considerations

There are various approaches to choosing the smoothing parameter. What is unique here is that there

exist two smoothing parameters that require choosing. We could choose hp and h independently, such that

hp is chosen to minimize an estimate of MISE or AMISE for g and then given this, h is chosen to minimize

an estimate of MISE or AMISE for f . Alternatively, somewhat like using the direct plug-in approach of

Sheather and Jones (1992), we could choose hp not to minimize an estimate of MISE or AMISE for g, but

rather for f . From the AMISE it is obvious that hp = ∞ minimizes the AMISE. However, our necessary

conditions stated above indicate that hp → 0 and Nhp →∞. Also note that hp = ∞ will produce a uniform

start which will return the standard kernel. Nonetheless, it does suggest that hp be large and thus setting

hp by oversmoothed rules seems appropriate.

Certainly, likelihood cross-validation is an easily applicable method of choosing hp and h. Again, we can

choose hp and h to maximize the likelihood cross-validation criteria for f̃ only. This would be

LCV (h, hp) = n−1
n∏

i=1

f̃−i(Xi; h, hp) (16)

where f̃−i is the estimate based on the sample with Xi removed.

2.2 Choosing the Start

Although the simulations indicate that the performance of the proposed estimator is not comprised rel-

ative to its competing estimator (the standard kernel) when the densities are very dissimilar, finding the

appropriate set or subsets to include in the pooled estimate is relevant. We propose the following strategy

if the set of potential samples to pool is relatively small. Assume there are m possible samples to include

in the pooled start (this includes the sample from the density of interest). Using either likelihood or least

squares cross-validation methods, calculate the optimum cross-validation value (subject to hp and h) for all

possible subsets (2m). Choose the subset that optimizes the cross-validation criterion.
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2.3 Integration Considerations

As with both Hjort and Glad (1995) and Jones et al. (1995), the proposed estimator does not integrate

to 1 and thus we normalize. Note,
∫

f̃(x)dx = 1 + O((nh)−1). Not surprisingly, we found non-trivial im-

provements in MISE for small to moderate sample sizes after normalization.

2.4 Combining with Other Estimators

Finally, there is nothing to preclude us from using more advanced methods, such as the combined non-

parametric and parametric estimator or higher order bias estimators, in estimating the start density g(x).

For example, if the Hjort and Glad (1995) estimator was employed to recover ĝ(x), then we would have

f̃(x) = (n)−1
n∑

j=1

Kh(x−Xj)




N−1
∑N

k=1
Kh(x−Xk)g(x,θ̂)

g(Xk,θ̂)

N−1
∑N

k=1
Kh(Xj−Xk)g(Xj ,θ̂)

g(Xk,θ̂)


 (17)

where g(x, θ̂) is the estimated parametric start for g(x). Similarly, if the Jones et al. (1995) estimator was

employed to recover ĝ(x) then we would have

f̃(x) = (n)−1
n∑

j=1

Kh(x−Xj)




N−1
∑N

k=1
Kh(x−Xk)ĝ(x)

ĝ(Xk)

N−1
∑N

k=1
Kh(Xj−Xk)ĝ(Xj)

ĝ(Xk,)


 (18)

where ĝ(x) is the pilot estimate based on the standard kernel. We note that proposition 1 remains intact

when these advanced estimators are used because the estimation error associated with ĝ(x) does not enter

the leading terms in either the bias or the variance expressions.

3.0 Simulations

The finite sample performance of the proposed estimator is evaluated using the first nine Marron and

Wand (1992) test densities. These densities, which represent a large variety of realistic density shapes, are

commonly employed to assess finite sample performance of density estimators (see Hjort and Glad (1995),

Jones et al. (1995), Jones and Signorini (1997) among others). The logic is that if the proposed estimator

performs well across these various density shapes, then we can be reasonably assured that the estimator will

perform well in an empirical setting. For each test density, 500 samples of size n = {25, 50, 100, 500} were

taken. The smoothing parameter selection problem is circumvented by choosing h and hp to minimize their

respective integrated squared errors:

I(f̃) =
∫

(f̃(x)− f(x))2dx; (19)
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Table 1: MISE*1000 for Worst Case Scenario

Standard Kernel Proposed Estimator

n=25 density 1 12.49 9.75
density 2 19.39 17.27
density 3 97.77 97.64
density 4 106.52 106.39
density 5 135.63 125.53
density 6 16.82 17.35
density 7 13.78 16.55
density 8 19.66 21.29
density 9 18.23 18.03
Average 48.92 47.75

n=50 density 1 8.47 6.75
density 2 11.61 10.77
density 3 66.66 66.35
density 4 67.01 66.31
density 5 88.30 81.31
density 6 11.35 11.10
density 7 7.39 10.38
density 8 14.23 14.05
density 9 13.21 12.18
Average 32.03 31.02

n=100 density 1 4.80 4.20
density 2 7.53 7.34
density 3 41.94 41.33
density 4 39.36 38.64
density 5 52.11 47.74
density 6 7.07 7.12
density 7 3.73 7.05
density 8 9.21 9.02
density 9 8.63 7.55
Average 19.38 18.89

n=500 density 1 1.63 2.49
density 2 2.44 3.30
density 3 13.63 13.37
density 4 11.93 11.37
density 5 15.28 13.74
density 6 2.31 2.62
density 7 0.76 4.59
density 8 3.17 3.01
density 9 2.74 2.31
Average 5.99 6.31
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and

I(g̃) =
∫

(g̃(x)− g(x))2dx. (20)

For all simulations, a standard normal kernel is used. Also, the individual samples are transformed to

have mean zero and variance one. The densities are subsequently back-transformed by the first two sample

moments. Since individual data is often accurate with respect to the mean and variance even for relatively

small sample sizes, the pooled data is only used to assist in estimating the shape or higher moments of the

density. In this respect, the proposed estimator has a flavor similar to that of Cheng, Hall, and Turlach’s

(1999) high-derivative parametric enhancement of a nonparametric density estimator. Finally, all estimators

are normalized so as to integrate to one in the simulations.

The first simulation exercise was constructed to represent a worst case scenario, that is, a situation where

the set of densities are very dissimilar and the proposed estimator would not readily come to mind. We

could erroneously employ the proposed estimator in an empirical setting believing the densities are similar

when in fact they are not. At what cost does this come relative to the alternative estimator, the standard

kernel applied separately to each individual sample? To that end, we consider the first nine test densities of

Marron and Wand (1992) as our set of possibly similar densities. These are ideal in that they were designed

to depict a large variety of possible density structures we might encounter in empirical analysis and thus are

quite dissimilar.

The MISE for each of the nine test densities is located in Table 1. The proposed estimator performs

most admirably in this worst case scenario. In fact, the proposed estimator has overall MISE lower than the

overall MISE for the standard kernel for samples of size 25, 50, and 100. While this may appear surprising

given how dissimilar the set of densities are, it is a testament to Hjort and Glad’s (1995) idea that the

uniform density is a poor start in most cases and can be improved upon.

Table 2: MISE*1000 for Best Case Scenario

Q=1 Q=3 Q=10 Q=25

n=25 12.49 7.38 6.69 6.04
n=50 8.47 4.69 3.83 3.59
n=100 4.80 2.75 2.38 2.14
n=500 1.63 0.89 0.67 0.55

The second simulation, summarized in Table 2, considers the ideal situation in which all densities are

identical (N(0,1)). We consider Q={3,10,25} where Q is the number of densities. As expected, the proposed

estimator significantly outperforms the standard kernel estimator (Q=1) for all Q > 1 and each sample size.

Not surprisingly, as Q increases the gains in efficiency increase at a decreasing rate.
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4.0 Conclusions

We presented an estimator that has superior performance, relative to the standard kernel, when the set

of densities are identical or similar while seemingly not losing much, if anything, when the set of densities

are quite dissimilar. A strength of the estimator is that it does not require knowledge with respect to the

degree of similarity or in what form this similarity takes. In practice, this is not known nor does it lend itself

to modeling.

The finite sample simulation results of the proposed estimator are extremely encouraging. It performed

admirably in both the worst and best case scenarios relative to the standard kernel. Recall that the pro-

posed estimator corresponds to the standard kernel estimator when the start is uniform over the support.

In almost all cases, the uniform density is a poor start and thus can be improved upon. In this respect, the

performance of the proposed estimator is not surprising.
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